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1) Some backgrounds in Kaehler-Ricci

flow geometry.

The Kaehler-Ricci flow equation:

∂

∂t
gαβ̄(x, t) = −Rαβ̄(x, t). (KRF)

Basic property: It stays in Kaehler category.

When manifold is compact, one also study

the normalized KRF:

∂

∂t
gαβ̄(x, t) = gαβ̄(x, t)−Rαβ̄(x, t). (NKRF)

Special case: c1(M) = [ω]. NKRF pre-

serves the Kaehler class of the initial metric.

Here ω is the Kaehler form of gαβ̄(x,0). Then

the Kaehler form of the metric gαβ̄(x, t) can

be written as ωφ = ω+
√−1∂∂̄φ(x, t) for some

function φ(x, t).



Since the deformed metric can be expressed

in terms of the Hessian of function (real

valued) we can reduce NKRF to a single

Monge-Ampere equation.

Let f be the potential function satisfying√−1∂∂̄f = Ric(ω)−ω in the case c1(M) = [ω].

gαβ̄(x, t) = gαβ̄(x,0)+φαβ̄(x, t) with φ(x,0) =

0. Then the NKRF flow reduces to

∂φ

∂t
= log

ωm
φ

ωm
+ φ − f. (1)

This simplifies things quite bit.

The similar reduction can be done if

c1(M) = k[ω].



2. Existence

a) Compact case:

Short time existence: Hamilton. In case

c1(M) = k[ω] follows from standard PDE the-

ory, due to the reduction mentioned before.

Long time existence:

Theorem (Cao) In the case c1(M) = [ω],

the NKRF has lone time existence.

C0-estimate is easy: If v = φt.

vt = ∆v + v

Then maximum principle applies. C2-

estimate follows from Yau’s work on the

Monge-Ampere equation. The C3-estimate

uses Calabi’s computation. One can also use

Evans’ C2,α argument.



b) Noncompact case:

Short time existence: W-X. Shi proved gen-
eral existence theory for Ricci flow. Namely,
the boundedness of curvature tensor for the
initial metric implies short time existence.

Long time existence: W-X. Shi proved the
following result.

Theorem (Shi) Let (M, g(0)) be a com-
plete Kaehler manifold with nonnegative bi-
sectional curvature. Assume that there exists
a constant C > 0, and θ > 0 such that for all
x ∈ M

k(x, r) =
1

V (Bx(r))

∫
Bx(r)

R(y) dv ≤ C

(1 + r)θ
. (2)

Then KRF has long time existence.

Recently, Tam-N generalizes the result
slightly to the case k(x, r) = o(1). We also



come up with a simple argument for the case

θ > 1 in Shi’s theorem, which maybe enough

for applications, say, the uniformization the-

orem for noncompact Kaehler manifolds with

positive curvature.

Solving Poincaré-Lelong equation and KRF:

∂2

∂zα∂z̄β
u0(x) = Rαβ̄(x). (PL)

Tam-N: Under the assumption of Shi’s the-

orem with θ > 0, PL cab be solved with so-

lution u0(x) satisfying:

|∇u0|(x) ≤ C1

for some C1 = C1(C, m).



Simple calculation shows that u(x, t) =

u0(x) − log(
det(gαβ̄(x,t))

det(gαβ̄(x,0))) satisfies

∂2

∂zα∂z̄β
u(x, t) = Rαβ̄(x, t).

Moreover u(x, t) satisfies the time-dependent

heat equation.

Then Bochner formula gives that(
∆ − ∂

∂t

) (
|∇u|2 + R

)
(x, t) = ‖uαβ‖2.

Simple consequence is that

sup
x∈M

(
|∇u|2 + R

)
(x, t) ≤ sup

x∈M

(
|∇u|2 + R

)
(x,0) (*)

with equality holds if and only if (M, g(t)) is

Kaehler-Ricci soliton. (*) implies the uniform

curvature bound which implies the long time

existence. The proof was motivated by an

earlier work of Chow on gradient estimate on



Kaehler-Ricci flow. The argument works in

compact case and give a proof of Cao’s long

time existence in case biK ≥ 0 without using

Monge-Ampere estimates. In this case, ar-

gument is simpler since one has potential for

free.



3. Monotonicity-I

Monotonicity is used in general sense as

Perelman’s lecture. The very useful result

is the following Li-Yau-Hamilton inequality:

Theorem (Cao). Let (M, g(t)) be KRF

with nonnegative bisectional curvature. Then

∆Rαβ̄ + Rαβ̄γδ̄Rγ̄δ + ∇γRαβ̄Xγ̄ + ∇γ̄Rαβ̄Xγ

+Rαβ̄γδ̄Xγ̄Xδ +
1

t
Rαβ̄ ≥ 0.

In case M is noncompact, we assumes that

the curvature tensor is bounded.

Taking trace one does has the monotonicity

of tR(x, t).

The result was Kaehler version of the cor-

responding result of Hamilton on Ricci flow.



The underlying reason, in term of Chow-

Chu’s space-time formulation, for such es-

timate is the following result of Bando and

Mok.

Theorem (Bando, Mok) Let (M, g(t)) be

a KRF solution such that g(0) has bounded

nonnegative bisectional curvature. Then

(M, g(t)) has nonnegative bisectional curva-

ture.

Chow-Chu showed, for Riemannian case,

that the LYH quantity is the curvature of

some space time metrics on M × [0, T), which

become zero at the initial time. If one can

have similar construction of Chow-Chu for

the Kaehler metric then Cao’s theorem can

be viewed as space-time version of the result

of Bando-Mok.



4. Applications

The general goal is do uniformization and

construct canonical metrics.

Theorem (Cao) Let M be a compact

Kaehler manifold with c1(M) = 0 (c1(M) =

−[ω]). Then KRF converges to the Ricci flat

metric (Kaehler-Einstein metric).

The existence results have been solved by

Yau (Aubin-Yau) before. The KRF provides

a flow proof. The method follow very closely

the elliptic proof (via Monge-Ampere).

Mok made use of KRF in his celebrated

result on the uniformization of compact non-

negative bisectional curvature.



Theorem (Mok) Let Mm be a compact

simply-connected Kähler manifold with non-

negative bisectional curvature. Then M is

biholomorphic to products of compact Her-

mitian symmetric spaces.

The positive case was proved by Siu-Yau,

Mori earlier.

Noncompact complete case:

Theorem (Shi) Let M be a complete

Kähler with positive sectional curvature and

k(x, r) ≤ C

(1 + r)1+ε
.

Then M is biholomorphic to a strictly pseudo-

convex domain in Cm.



5. Monotonicity -II

a) Linear trace Li-Yau-Hamilton inequality.

Chow-Hamilton (Invent. Math. 1997)

proved the linear trace Harnack inequality

first for RF with nonnegative curvature op-

erator. The main point is that the Li-

Yau-Hamilton inequality holds for symmetric

tensors satisfying the so-called Lichnerowizc

heat equation. It reveals strong connections

between the linear heat equation and the RF.

In the case n = 2 (m=1), it says that

∆ logu + R +
1

t
≥ 0

if u(x, t) is a positive solution to time-

dependent Shrödinger equation ( ∂
∂t − ∆ −

R)u(x, t) = 0. Let u = R. One recovers

Hamilton’s LYH inequality for the surface.



Moreover it also contains Li-Yau’s gradient

estimate

∆ logu +
1

t
≥ 0.

The reason is that one can slow down of the

Ricci flow by τ . Namely:

∂

∂t
gij(x, t) = −2τRij(x, t).

Then for positive solution to ( ∂
∂t − ∆ −

τR)u(x, t) = 0, Chow proves that

∆ logu + τR +
1

t
≥ 0.

Taking τ → 0 one recovers Li-Yau’s inequal-

ity.

Since Li-Yau’s estimate implies the Lapla-

cian comparison theorem, one can think the

Riemannian geometry (Kaehler geometry) is

the limiting case of the RF (KRF) geometry.



Recently, we have been able to generalize

Chow result to high dimension in Kaehler set-

ting.

Theorem (N) Let (M, g(t)) be a solution

to KRF with speed τ , with bounded non-

negative bisectional curvature. Let hαβ̄(x, t)

be the symmetric tensor satisfying the Lich-

nerowicz heat equation. Then Z(τ)(x, t) ≥ 0.

Moreover, the equality holds for some t > 0

implies that (M, g(t)) is an expanding soliton

if hαβ̄(x, t) > 0 and M is simply-connected.

Here Z(τ)(x, t) = Z(x, t)+τ
(
gαβ̄gγδ̄Rαδ̄hγβ̄

)
(x, t).

and

Z =
1

2

(
gαβ̄∇β̄div(h)α + gγδ̄∇γdiv(h)δ̄

)
+gαβ̄div(h)αVβ̄ + gγδ̄div(h)δ̄Vγ

+gαβ̄gγδ̄hαδ̄Vβ̄Vγ +
H

t
.



τ = 0 case is a new inequality,

which implies the differential Harnack for

Hermitian-Einstein flow, and has been

proven to be useful.

(τ = 1 case, was proved before by Tam-

N, gives Cao’s trace differential Harnack. in-

equality if hαβ̄ = Rαβ̄).

b) Integral quantities-mostly compact case:

For NKRF and c1(M) = [ω] case:

i) Mabuchi’s K-energy:

νω(φ) =
∫
M

log

(
ωm

φ

ωm

)
+
∫
M

fω(ωm − ωm
φ )

−
m−1∑
i=0

∫
M

(
m − i

m + 1

)√−1∂φ ∧ ∂̄φ ∧ ωi ∧ ωm−i−1
φ .



Here we normalize the volume to be 1, fω is
the normalized potential function. νω(φ) is
monotone decreasing along the flow.

ii) Ding-Tian’s F -functional:

Fω(φ) = νω(φ) +
∫
M

fωφωm
φ −

∫
M

fωωm.

iii) Chen-Tian’s functionals for the case
biKm ≥ 0.

For general RF on compact manifolds:

Perelman’s energy and entropy:

λ(t) = inf∫
M v2 dv=1

∫
M

(4|∇v|2 + Rv2) dv

and

µ(τ) = inf∫
M v2 dv=1

∫
M

[
τ
(
4|∇v|2 + R

)

− log(v2)v2 − m log(πτ)
]

dv



with τ = T0 − t. Both λ(t) and µ(τ) are isop-

eremetric constants. They are monotone in-

creasing in t.

6. Large-time behavior of the KRF

Compact case: Nothing is known in general

case. No much known about the singularity.

Hard to do the surgery in the Kaehler case.

Special case c1(M) = [ω]: It was claimed

by Perelman that if there exists a KE metric

in the class [ω] then NKRF converges to a

KE metric.

Chen-Tian: The case M has positive bisec-

tional curvature. Again assuming [ω] contains

a KE metric.

Noncompact case: Not much in general.



Special case: M has bounded nonnegative

bisectional curvature. The KRF become de-

generate as t → ∞. What normalization will

ensure convergence to a flat metric? Chau–

Tam proves convergence, using Shi’s idea,

under some assumptions on the gαβ̄(x0, t) for

all t.

7. Applications of Perelman’s entropy

formula

Theorem (Perelman) For NKRF, as-

sume that R(x,0) > 0. Then there exists a

constant C1(g(0), m) such that

R(x, t) ≤ C1

and

D(t) := Diameter(M, g(t)) ≤ C1.

The result serves an important step towards

the convergence result claimed by Perelman.



The special case, when M has nonnega-

tive bisectional curvature, of the above result

was proved by Cao-Chen-Zhu, via Perelman’s

non-collapsing theorem.


