Seminar
Parent Program: | |
---|---|
Location: | SLMath: Eisenbud Auditorium, Online/Virtual |
Module schemes in invariant theory
Let G be a finite group acting linearly on the polynomial ring with invariant ring R. We assign, to a linear representation of G, a corresponding quotient scheme over Spec R, and we show how to reconstruct the action from the quotient scheme. This works in particular in the case of a reflection group, where Spec R itself is an affine space, in contrast to the Auslander correspondence, where one has to assume that the basic action is small, i.e. contains no pseudo reflection. These quotient schemes exhibit rich geometric features which mirror properties of the representation. In order to understand the image of this construction, we encounter module schemes (a forgotten notion of Grothendieck), module schemes up to modification and fiberflat bundles.
No Notes/Supplements Uploaded