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Four Color Theorem

* Francis Guthrie (1852) South African
botanist, student at University
College London

* Augustus de Morgan

e Arthur Cayley (1878)

e Computer-aided proof
by Kenneth Appel &
Wolfgang Haken (1976)

LIN Holland
LIN Kesteven
LIN Lindsey
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Generalizations

=

 Heawood’s Conjecture (1890) The chromatic
number, p, of an orientable Riemann surface

of genus g is

p = {7 + (1+48g)1/2}/2
* Proven, for g > 1 by Ringel & Youngs (1969)



Generalizations

(dual problem): Replace each region
(“country”) by a vertex (its “capital”) and connect the
capitals of contiguous countries by an edge. The four
color theorem is equivalent to saying that

* The vertices of every planar graph can be colored
with just four colors so that no edge has vertices of
the same color; i.e.,

* Non-planar:
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Combinatorics of Maps

* This subject goes back at least to the work of
Tutte in the ‘60s and was motivated by the
goal of classifying and algorithmically
constructing graphs with specified properties.

William Thomas Tutte (1917 -2002)
British, later Canadian, mathematician
and codebreaker.

A census of planar maps (1963)




g - Maps

A map D on a compact, oriented and connected surface X is a pair D =
(K(D), [2]) where

e K (D) is a connected 1-complex;
e [1] is an isotopical class of inclusions ¢ : K(D) — X;
e the complement of K(D) in X is a disjoint union of open cells (faces);

e the complement of the vertices in K (D) is a disjoint union of open seg-
ments (edges).

A ¢g-map is a map in which the surface X is the closed, oriented Riemann surface
of genus g and which in addition carries a labeling (ordering) of the vertices.



Constellations: the Permutation Model

A 4-valent diagram consists of

* n (4-valent) vertices;

* alabeling of the vertices by the numbers 1,2,...,n;
* alabeling of the edges incident to the vertex s

(fors=1, .., n)bylettersi,, j., k. and | where this alphabetic
order corresponds to the cyclic order of the edges around the
vertex).




Random Matrix Partition Functions

* Unitary Ensembles

* Partition Function & Free Energy
e Equilibrium Measures

* Rigorous Asymptotics

* The Genus Expansion



Random Matrix Measures

* M ¢ HH_, nxn Hermitian matrices
e Family of measures on HH_ (Unitary Ensembles)

1
ZJ(\?) (t2V)

1
Weight (potential) : V,(\; ta,) = §>\2 + toy A

dise,, = exp{—N Tr|V,(M,ts,)|} dM

normalizable for : Rito, >0

 t = 0: Gaussian Unitary Ensemble (GUE)



The Partition Function

* Descent from Matrices to Eigenvalues
* A tau function mediates this transition
* Fine Scaling: A =N"”M

ZM () = / exp {—N Tr[V, (M, t2,)]} dM

Zz(\?)(tzu) = /"'/GXP{N2

ZW(t) = cn, N)Z{ (tay)
2o = I 20
n, N Z(n)(()) Z(n)(o)

N N
t

- E, (exp {—Ny_lTr[A”]})

1 < 1 .
N > Vi, (Aj; tay) — m;log‘)‘j - AE] }d A.

J




The Free Energy for Large N

* One wants to study the asymptotic behavior of

1/N*log * \ (t) as n,N = o= with x = n/N fixed
near 1.

* Leading order:

n - 1 .
7 (ta) / /exp {—N2 [ > V(A ta) — mZbg\)\j - Ag} }d A
j=1 j

J7#t

sup {—/V(A)du(k)+//10g\k—n\du(k)du(n)}

A = DBorel probability measures on R.



The Free Energy for Large N

Leading order:

sup {—/V(A)du(AH//log\k—n!du(k)dﬂ(n)}

peEA
A = DBorel probability measures on R.

Maximizer :  equilibrium measure .,

t=0 (V=2%A?) = Wigner semicircle law



Introduction of z,(t)

aaaaaaa

Equilibrium measure for V=% A2+ A%
* In general, set z,(t) = f?/4 where

[-B(t),B(t)] = supp(u,)



Rigorous Asymptotics [EM ‘03]

1
N_Qlong,N@) — 60(33,t)—|—m61($,t)+m62<$,t>+‘°‘+ ZC,t>—|—

3y 6l

e uniformly validas N => e forx=1,Ret>0, |t| <T.
* e,(x,t) locally analytic in x, t near t=0, x=1.

* Coefficients only depend on the endpoints of the
support of the equilibrium measure.

* The asymptotic expansion of t-derivatives may be
calculated through term-by-term differentiation.
The large N asymptotics of all matrix correlations are
calculable from derivatives of the free energy.



The Genus Expansion

_ 1 1 1
N=2log T, n(t) = eo(z,t)+ mel(ﬂfat) + m@(%t) T Weg(w,t) T
1 : ,
eq(t) = Z 7(_15)‘7"%(]) (x=1)
=17

in which each of the coefficients k,(j) is the number of g-maps with j 2v-valent
vertices.

* Information about generating functions for graphical enumeration
is encoded in asymptotic correlation functions for the spectra of
random matrices and vice-versa. Bessis, [tzykson, Zuber, Adv Appld

Math (1980)
 Riemann-Hilbert Analysis Fokas, Its, Kitaev, CMP (1991)

* Nonlinear Steepest Descent Deift, Kreicherbauer, McLaughlin, J
Approx Th, (1998), Deift, Kreicherbauer, McLaughlin, Venakides,
Zhou, CPAM (1999)



The Genus Expansion
N"logr? (1) = eolat) + qger(mt) + sogealm )+ ey () + -

eo(t) = 3 = (—t)iy (7)

A
i1

in which each of the coefficients x,(j) is the number of g-maps with j 2v-valent
vertices.
Goals

* To place the derivation of the genus expansion on a firm
analytical footing. ( )

* To understand the structure of the e (t) as global analytic
functions of t, in particular to exhibit their sole dependence
on the endpoints of support of . (t) .

( )

* To explicitly write down closed form expressions for the e (t)
and related generating functions suitable for the extraction of
explicit or asymptotic combinatorial information.




Four-Valent Planar Maps (BIPZ '78)

For potentials V of the form V =L A> + 1, A,

1
€ = ﬁ(Zo - IXZO - 9)+%10g(zo)

olt) =Sl <, (m) = (12)° ((Z—z;)z!




One Vertex Maps




Other Approaches

Loop Equations Chekov, Eynard, Orantin, Prats-Ferrer,
... Iterative equations for the recursive derivation of
the e, as functions of multiple times.

For a derivation of the loop equations based on
Riemann-Hilbert analysis (E-VIcLaughlin MSRI vol 55)

Intersection Numbers on Decorated Moduli Spaces
Mumford, Witten, Kontsevich

Hurwitz Numbers, Hodge Integrals & GW Theory
Okounkov, Pandharipande, Ekedahl, Lando, Shapiro,
Vainshtein



Structure of e, [EMP ‘08]

For potentials V of the form V =L A> + 1, A%,

= 77(20 — IXZO - r)+ +log(z,)

(v—l)2 3(v +1)
n=4v(v+l)’ SV

t Kn(_)” Kn:cn(vn—l)!
( ) E (\ 2v() (v) ((V—1)7+2)!
2v -1
CV=2V(V—1)



[EMP ‘08]

eo =310g(ze) + (2o ~1)(zo - 7)
e, = —%log(v —(v- 1)z0)

0. = (2o - DO, (Zo)
i (v-(v- 1)z0)5

I8V 471 +80v+12 V{31V’ +98v +40)
240 2880(v—(v-1)z,)  1440(v—(v-1)z,)
~ v?(22v +25) . T3

576(v - (v - 1)Z0)4 360(v - (v -1)z,)

1 (z0-1)"(325 - 212, - 82)

720 (2-2,)

5

(v=2):=




e, =3log(zy) + 1z, —1)(z, - 1)
e, =—log(v - (v-1)z,)

(20 ~ 1), (2,)

(v—(v- 1)z0)5

€, =

Y _
e, = Sl ng_s-rs(gZ_oS) (Where r = max {1, 281
(v=(v-1)z,) v-1l]
@, C(()g)(v) - ngg)—3(v)

~N

(v —(v - l)zo)zg_2 (v —(v - l)z())sg_5



BlZ Conjecture (‘80)

8. CoNncLUSION

It would of course be very interesting to obtain ¢,,{ g) in closed form for
any value of H. The method of this paper enabled us todosoup to H = 2,
but works in the general case, although it requires an increasing amount of
work, We conjecture a generai expression of the form

_ 2N
ey =9 piad), H>2 (8.1)

(2 . a})’("- 1)

with P, a polynomial in &% the degree of which couid be obtained by a
careful analysis of the above procedure. From (7.35) its value for a® = |

Y _
e = (2~ 1) QSg'S'r(ZO) where r = max {1, 281

: (v-(v- 1)20)5g_5 v-1

ey’ (v) o C(S?—3(V)

(v —(v - 1)zo)zg_2 (v —(v - l)zo)sg_5

~ @ 4




What is z, (t) ?

1. Eigenvalue density edges:
where

2. Generating Function for Generalized Catalan Numbers




What is z, (t) ?

3. A self-similar soln. of the inviscid Burgers eqgn
f=c,ff,, fls,w)=wzy(w*1s), f(O,w)=w

20(s) = cvzo(s)” (20(s) + (v —1)sz5(s))
1 = 2z9(s) —cpszp(s)”
N A

v—(v—1)z9

Finite shock occurs at z, = v/(v-1) with shock time
s.= (v-1)Vt/c, vV ; all other shocks are at e, v-1 order
ramification point.

T T T
w

lllllllllllllllllllll



What is z, (t) ?

4. Leading order of recursion coeffs. for OPRL of weight exp(-NV)

TN = Ay () = By (D18 ()
1 1
Bon(t) = o(zn(s) + gaals) + - pza(s) +)
s = —x¥ 1t
bs v(0) = n/N=u
: d’ z
zéj)(()) — dsjg|8:O

= #{two-legged g-maps with j 2v-valent vertices }

Solves continuum limit of dPI hierarchy (Cresswell & Joshi (1999))
dPI (v =2) is Freud’s equation:

n
4tb721,N(t) (5721—1,1\1(75) + bi,N(t) + bi+1,N(t)) + bi,N(t) =N

The “string equation” of 2DQG: Douglas-Shenker, Brezin-Kazakoy,
Gross-Migdal ‘80’s



Calculations: g=1,2 EMP ‘08

(v-1)v(z, - 1)z0(—v2 +(v=1)(v+ 2)z0)
12(v - (v - 1)z0)4

z(s) =

1
1440
+(—1207 + 1480 — 5460° + T580°% — 25207 — 961°) 2,
+(264v% — 151007 + 255510" — 5000° — 17800° + 8400 + 1440°) 2]
(
(

(r—1)r(zog — 1)z [(21/G — 1407 + 240°)

+(=536v + 13960~ + 91207 — 45960 + 24920° + 12960° — 868v" — 9617 ) 2
+(168 + 234v — 14670 + 558v° + 1902" — 14460° — 267" + 29407 + 2407 ) 2]

(v —(r—1)2)"".

27



Calculations g=3 EMP ‘08

viv—1) 20(z0 — 1)
362880 (v — (v —1)zp)™4
(v =2)(v=3)(v —4)(v — 5)(v — 6)(124 — 147v + 351%)
+ (v = 3)(v — 2)(v — 1)(104160 + 47584v — 3325500° + 270697v° — 832261* + 8923v°) (2 — 1)
+3(v — 2)(v — 1)%(312480 + 744980v — 12457500% + 373091v* + 10859200* — 4854141°
+ 6722505) (29 — 1)?
+ (v —2)(v — 1)*(—1562400 — 7251840v + 2906901> + 114680571° — 28240781* — 31543020°
+1078663v°%) (2 — 1)°
+ (v — 2) (v — 1)* (1562400 + 10781280v + 125880101* — 106773530 — 11255921v* + 30063631°
+ 1779986v°) (2 — 1)*
+ 3(v — 1)°(624960 + 5411808 + 101007961* — 1315908,° — 93716950 — 9735731° + 18357991/
+ 3088580 ") (29 — 1)°
+ (v — 1)%(—624960 — 6823584v — 200989001* — 16851720v° + 38671171 + 83564421°
+22237600° + 11982407) (29 — 1)°
+ 5(v — 1)7(17856 + 2352961 + 93923612 + 15050641° + 10326030 + 2858601 + 244720°
+64v7)(29 — 1)] .

Z3(t) .




_ zo(20 = 1) A (2,)

k (V — (v — 1)z0)4

7 = 2o(20 = )Py (20)
2 (v—(v- 1)z0)9

. = 2o(zo = 1)P(z,)

(v —(v - I)ZO)M



)
1(Z04
) (ZO(; l_)SZO)
= (v -

)P, (z)
Zo(20 -

1

e
) i:<20(1>$;0)m
(v (v Z) .
3 ( 1)P 3g2)(5g1
ZO(ZO(:/ e
Z, = (v -

al®) (v)

(v - l)zo)zg
(v-

v)
agg—l(

(v - 1)Z0)5g_ |
-




Philosophy

Rational generating functions are generating functions,

A(s) =a;s+a,s?+..., for sequences that satisfy a linear
recursion relation:

0,,=C; 0., +C,0,,,,+...+c.a, (a,,..a,,given)

(c;s+c,8?+...+c s A(s) =P(s) + A(s) (degP =k-1)

Conversely, if A(s) = N(s)/D(s) with D(s)=d;s+... +d_s™; then
[s"] A(s)*D(s)=dya,+...+ da,;+..+da, , foralln>deg N.

Bute,, z, € @) (z,(s)), are not rational ; Divide and Conquer:

2, drives asymptotics of z, and e, (universality of alg-log type)



Recursion Formulae & Finite Determinacy

* Derived Generating Functions

) — 39—14y égj)(y)
2°(s) = Az Z (v — (v — 1)z)20+i+C |-

£=0

e (Coefficient Extraction

zéj )(0) = *#{two-legged g-maps with j 2v-valent vertices }
B T G O R B B A Vs VI A )
2w Jo0 S 2mi J, .4 z2(z—1)
39 147
= Z a(g]) (v) and
a’ () = [u—1>u—<2g+z+<j—z>>1a§g’j‘”< )+ v2g 4+ 04 (G = 2))a?] ) () with

a(()o’o)(v) = 1 aéo’o)(y):0 for ¢>0 égy)( )=0 for £<0



Enumerative Asymptotics

e Shock at z,=v/(v-1) at time s_= (v-1)"*/(c, v")
* Rescale:s=s_5 =2 [v/(v-1) —z5] = [2v(1-8)]"[1 + O(1-5)]

* Asymptotic growth of coefficients asn > oo

" L Zg(5) A
[S ]Zg B 2—7'('2 50 gn+l1 ds = Sc [S ]Zg
(9) ( ) 5g— Hankel Contour
~ 14 a’39—1 1% n- 2 5ot
[S?’L] Zg ~J _ _ _|_ O(n - )
v — 1 ( /2V(V_1))5g 1F(5921)



Relations to Other Enumeration Problems

* Rooted map distinguish, vertex, adjacent edge
and side of edge

* M, ,=the number of rooted maps on a genus g
Riemann surface with exactly n edges

M ~ 1 n5(g—1)/212n as N — oo  Bender, Gao, Richmond
" J (2008)

2 1 7
ty = ot = — =
’ v 24 7 /1320n
; 1 1
9 T T ou 9.9 T/bg—1 %
297262 I'(2%—)
where oy is the g'" coefficient in the asymptotic

expansion at —oo of the PI transcendent



Universal Asymptotics ? Gao (1993)

[9] for a survey). But it scems very dillicult to obtain any nice explicit
formula for the exact number of non-planar maps (cf. [1, 4, 11, 12,
13, 16, 17, 22, 23]). Instead, people started working on asymptotic
formulas for such numbers. In 19861988, E. A. Bender, E. R. Canfield, and
N. C. Wormald [3, 10] studied various classes of rooted maps on general
surfaces and they obtained asymptotic formulas for the number of rooted
maps, rooted smooth maps and rooted 2-¢ maps (Throughout this paper,
k-connected is abbreviated to k-c.). Letting T,(n) (P,(n)) be the number of
orientable (non-orientable) rooted maps (in a certain class) with »n edges
of type g, they observed that these asymptotic formulas fit the following
pattern:

T~ 1y s,

Pg(”) ~p3(ﬁn)5(ﬁ 1yz .;,u.

where ¢, and p, are positive constants defined in [3], f and y are
independent of n and g (but they depend on the class of maps), and

But this pattern is not satisfied by the triangular maps and a large class of
degree restricted maps (cf. [13-15]). Instead, they satisfy the following
modified pattern:

T (n)~at (fn)™ &2y,

P (n)~ap, ()= 102"

(1)
(2)

where x is the ged of the face valencies of the class of maps.
We shall show that pattern (1) and (2) are also satisfied by the following
classes of maps:

1. loopless maps;
2. simple maps, ie., maps without loops or multiple edges;
3. 3-¢ triangular maps.
Asymptotic formulas like (1) and (2) played an important role in
proving some asymptotic properties of maps such as 0-1 laws for submaps

of maps and chromatic properties of maps (cf. [5-77). It is believed that
there should be some purely combinatorial explanation for pattern (1) and

al
a,~b, means ,_); »1 as n- o (2), but no such one has been found yet. (1) and (2) are derived through
some delicate asymptotic analysis about “typical recursions™ which are
satisfied by many classes of maps and were first described in [3]. We
(9) 59 =7
k C3 g—1 (V ) k2 _ L
s¥leg  ~ 59—51 °

(Vov(v - 1)) T

K

2



Some General Classes

A Table for Parameters «, f, and y w.r.t. Edges

Classes of maps o p y References
All maps 1 1 12 [3]
2-¢ maps 1 3 27/4 [10]
3-¢ maps | 9 4 [8]
Smooth maps 1 (3/2)'? 5+2./6 [3]
Loopless maps | 3/ 256/27
Simple maps 1 (3/2)* 8
Triangular maps 3 (1/3)6'° 223 % 3172 [13]
2-¢ triangular maps 3 (2/3)6"° 3x2-13 [14]
3-¢ triangular maps 3 (4/3)6'7° (8/3)2-13
1/d
2d-regular maps 2d (84)° (d—1)/d d (d ! (M)> [15]
d—1 2 d
1/d
Loopless 2d-regular maps  2d (84 )3 (d—1)/d d (d_ 1 (Zd))
d—1 2 d
(9) 59 —T
k C3 g—1 (V ) k2 _ L
s"leg  ~ 59—1 10 (59—5) ¢
g T g
(V2v(v — 1)) (%%5)



Comparison between M, . and [sK] e,

5(g—1) 1/1/ n
—1 2 % v—1/[2v
A7) ~ Ot 1/5 V
™9 vt | (8V) v " v—1 2 v

1 5(g—1 Y vV — v &
n=vk — — 2Vtg(8’/)gT((V_1)k) o ((V—l)”< 21<2V>))
= 29 t, (QV)QT_l (v —1)k) B (QVSC)_k
un-rooting —  ~ 2972 lg (QV)QT_I (v—1) N k% (SC)_k
K Cé?—ﬂ”) kT,
s"leg  ~ 59—1 1 (Bg—5) ¢
(V2v(v — 1)) L (*%5-)



Relations to Other Enumeration Problems

 Bender, Gao & Richmond (2008)
* Following Goulden & Jackson (2008)
e Garoufalides, Marino (2008)

y' = 6y’ +¢,
—¢ o B
y(©) ~ (o (1= ) as £ - —oc
g=1
25¢% — 1 1 <
Ag4+1 = 8\/6 &9—5 Z&mag—l—l—m
m=1



_|_

Double-Scaling Limits

> (9) (9) (9)
Qg (V) a, (V) a _1(V) B
? g=1 { (v — (v —1)z)* " (v — (v —1)z9)2911 + + (v — (Vg_ 1)20)591 } N 29
ey . S —2¢,y vt —59/2
(R e S () e
g=1
O(N—4/5)

(v = (v—1) z,) ~ N°® such that highest order terms have a
common factor in N that is independent of g :

2> N (s—s.)=yYE wheres_=(v-1)"/(c, V")



+1
ag(g+1)_1(u)

1
as! (v)

a:(agg)— 1

* Coincides with with the recursion for Pl in the case v = 2.

y(€)

Qg+1

New Recursion Relations

v (2592 — 1) (9)

6

V2

6

g
4 m
CLSg—l(V) + 5 Z ai(%m)—l(y)a’
m=1

—2°9-1 (2/3)9/2 ay for g >1

(g—m+1)
3(g—m+1)—1

()



Connecting RHPs & Non-Hermetian OPs

* Fokas, Its, Kitaev 1992

e Kamuvissis, Rachmanov 2005
* Duits, Kuijlaars 2006

* Bertola 2006




Elements of Proof

|. Extended Riemann-Hilbert Analysis

II. Deconstruct the extended continuum limit in
terms weighted Dyck bridges

Ill. A long recursive calculation (generalized
binomial inversion ?)



Element I:
* For A=22,"2y

9 9 2v—2
duvy,(n) = ;X(—l,l)(n) y % (1 —z0) (ZZ)— 1
\ i < v—1 )
1 (2] — 1) 1)
v— —1 .
b Y2l L | A G () da
et ( v — 1)
v—1 d )

= £y OGauss(n) + (1 o ZO) Omon(v)(n)

* Each measure continues to the complex n as a
differential whose square is a



Element |:

Theorem There is a constant A > 0 such that for (complex) t with R(¢) > 0,
|3(t)| < A one has a uniformly valid asymptotic expansion

1
logTJQ\I,N(t):NQGO(t)—i_el(t)—'_W (t)+ (1)
as N — oo. Also, the recurrence coefficients for the monic orthogonal polyno-
mials with weight exp(—NV(\)) have a full asymptotic expansion, uniformly

valid for (complex) t with R(¢) > 0, |3(¢)| < A, of the form

1 1
B (t) = 20(=0) + wz2a(—t) + wpea(—1) + -+ &)
as N — oo. The meaning of these expansions is: if you keep terms up to
order N 2" the error term is bounded by CN~2"=2  where the constant C
is independent of ¢ in the domain {(Rt > 0; —A < 3t < A}. Moreover, in this
domain, for each ¢, the functions e,;(t) and z,(—t) are analytic functions of ¢
and the asymptotic expansion of derivatives of log (Zy(t)) and by, y(t) may be
calculated via term-by-term differentiation of the series.

See also “Asymptotics of the partition of a random matrix model” Ann. Inst.
Fourier 55 (2005)



Element Il:

7T7”L+17N<)‘) — >‘7Tn,N()\) - bv2z,N<t>7Tn—1,N()\)-
1 d?
bo(0) = §d—6’% log [73,1(91, 9)}91:0 where
7’3,1(917@ = Z£n)<0179)/Z£n)(0,0> and

n — (1
Z](v)(tl,t) — /---/exp —NZ (5)\? —I—t)\?y —|—t1)\j> V(A)d"™ A
j=1

| de v+1 , v+1 5
§d—9” = Z [H Dt ()1 — 1__[1 bn+€m(w)]

{Dyck bridges} Lm=1
2 . i i
bn,N = N Zo(S)—I— 221(8)—|— 4z2(3)_|_
n n
1
brion = 7 (wzo(sw’/_l) + - Tgw1_2gz9(sw’/_1) 4. ) where
| n

=
n



—f(

Element II: Cluster Expansion

v+1 2 h
_ Z nfyﬂ{H 1+f7w(£m+1)+f12u}2) <€m+1> +---+f;l”'(;) (ferl N
n n .
= {Db’s} m=1 "
v+1 2
fwgm w(2) em f (h) gm
_ 14 Lwim  Jw® [ Tm -m
1075 +2f<)++h!f(n>+ }




Element Il: +
Js = F(V)(n_l;f,fw,...,fwm,...)i

o fu+ = SO, fur Fuw Fuws) +

1
+@Fg(y)(fa fwafw(Q)a' Ty w(29+1)) + .-

for (s,w) near (0,1) and initial data given by f(0,w) = w.
d(’/ )

i (A)
Fg(l/) — Z H ( fV L(N)+1 H ( w(J)) where

A A|=2g4+13 (N <v+1
|>\| - Z)\q;
ri(A) = #F A =7}
() = > )

J

FW) resembles a Faa di Bruno formula :

ToaF@) = 3 aO () B (7). ). 7 )
{=0




Element Il: The Young Graph

dg\yag)

mx(x1,2a,...)

o AL
mu_/ 4533 2 E:: ::,E @ EE:E
P = o PEPPR
BJ\EB><_ 533: EEB ﬁﬁjg‘
g F & we g 5O
g F el el

N o= e
> 2 m (1 =10, M1 — Tot1)
4+l . 21)CuC (20,20 —1,...,0)



Element IlI:
Weakly Nonlinear Higher Order Asymptotics

flsw) = fols,w) g fals,w) o o fyls,w) oo
d
= ) (o
fo(0,w) = w,
% — ¢, ((fo)’/(fg)w + z/(fo)’/_l(fo)wfg) + Forcing, for g > 0.
( )
. c, O
Forcing, = o+ 10w Z S Thus
0< kj <g
\ i+ +kyp1=9 )

T Fl(y) 29 — 2] + FQ(V) 29 — 4]+ -+ -+ Fg(l/) 0] where
Fe(y) 2r] = the coefficient of n"2" in Fe(y)



Element IlI:

fo(s,w) = w' Tz, (ws)
1 1
f(s,1) = zo(s)+ —521(s) + —2als) + -
Z4(5) is an abelian function of
20 with singlularities only possible at zo = 0,v/(v — 1).

2g(8) = 24(20(s))
20(s)*1 9 /ZO(S) (v = (v —1)z)

v— (v —1)z0(s) c,zv 13729

Forcing  (2)dz



Element IlI:

Proposition
(i) z4 is regular at zp = 0 and in fact vanishes at least simply there.

(ii) Forcing, may be written as a sum of terms each of which has the form

T )i (Fea) o) (Fr pGon)

where 0 <m <v+land jy+ -+ jm=2(9— k1 —kao— - —kp)+ 1,
with k; < g.

(iii) For (k,n) # (0,0),

o e
. 1) = n— )
(fk)w( )(87 ) <0 (l/ - (V - 1)Zo>2k+n + + (y _ (V _ 1)20)5k+2n—1



Element IlI:

For z, the solvability conditions (meromorphic w/o
residues) are always satisfied.

For e, the solvability conditions are satisfied for all g > 1

At g=0 and g=1, for e, these conditions require
choosing a branch of the logarithm.

Forg >0, z, is rational in z; ;
Forg > 1, e, isrationalin z,.

z, (resp. e, ) all have the same envelope of holomorphy.
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