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Direct problem for Poisson equation

Let Ω be a bounded domain in Rn. Consider Poisson equation:

∆u = f , in Ω, (1)

with Dirichlet boundary data

u = g , on ∂Ω, (2)

or Neumann boundary data

∂u

∂ν
= h, on ∂Ω, (3)

Given f ∈ L2(Ω) and g ∈ H1/2(∂Ω) or h ∈ H−1/2(∂Ω) , the direct
problem specified by (1), (2) or (1), (3) has unique solution u ∈ H1(Ω).



Green’s representation

Let Ω be a domain for which the divergence theorem holds and
u ∈ C 1(Ω̄) ∩ C 2(Ω). Then, for y ∈ Ω,

u(y) =

∫
∂Ω

u
∂G1

∂ν
ds +

∫
Ω

G1∆u dx

or

u(y) = −
∫
∂Ω

G2
∂u

∂ν
ds +

∫
Ω

G2∆u dx ,

for G1 = Γ + h1 or G2 = Γ + h2, where

Γ(x − y) =


1

n(2− n)ωn
|x − y |2−n, n > 2

1

2π
log |x − y |, n = 2;

h1, h2 ∈ C 1(Ω̄) ∩ C 2(Ω) are harmonic and chosen so that G1|∂Ω = 0 or
∂G2

∂ν

∣∣∣∣
∂Ω

= 0.



Inverse source problem

Suppose the source term f has the form

f =
M∑

j=1

ajδx j +
N∑

j=1

bj · Dδy j , (4)

for some M, N ∈ N; aj ∈ R, x j ∈ Ω, for j = 1, . . . ,N; and bj ∈ Rn,
y j ∈ Ω, for j = 1, . . . ,M, where δx is the Dirac delta function at x .

The inverse source problem: given the values of potential u and its normal
derivative ∂u/∂ν on the boundary of the domain, find the number,
location, and magnitudes of the point sources, that is, find N, M, aj , x j ,
bj , and y j .

Ohe-Ohnaka (1994, 1995), Yamatani-Ohnaka (1997), el Badia-Ha Duong
(2000), Inui-Yamatani-Ohnaka (2003), Naro-Ando (2003), el Badia
(2005), Ling-Han-Yamamoto (2005), Ikehata (2007),
Yamatani-Ohe-Ohnaka (2007)



Boundary data

We focus our attention on the boundary data involving |Du|, the absolute
value of the gradient of the solution.

Example

Let Ω = B1(0) and f = χBR(0)\Br (0), r < R < 1, i.e. f is a volume density.
Then p = |Du|2 is constant.

Require additional data in the form of Dp = D|Du|2 = 2〈D2u,Du〉.

Question

Given the values of p and Dp on ∂Ω, determine whether there exists a
unique harmonic function u defined in a neighborhood of ∂Ω such that{

|Du|2 = p,

〈D2u,Du〉 = 1
2 Dp,

on ∂Ω. (5)

Find u and its gradient on ∂Ω, if such u exists.



Applications

Magnetometry: geomagnetic survey; identification of pollution sources in
the environment; inverse electroencephalography/magnetoencephalography
(EEG/MEG); exploration of space; detection of archeological sites; marine
magnetic anomaly detection.

Vector magnetometers measure the magnetic field (expensive, high
maintenance). Examples: fluxgate magnetometers, Superconducting
Quantum Interface Devices, Spin-Exchange-Relaxation-Free atomic
magnetometers.

Scalar magnetometers measure the magnitude of the magnetic field only
(highly accurate, robust, reliable). Examples: proton precession
magnetometers, cesium vapor magnetometers.

Inverse gravity problem: determine the density given the measurement of
the force on the given surface.



Linear system for n = 2

In 2d, let x = (x1, x2) and p = u2
1 + u2

2 . Here, subscripts of u and p
denote partial derivatives. Then

p1 = 2(u1u11 + u2u12),

p2 = 2(u1u12 + u2u22).

Using the fact that u is harmonic, we get

u1p1 − u2p2 = 2(u2
1u11 − u2

2u22) = 2pu11,
u2p1 + u1p2 = 2(u2

2u12 + u2
1u21) = 2pu12.

(6)

These are linear equations for u1, u2, u11, u12 in terms of p, p1, p2.



Equivalent system of ODEs

At each x ∈ ∂Ω, τ is tangent to ∂Ω at x and ν is the outward pointing
unit normal to ∂Ω at x .
Parametrize the boundary γ : [0,T ]→ ∂Ω and introduce a time variable t.
Setting y(t) = (y1(t), y2(t)) = (uτ (γ(t)), uν(γ(t))), under the additional
assumption that p > 0, system (6) becomes

ẏ = A(t) y , (7)

with

A(t) =

(
a1(t) −a2(t)
a2(t) a1(t)

)
(8)

where

a1(t) =
pτ (t)

2p(t)
and a2(t) =

pν(t)

2p(t)
. (9)



Well-posedness of the ODE

Theorem

The solution of the initial value problem for (7) exists for all t ∈ R. The
space of solutions has dimenension two. More precisely, if (y1, y2) is a
solution of (7)– (8), then so is (−y2, y1). Furthermore, the solutions are

T -periodic if and only if
∫ T

0 a1(t) dt = 0 and
∫ T

0 a2(t) dt = 2nπ, n ∈ N.

Lemma

Suppose u is a solution of (1),(4) in Ω, that is,

u(x) = u0(x) +
M∑

j=1

ajΓ(x − x j) +
N∑

j=1

bj · DΓ(x − y j), (10)

Let p = |Du|2 and assume p > 0 on ∂Ω. Then

− 1

2π

∫
∂Ω

1

2p

∂p

∂ν
dτ = M + 2N. (11)



Non-uniqueness

If (y1, y2) is any solution of the ODEs system (7)– (8), then
(uτ , uν) = (y1, y2) satisfies (5).

Example

Fix r > 0, b ∈ R2 with b 6= 0, suppose Ω = Br (0), and let u = b · DΦ
where Φ(x) = − 1

2π log |x |, i.e.,

u(x) = − 1

2π

b · x
|x |2

.

Then p(x) = |Du(x)|2 =
1

4π2

|b|2

|x |2
and, for x ∈ ∂Br (0),

p(x) =
|b|2

4π2r 4
,

∂

∂τ
p(x) = 0, and

∂

∂ν
p(x) =

∂p

∂r
= − |b|

2

π2r 5
,

all constant on the set ∂Br (0).



Additional constraint

Theorem

Let Ω ⊂ R2 be a bounded, simply connected domain with smooth
boundary. Suppose u is harmonic in a neighborhood containing ∂Ω and is
such that p = |Du|2 > 0 on ∂Ω and

∫
∂Ω uν dτ 6= 0. If ũ is another

harmonic function satisfying |Dũ|2 = p and 2〈D2ũ,Dũ〉 = Dp on ∂Ω,
then ũ = ±u + C for some constant C .

When u is a solution of (1), (4), the following relation holds∫
∂Ω

∂u

∂ν
dτ =

N∑
j=1

aj .

No physical interpretation when u is the magnetic potential. Possible
when u is either the gravitational or electic potential.



Numerical example

Let Ω = {(x1, x2) ∈ R2 : x2
1 + x2

2 ≤ 1}, N be the number of mesh points,
and let θ = 2π/N be the dicretization angle. The points
(xj , yj) = (cos jθ, sin jθ), for j = 1, . . . ,N, form a uniform mesh on the
boundary ∂Ω.

Unknowns: uj
τ = uτ (xj , yj), uj

ν = uν(xj , yj), uj
ττ = uττ (xj , yj),

uj
τν = uτν(xj , yj).

Center finite-difference approximation for the derivatives of u of second
order:

uj
ττ = 1

2 (− cot θuj−1
τ + uj−1

ν + cot θuj+1
τ + uj+1

ν ),

uj
τν = 1

2 (−uj−1
τ − cot θuj−1

ν − uj+1
τ + cot θuj+1

ν ).
(12)

Periodic boundary conditions: u0
τ = uN

τ , u0
ν = uN

ν , uN+1
τ = u1

τ , uN+1
ν = u1

ν .



Matrix form: AX = 0

The unknown vector is X = (u1
τ , u

1
ν , . . . , u

N
τ , u

N
ν )t . The matrix A is in the

block diagonal form in which each block corresponds to the variables
(uj
τ , u

j
ν) at each j = 1, . . . ,N:

A =


B1 U1 L1

L2 B2 U2

. . .
. . .

. . .

LN−1 BN−1 UN−1

UN LN BN

 , where B j =

(
pj
τ −pj

ν

pj
ν pj

τ

)
, and

U j =

(
pj cot θ −pj

pj −pj cot θ

)
, Lj =

(
pj cot θ −pj

pj pj cot θ

)
.

Equation
∑N

j=1 uj
τ = 0 is the discrete version of the additional constraint∫

∂Ω uτ dτ = 0. Introducing this constraint amounts to appending the row
(1, 0, 1, 0, . . . , 1, 0) to matrix A.



Convergence

Potential with two monopoles and one dipole that corresponds to setting
u0 ≡ 0, N = 2, a1 = 0.2, x1 = (−0.2, 0.1), a2 = 0.1, x2 = (0.1,−0.3),
M = 1, b1 = (.25, .15), and y 1 = (0.5, 0.4) in (10)

Observed rate of convergence:

‖ũ − u‖+ ‖(ũτ − uτ , ũν − uν)‖ ≤ Cθ2‖(uτ , uν)‖,

where θ = T/N is the discretization angle, and ‖ · ‖ is the norm in either
L2 or L∞, u is the exact solution, ũ is the approximation.



Convergence
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Figure: (a) Contour plot of the solution; (b) loglog plot of the error in L2 and sup
norms.




