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Motivating example

Riemann surface with cusp

This is a classical topic. However, let us recall
the basic facts.

Any hyperbolic manifolds are constructed by the
action of discrete groups on the unit disc or
the upper-half plane.



The upper-half space model

= Consider the upper-half space model of
the 2-dim. hyperbolic space, I.e.

H® ={z=2+1iy;y >0}

equipped with the metric
(dz)” + (dy)*

2 __
ds* = .2




Action of SL(2,R)

SL(2,R) > g= @0
c d
az + b
g-z= il 2 € H

ez +d



The quotient space

- Take a discrete subgroup I' C SL(2,R),

(called Fuchsian group) and consider the
quotient space

Myp =T'\H?
by the action

I'xH*> (7,2) = vz
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Geometric finiteness

[' (or Mr) is geometrically finite
<= Mr is a finite sided convex polygon

<= I is finitely generated
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Example 1. Translation

I':z—2z+1

(D) <0
(dx)* + (dy)*

ds® =

ol
|

y2




Example 2. Dilation

F:z—=Xz (A>1)

ds* = (dr)? + cosh® r(dt) ﬁ
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Classification of 2-dim. Hyperbolic
manifolds

« THEOREM. Suppose Mr isa 2-dim. non-
elementary geometrically finite hyperbolic

manifold. Then there exists a compact subset

K C Mp suchthat Mp\ K isafinite

disjoint union of cusps and funnels.
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Most general example
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Fuchsian group of the 1st kind

- THEOREM Let I' be a Fuchsian group.
I is of the 1st kind

<— Myt has afinite area

— My is geometrically finite
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Fundamental domains for the Fuchsian
group of the 15t kind

Figure 3.17. Amother tesseflatboy of the wniv disc. (From Klein and Fracke [1]. Re-
pranted hy pemiission of Teubeer. )



Riemann surface

« If I isofthe 1tkind, the ends of M consist
only of cusps.

« Usually, one compactifies M, and regards it as a
Riemann surface. Then the field of meromorphic
functionson A is an algebraic function field.

» There is a one to one correspondence

algebraic function fields
<—> compact Riemann surfaces



What does i1t mean?

The surface is determined
by a set of functions on it.

Question How can we generalize it?
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Answer

» The solution space of the Helmholtz equation
on the manifold.

» More precisely, the behavior of solutions of
the Helmholtz equation near infinity.

» This leads us to the S-matrix.



HHE

We need to be careful for
singular points

fumnill



elliptic <= d1 fixed point € C_.
> |try| < 2

parabolic <= d1 degenerate fixed point € 0C_
< [try| =2

hyperbolic <= 32 fixed points € 0C
< |try| > 2



Isotropy group for the elliptic fixed
points

- Let Ming be the set of
ELLIPTIC FIXED POINTS

for ' ,andfor p € My, put

I(p)={yel;v-p=p}



Riemannian manifolds with singular
points

« Mt can also be regarded as a Riemannian
manifold equipped with the hyperbolic metric.

- However, at p € Mg;,, this metric becomes
singular.

* Around p € Mgy My has aspecial structure.



Orbifold structure

- By a suitable choice of local coordinates around

p € M, the isotropy group Z(p) turns out to
be a finite rotation group.

- Then one can take a neighborhood of p € Ming
which is like a sector with vertex at p.

« Hence Mrp admits alocal covering space
around p € Mr, which is isometric to the
hyperbolic space.



2=alirn, Riemannian orbifold

- We consider a 2-dim. connected C'"*°manifold M,
which is written as a union of open sets,

M=KUM;U---UMy,

satisfying the following 4 assumptions:



Assumptions

(A-1) Thereexists 1< <N such that for
1<1<u M, isisometricto
gl « (1,00) equipped with the metric

d82 . (daj)Q T (dy)2
— y2 ]

(So, I\/Il, e I\/Iﬂ have cusps at infinity.)
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(A-2) For u+1<i<N, M; isdiffeomorphic to
S x (0,1), and the metric on it has the
following form :

(dy)* + h(z,dz) + A(z,y, dz, dy)
y2

ds® =

)

where h(x,dz) = h(x)(dz)* is a positive
definite metricon S*



A(x,y,dx, dy)
= a(z,y)(dz)? + 2b(z, y)dzdy + c(z,y)(dy)?,
and CL(iC, y)7 b(ZE, y)7 C([E, y) satisfy

‘aaocé (yay)n d(.fl?, y)‘ S Can(]' _I_ ‘ lOg y‘)—n—l—eo7 \V/CM, n
for some €y > 0.

(We shall call {y¥ =0} aregular infinity.)



(A-3) f Iscompact.

(A-4) There exists a finite subset

Msing C K

such that M hasa (C°° Riemannian metric
g on M\ Ming.
Toeach p ¢ Msing there exists an open set

U, c R? such that 0 € U, and U, has
the metric g, with the followmg propertles



Orbifold strucure aroundp € Mg,

Let Up(e) and E(e) be ¢ -neighborhood of
pE M and 0 e R?, respectively.

We adopt the geodesic polar coordinates centered
around 0 to transform the metric g, on

B(e) C (7(6) into the form
gp = (dr)” + G,(r, 0)(df)”,

D<r<e 0<60 <27
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We assume that there exists an integer n, > 2
such that by the action

< = (551, 5172) —
N cos(2m/n,) —sin(27/n,) T
sin(2m/n,)  cos(2mw/ny) To

the metric g, isinvariant. Moreover,
U,(€) \ {p} isisometric to the part

{(r,0);0<r<e¢0<60<2n/n,}

where two segments {(7,0);0 < r < €},
{(r,2m/n,); 0 < r < €} are identified.



Spectral properties

Let A, be the Laplace-Beltrami operator of M,

and put H:_Ag_i

Then Tess(H) = |0, 00)



Besov type space

By using the diadic decomposition of the
manifold (just as in the Fourier analysis on
Euclidean space), one can introduce the spaces

B, B rigging L°(M) :

Bc L°(M)c B’



The space B "is Important. On each end, it is
defined as

[

1 d 1/2
y
B = (SUP— Ju(y) i ) < 00

R>e log R £<y<R Y



We write f(y) =~ g(y) if
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Fourier transform on M

» By observing the behavior of the resolvent at
Infinity, one can construct the Fourier
transform M.



Representation space

We put
U

h_ZC@ ZLZ(S)

H = L*((0, 00); h; dk)
FO k) = (FD k), F )

(FEf) (k) = FO (k) f
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Spectral representation

FE Heo(H) — H

IS unitary, and diagonalizes H :

(FEHS) (k) = k* (FEf) (k)
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Eigenoperator
FEE)*:h — B
IS an eigenoperator of H In the sense that

(H — E)FE (k)¢ =0, Vo €h



Characterization of the solution space
for the Helmholtz equation

{ue B (H-ku=0 =FHk)h



Theorem of Helgason

On the Poincare disc, all solutions of the
Helmholtz equation

(—A, — E)u =0

are written In terms of Poisson integrals of Sato’s
nyperfunction on the boundary.
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Features of B® space

Smallest space with respect to the decay at
Infinity: 1.e. If

(—A, — E)u=0,E > 1/4,

u € B, u~0,

then U — 0.
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Asymptotic expansion

It weB(H—-k)u=0,

then it admits the following asymptotic expansion:
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H :
u =~ a)_(k)Zij(n_l)IZHkl//J(_)
j=1

N .
4 C()EC) (k) Z Zj y(n—l)/2—|kw J(—)

J=pu+1

H :
. 6()+ (k)Z Zj y(n—l)/2+|kw J§+)
j=1

N .
B a)ic)(k) szy(n—l)/2+|kwg+)

J=u+1
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S=Mmeatrix

For any (7)€ h, thereexistsa unique
v eh and weB* satisfying
(H —k*)u =0

for which the above expansion holds. Moreover,
the operator S(k)defined by

¢(+) _ ( )w( )

is unitary on h.



Inverse problems

* One can show that if one of the ends has a
regular infinity, the corresponding component of
the S-matrix (for all frequency) determines the
Riemannian metric (Sa Barreto, Kurelev-1).

e S0, If one of the ends is regular, the space B*

contains sufficient information to recover the
manifold.



However, it does not cover the case where all the
ends have a cusp (as in the case of Fuchsian

group of the 1st kind).

This Is because the cusp gives only a one-
dimensional contribution to the continuous

spectrum.



Exponentially growing solutions

* On theend M,, havinga cusp, the Helmholtz
equation takes the form

1
2/92 | A2 2
— (8y—l—5’x)u—1u:ku

- Expand U into a Fourier series

u(z,y) = Y € u,(y)

neZ






Modified Bessel functions

2 2
dw I 1 dw (1—|—V—>w:0

dz? 2 dz 22

L(2) ~ =€, 2 — 00,

K,(z) ~ \/%e_z, 7 — 00
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The space of generalized scattering
data at infinity

—(@|2+°°)@( @ L*(M)))

J=u+l

L2(M;) = L(S"; h;(z)dx)

® 3 a = (an)nez = Z la,|?p™ < 00,Vp > 1,
nez
273 b= (by)nez <= » |bal?p " < 00,3p> 1,

nez



Notation

Incoming and outgoing data at infinity

'7”(_) — (afl.’ Y a,u’ W;(;—l’ Y WI(\I_)) < A—oo’
v =0, b, W) €A,



u(_}(k) (aj!ﬂylfﬂ—i.i:

1 G ! + Z ﬂj?nﬁzmﬂmyl‘f?j—_ik(2?T|ﬂ|y)), 1<j<u
n+0

w_ (k) * (), p+1<i<N,

%

3

W

T

= Y by PRy 2naly) ), 1< < p
n#0

wi(k)y /> * (@), p+1<j <N,

%
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Exponentially growing (at the cusp)
solutions to the Helmholtz equation

THEOREM. Let k& > 0 besuchthat k* & o,(H).
Then, given any incoming data u}‘), j=l---, N
there exists a unique solution 174 s.t.

N
(H — k2)u =0, wu-— Z Xju§_) 1s outgoing.

j=1

For this U, there exists ¢(+) ¢ A__ such that
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(1) For | =1,---, i, there exists
st.in M, if y>y,

u=ui’ —ut".

(2) For J= u+1,--,N,

Y, >0

bl
L
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This 1s a solution to the Helmholtz
equation which is

= exponentially growing at the cusp, (i.e. non-
physical at the cusp)

» polynomially bounded near the regular infinity
(1.e. physical at the regular infinity).



Generalized S-matrix

* We call the operator
S(k): A_o 297 =M e A

the generalized S-matrix.
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THEOREM

Suppose we are given two 2-dim. Riemannian
orbifolds M®) AM(?) satisfying the above
conditions.

Suppose the (1,1) components of the
generalized S-matrix coincide :

S® (k) = S2 (k)
k>0, k* ¢ O'p(H(l))uap(H(z)).
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Then, there is an isometry between M mand M 2
In the following sense.

(1) There is a homeomorphism
®: MY 5> M

@ o MY 5 pmY

sitng stng

@ D O\ MO = MO \ M®D

sing sing

IS a Riemannian isometry.
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For the case of the Fuchsian group of
the 15t kind

 If the generalized S-matrices coincide, then
I'\H? and T®\H? are conformal, and

M and T@  areconjugate each other:

gTWg™t =T®@  3Jg5e€ SL(2,R)
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The basic idea of the proof

« BC-method (Boundary Control method)
Belishev 1987

Belishev-Kurylev 1987, 1992
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Neumann-Dirichlet map

For a compact manifold M with boundary
consider the Neumann problem

(A, —2)u=0, in M,
o,u=f, on OM

The Neumann-Dirichlet map is defined by

Az)f =u

oM
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Boundary control method

- From the knowledge of N-D map A(2)

one can recover the metric of V[ uniquely.






From the generalized S-matrix, one can
determine the N-D map for the interior domain

with dataon .

Then one can apply the BC method to recover
the metric in M\ M, .

Around the singular points, one needs a new
ISsue.



Work In progress

« Extension to higher dimensions, where the
manifolds at infinity are also orbifolds.



