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The wave equation.

Let
(1) > gjr(x)dzday

4,k=0
be a Lorentzian metric in R* !, where x =
(z1, .., Tn) € R", xp € R is the time vari-
able. We assume that g,x(z) are indepen-
dent of zy (stationary metric), g"(z) > 0,
the signature of the quadratic form (1) is
(+1,-1,...,—1).

Consider the wave equation of the form
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Fxamples of the wave equation
of the form (2).

1) General relativity.

Let metric [g;x()7;—o be a solution of the

Einstein equations in the vacuum, n = 3.
Consider R? x R as a pseudo-Riemannian

manifold with the metric [gjt]7;—o- It 1s

called the space-time. Then the equation

,u=0
describes the linear gravitational waves on
the background of this metric.

Example. Schwarzschield metric.

2
(3) (1 — %) dt® — da? — dy? — d2*

where R = /22 + y? + 22,
is the solution of the Einstein equations.



2) Propagation of light in a moving dielectric, n = 3.

In this case the metric [gjk]ik:{) has the fol-

lowing form

(4)

gik(@) = nj-H(n~*(x)—Lvjue, 0 < 5k < 3,

where [n;;] is the Lorentz (Minkowski) met-

ric tensor,

moo = 1,15 = —1,1

’%k = 0 when j # k,
= /e(z)p(z) is the refraction index,

’Uo(x) = ( '"‘”Ej‘é )

vj(:r:):-—(l [ U‘) ij' 1 24
is the four-velocity vector,
w(z) = (wi(z), we(x), ws(x)) is the veloc-
ity of the flow, ¢ is the speed of light in the
vacuum.

The wave equation corresponding to the
metric (4) is called the Gordon equation.

<J=3,




3) Acoustic waves in a moving fluid.

Here the metric tensor [gjh]? 1o has the form

0
goo = —(02 - UQ):
C
ng:gj():ngalngBa
3
p ; 2 N2
= —=0i, 1< 7, k<3, v'= v)?,
gik C]k > J =Y ;( )

v = (v, v ) is the velocity of the
fluid, p is the density and c is the sound
speed.



Inverse problem.

Let © be a smooth bounded domain in R".
Consider initial-boundary value problem
for the wave equation Oyu = 0 in €2 X R:

(5) u(zg,z) =0 for o K0, z €,
U($0,$)\ = f,

OOxR
where f has a compact support in 92 x R.

Let A be the Dirichlet-to-Neumann opera-
tor (DN operator)

7,k=1
n

: ( gp""(a:)ujyr)
p,r=1
Let T be an arbitrary open subset of OS2
We shall consider the inverse problem of the
determination of the metric by the bound-
ary measurements on I' x (0,7, i.e. from
the knowledge of Af on I' x (0,7T) for any

f with the support on I" x [0, T'].

1
2

IO xR



_Let y = ¢(z) be a diffeomorphism of Q on

() c R” such that p(z) = z on I.
Let a(z) € C®(Q), a(x) =0onT.
Consider the changes of variables of the
form

(6)  y=o(z), yo=rzo+a(z),

where

(7) plz)==x on [a(z)=0 on T.
[t is easy to show that the change of vari-
ables (6), (7) does not change the bound-
ary measurements. Therefore the determi-

nation of the metric by the boundary mea-

surements is possible only modulo the change
of variables (6), (7).



Black and white holes.

An interesting feature of the equation
Lyu =0

is the appearance of black and white holes.

A closed domain Qg X R is called a black
hole if no disturbance (signal) initiated in
9 X R can reach the exterior of {2y x R.

A domain 9 xR is a white hole if no signal
from the exterior of {29 X R can reach the
interior of {2y x RR.

One can show that €y x R is a black or a
white hole if the boundary Sy x R of {2 x R
is a characteristic surface, i.e.

®) Y 7 (@)Stm,()Somy(@) = 0
J,k=1
when SQ(LE) = 0,

where Sp(z) = 0 is the equation of 0€.



One can also show that €29 x R is a black
hole if

Zgoj )Soz,(7) <0 when Solae) == 0,
a,nd Qg x R is a white hole if
Z g (z )Soz;(x) >0 when So(z) = 0.

The boundary Sy X R of a black or a white
hole is called the event horizon.

In the case of the Schwarzschield metric
{R < 2m} x R is a black hole.
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The ergosphere.

The surface

goo(z) =0
is called the ergosphere. We assume that
the ergosphere is a closed surface A C R”
and that ggo(z) > 0 outside of A.

In the case of the Schwartzschield metric
the ergosphere is {R = 2m}, i.e. the ergo-
sphere coincide with the event horizon. The
event horizon always either coincide with
the ergosphere or it is inside the ergosphere
(as in the case of the Kerr metric).

For the Gordon equation of the propaga-
tion of light in the moving medium we have
that the equation of the ergosphere A is

wl? - —

h*(z)
When vector w = (wy, we, w3) is normal to

A for z € A the ergosphere coincides with
the event horizon.

= 0.
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Nonuniqueness
of the solution of the inverse problem.

If Qy C Q and Qy x R is the event horizon
then we can change arbitrary the metric in-
side Qg and this will not affect the boundary
measurements on dwy X R, i.e. the solution
of the inverse problem is not unique in the
presence of black or white holes.

The following problem arise:

[t is possible to determine the event hori-
zon by the boundary measurements?

A partial answer is given by the following
theorem.

Theorem 1. Consider the initial-boundary
value problem for the equation Lsu = 0.
Suppose ¢®(x) > 0 in Q and O x R
is not characteristic. Let the ergosphere
A(z) = 0 be a smooth closed surface in-
side Q0. Let T be an arbitrary open sub-
set of 0S2. Then the boundary measure-
ments on I' X (0, 400) determine uniquely
A(x) = 0 up to a change of variables (6),

(7).
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Sketch of the proof.

The proof of the Theorem is based on an
extension of the Boundary Control method
(BC-method).

BC-method was invented by M.Belishev
and developed by Belishev, Belishev and Kurylev,
Kurylev and Lassas, and others.

[ proposed a new method based on the BC-
method that allows to deal with new prob-
lems such as the inverse hyperbolic problems
with time-dependent coefficients and the in-
verse problems for the wave equations of the
form (2).

The proof consists of the recovery of the
metric in the exterior of A = 0 (up to a
change of variables). Then by continuing
we get the equation of the ergosphere. We
start with the determination of the metric
in a small neighborhood of I and gradually
continue to recover metric deeper in €. As
we proceed the time interval (0,7") needed
to reach a point x € € increases and T' —
+00 when we approach the ergosphere.
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One can show that the measurements on
I' x (0,T) where T' < 400 are not enough
to recover the ergosphere.

Note that we do not need apriori knowl-
edge of the ergosphere existence. If there is
no ergosphere then we can recover the met-

ric in the whole domain €2 in a finite time
1%
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