Lipschitz stability for the electrical impedance tomography problem: the complex case.

Elena Beretta

Universita' "La Sapienza", Roma, Italy

Abstract

We investigate the boundary value problem

$$\begin{cases} \operatorname{div}\left(\gamma\nabla u\right) &=& 0 \quad \text{in} \quad \Omega\\ u &=& f \quad \text{on} \quad \partial\Omega, \end{cases}$$

where γ is a complex valued L^{∞} coefficient, satisfying a strong ellipticity condition. In Electrical Impedance Tomography, γ represents the admittance of a conducting body. An interesting issue is the one of determining γ uniquely and in a stable way from the knowledge of the Dirichlet-to-Neumann map Λ_{γ} . Under the above general assumptions this problem is an open issue.

In this talk we show that, if we assume a priori that γ is piecewise constant with a bounded known number of unknown values, then Lipschitz continuity of γ from Λ_{γ} holds. This is a joint work with Elisa Francini