Lipschitz stability for the electrical impedance tomography problem: the complex case.

Elena Beretta (Università di Roma "La Sapienza")

in collaboration with E. Francini

November 8, 2010

Outline

- The forward problem
- The inverse problem
- The main result
- Main ingredients of the proof
- Concluding remarks

Part I

The forward problem

Formulation of the problem

Given a bounded connected open set $\Omega \subset \mathbb{R}^n$ for $n \geq 2$, given γ a bounded complex valued function (admittivity function) satisfying

$$\Re \gamma \ge \lambda^{-1} > 0$$

and given $f \in H^{1/2}(\partial\Omega)$ let us consider the weak solution $u \in H^1(\Omega)$ of the problem

$$\left\{ \begin{array}{rcl} \operatorname{div} \left(\gamma \nabla u \right) & = & 0 & \text{in} & \Omega \\ u & = & f & \text{on} & \partial \Omega. \end{array} \right.$$

Consider the Dirichlet to Neumann map $\Lambda_{\gamma}: H^{1/2}(\partial\Omega) \to H^{-1/2}(\partial\Omega)$ given by

$$\Lambda_{\gamma} f = \gamma \frac{\partial u}{\partial \nu}|_{\partial \Omega},$$

where ν is the exterior unit normal vector to $\partial\Omega$.

Part II

The inverse problem

Formulation of the problem

EIT Inverse Problem:

Determine γ from the knowledge of the Dirichlet-to Neumann map Λ_γ

Known results

Uniqueness

- $n \geq 3$ If γ is sufficiently smooth the results obtained by Sylvester and Uhlmann (1987) for the conductivity case can be extended to the complex case.
- n = 2 Francini (2000), Bukhgeim (2008).
- $n \geq 3, \gamma \in L^{\infty}(\Omega)$ completely open
- n=2 Astala and Paivarinta for real conductivities $\gamma \in L^{\infty}(\Omega)$

Known results

Stability

ullet $n \geq 3$ Alessandrini (1988) has proved for the conductivity case that if

$$\|\gamma\|_{W^{2,\infty}(\Omega)} \leq E$$

then

$$\|\gamma_1 - \gamma_2\|_{L^{\infty}(\Omega)} \le \omega(\|\Lambda_{\gamma_1} - \Lambda_{\gamma_2}\|)$$

where $\omega(t) = C |\log t|^{-\eta}$.

 n = 2 Barcelo, Faraco and Ruiz (2007) have proved for the conductivity case that if

$$\|\gamma\|_{C^{\alpha}(\overline{\Omega})} \leq E$$

then logarithmic continuous dependence holds.

ullet Clop, Faraco, Ruiz (2009) $\gamma \in W^{lpha,p}$, lpha > 0 and 1 then

$$\|\gamma_1 - \gamma_2\|_{L^2(\Omega)} \le \omega(\|\Lambda_{\gamma_1} - \Lambda_{\gamma_2}\|)$$

where $\omega(t) = C |\log t|^{-\eta}$.

A-priori assumptions

Mandache (2001) has proved that logarithmic stability is the best possible stability also using as a-priori assumption

$$\|\gamma\|_{C^k(\overline{\Omega})} \le E, \quad \forall k = 0, 1, 2....$$

Strategy:

Look for a-priori assumptions on γ

that are

- physically relevant
- give rise to a better type of stability

A-priori assumptions

Alessandrini and Vessella (2003) assume that

γ piecewise constant

$$\gamma(x) = \sum_{j=1}^{N} \gamma_j 1_{D_j}(x)$$
 a.e. in Ω ,

where $D_1,....D_N$ are known disjoint Lipschitz domains and $\gamma_1,....\gamma_N$ are unknown real numbers.

Assuming ellipticity and $C^{1,\alpha}$ regularity at the interfaces joining contiguous domains D_j and at $\partial\Omega$ they prove Lipschitz continuous dependence of γ from Λ_γ

Part III

The main result

(H1) $\Omega \subset \mathbb{R}^n$ is a bounded domain such that

$$|\Omega| \leq A$$
,

and

 $\partial\Omega$ is of Lipschitz class with constants r_0, L .

(H2) The complex conductivity γ satisfies

$$\Re \gamma \geq \lambda^{-1}, \quad |\gamma| \leq \lambda$$
 a.e. in Ω

for some $\lambda \geq 1$, and is of the form

$$\gamma(x) = \sum_{j=1}^{N} \gamma_j 1_{D_j}(x),$$

where γ_j are for $j=1,\ldots,N$ unknown complex numbers and D_j are known open sets in \mathbb{R}^n which satisfy the following conditions

(H3) $D_i \cap D_j = \emptyset$, $i \neq j$ such that $\bigcup_{j=1}^N \overline{D}_j = \overline{\Omega}$, ∂D_j , $j = 1, \ldots, N$ of Lipschitz class with constants r_0 , L.

There exists one region D_1 such that $\partial D_1 \cap \partial \Omega$ contains an open flat portion Σ_1 . For every $j \in \{2, \dots, N\}$ there exists a walkway from D_1 to D_j , i.e. there exist $j_1, \dots, j_M \in \{1, \dots, N\}$ such that

$$D_{j_1}=D_1,\quad D_{j_M}=D_j$$

and, for every $k = 1, \dots, M$

$$\partial D_{j_{k-1}} \cap \partial D_{j_k}$$

contains a flat portion Σ_k such that

$$\Sigma_k \subset \Omega, \quad \forall k = 2, \dots, M.$$

There exists $P_k \in \Sigma_k$ and a rigid transformation of coordinates such that $P_k = 0$ and

$$\begin{split} \Sigma_k \cap B_{r_0/3} &= \{x \in B_{r_0/3} : x_n = 0\}, \\ D_{j_k} \cap B_{r_0/3} &= \{x \in B_{r_0/3} : x_n > 0\}, \\ D_{j_{k-1}} \cap B_{r_0/3} &= \{x \in B_{r_0/3} : x_n < 0\}. \end{split}$$

A possible configuration

$$\overline{\Omega} = \cup_{j=1}^N \overline{D}_j$$

Main result

Theorem

Let Ω satisfy assumption **(H1)**. Let $\gamma^{(k)}$, k=1,2 be two complex piecewise constant functions of the form

$$\gamma^{(k)}(x) = \sum_{j=1}^{N} \gamma_j^{(k)} 1_{D_j}(x),$$

where $\gamma^{(k)}$ satisfy for k=1,2 assumption **(H2)** and $D_j, j=1,\ldots,N$ satisfy assumption **(H3)**. Then there exists a positive constant $C=C(r_0,L,A,n,N,\lambda)$ such that

$$\|\gamma^{(1)} - \gamma^{(2)}\|_{L^{\infty}(\Omega)} \le C\|\Lambda_1 - \Lambda_2\|_{\mathfrak{L}(H^{1/2}(\partial\Omega), H^{-1/2}(\partial\Omega))},$$
 (1)

where $\Lambda_k = \Lambda_{\gamma^{(k)}}$ for k = 1, 2.

[B., Francini, 2010]

Part IV

Proof of the main result

Main ideas of the proof

The proof is constructive and is based on:

- Quantitative estimates of unique continuation of harmonic functions
- Construction of singular solutions and study of its asymptotic behaviour near the discontinuity interfaces.

Estimates of unique continuation

We extend Ω to $\Omega_0=\Omega\cup D_0$ by adding an open cylinder D_0 whose basis is the flat portion Σ_1 of $\partial\Omega\cap\overline{D}_1$ and with height greater than r_0 . Let $\mathcal{K}_0=\{x\in D_0: \operatorname{dist}(x,\partial D_0)\geq r_0/2\}.$

Extend γ on Ω_0 setting it equal to 1 in D_0 . Let us consider the chain of domains connecting D_0 to D_M , $M \leq N$ where

$$\|\gamma^{(1)} - \gamma^{(2)}\|_{L^{\infty}(D_M)} = \|\gamma^{(1)} - \gamma^{(2)}\|_{L^{\infty}(\Omega)}.$$

and consider the walkway $K \subset \cup_{j=0}^M \overline{D}_j$ with Lipschitz boundary such that $\overline{K} \cap \partial D_j = \Sigma_j \cup \Sigma_{j+1}$ for $j=1,\ldots,M$ and $\operatorname{dist}(K,\partial(\cup_{j=0}^M \overline{D}_j)\setminus \{\Sigma_{M+1} \cup D_0\}) > r_0/16$.

The set K

Κ

Estimates of unique continuation

Theorem

Let $v \in H^1(K)$ be a solution to

$$div(\gamma \nabla v) = 0$$
 in K ,

such that

$$||v||_{L^{\infty}(K_0)} \leq \epsilon_0,$$

$$|v(x)| \le (\epsilon_0 + E_0) dist(x, \Sigma_{M+1})^{1-\frac{n}{2}}$$
 for every $x \in K$.

Then

$$|v(\tilde{x})| \leq C \left(\frac{\epsilon_0}{E_0 + \epsilon_0}\right)^{\tau^{(M+1)N_1} \delta_1^{M+1} \tau_r} (E_0 + \epsilon_0) r^{\left(1 - \frac{n}{2}\right)(1 - \tau_r)},$$

where $\tilde{x} = P_{M+1} - 2r\nu(P_{M+1})$, $r \in (0, r_0)$ and $\tau, \tau_r, \delta_1 \in (0, 1)$, $N_1 = \frac{A}{r_0^n}$ and C depends on r_0, L, A, n, λ, N .

Singular solutions

Difficulty:

Lack of a result of existence of the Green's function in Ω for $n \geq 3$

- $n \ge 3$ Hofmann and Kim (2007) existence of Green's function for weak solutions satisfying interior Hoelder continuity estimates .
- n = 2 Dong and Kim (2009) existence of Green's function

Singular solutions

Theorem

Let γ satisfy assumptions **(H1)-(H3)** in Ω_0 . For $y \in K$ there exists a unique function $G(\cdot, y)$, continuous in $\Omega \setminus \{y\}$

$$\int_{\Omega_0} \gamma \nabla G(\cdot, y) \cdot \nabla \phi = \phi(y), \quad \forall \phi \in C_0^{\infty}(\Omega_0),$$

$$||G(\cdot,y)||_{H^1(\Omega \setminus B_r(y))} \leq Cr^{1-n/2}, \quad \forall r < d_y/2,$$

$$G(x,y) = G(y,x)$$
 for every $x,y \in K$.

Moreover for $x \in D_k$, $x_0 \in \Sigma_k$ and $y_r = x_0 + r\nu$,

$$\nabla_{x}G(x,y_{r})=\nabla_{x}\Gamma_{k}(x,y_{r})+O(1)$$

Singular solutions

$$\operatorname{div}\!\left(\left(\gamma_{k-1} 1_{\mathbb{R}^n_-} + \gamma_k 1_{\mathbb{R}^n_+}\right) \nabla_{\boldsymbol{x}} \Gamma_k(\cdot, \boldsymbol{y})\right) = \delta_{\boldsymbol{y}}$$

Let D_0, D_1, \ldots, D_M be the chain of domains such that

$$\|\gamma^{(1)} - \gamma^{(2)}\|_{L^{\infty}(D_M)} = E := \|\gamma^{(1)} - \gamma^{(2)}\|_{L^{\infty}(\Omega)}.$$

and let

$$\delta_k := \|\gamma^{(1)} - \gamma^{(2)}\|_{L^{\infty}(\bigcup_{j=0}^k D_j)}$$

for $k = 1, \dots, M$.

Note that, for $y, z \in D_0$ we have

$$\int_{\Omega} (\gamma^{(1)} - \gamma^{(2)}) \nabla G_1(\cdot, y) \cdot \nabla G_2(\cdot, z) = <(\Lambda_1 - \Lambda_2) G_1(\cdot, y), \overline{G_2(\cdot, z)} >$$

so that for $y, z \in K_0$

$$\left| \int_{\Omega} (\gamma^{(1)} - \gamma^{(2)}) \nabla G_1(\cdot, y) \cdot \nabla G_2(\cdot, z) \right| \leq C\epsilon$$

Then

$$\left| \int_{\Omega \setminus \bigcup_{j=1}^{k-1} D_j} (\gamma^{(1)}(x) - \gamma^{(2)}(x)) \nabla_x G_1(x,y) \cdot \nabla_x G_2(x,z) \, dx \right| \leq C(\epsilon + \delta_{k-1})$$

Define, for $y, z \in K \cap \cup_{j=1}^{k-1} D_j$,

$$S_{k-1}(y,z) := \int_{\Omega \setminus \bigcup_{x=1}^{k-1} D_x} (\gamma^{(1)}(x) - \gamma^{(2)}(x)) \nabla_x G_1(x,y) \cdot \nabla_x G_2(x,z) \, dx$$

We have

$$|S_{k-1}(y,z)| \le C(\epsilon + \delta_{k-1}) \quad \forall y,z \in K_0,$$
$$|S_{k-1}(y,z)| \le C \frac{E}{\epsilon} (d(y,\Sigma_k)d(z,\Sigma_k))^{1-\frac{n}{2}} \, \forall y,z \in K \cap \cup_{j=1}^{k-1} D_j,$$

and

$$\operatorname{div}\left(\gamma^{(1)}\nabla S_{k-1}(\cdot,z)\right)=0,\quad \operatorname{div}\left(\gamma^{(2)}\nabla S_{k-1}(y,\cdot)\right)=0\quad \text{in } K\cap \cup_{j=1}^{k-1}D_j.$$

Using the Hoelder estimates of unique continuation in $K \cap W_{k-1}$ we get

$$|S_{k-1}(y_r,y_r)| \leq C \left(\frac{\epsilon + \delta_{k-1}}{\epsilon + \delta_{k-1} + E}\right)^{\alpha_r} (\epsilon + \delta_{k-1} + E) r^{2-n}$$

Using the asymptotic behaviour of $\nabla_x G_j$ we have

$$|\gamma_k^{(1)} - \gamma_k^{(2)}| \le C(r^{n-2}|S_{k-1}(y_r, y_r)| + \mathbf{E}r^{n-2}) \quad \forall r < r_0/8$$

from the Hoelder estimates for $S_{k-1}(y_r, y_r)$ we derive

$$|\gamma_k^{(1)} - \gamma_k^{(2)}| \le C(\epsilon + \delta_{k-1} + \mathbf{E}) \left[\left(\frac{\epsilon + \delta_{k-1}}{\epsilon + \delta_{k-1} + \mathbf{E}} \right)^{(\tau^{kN_1} \delta_1^k \tau_r)^2} + \left(\frac{r}{r_0} \right)^{n-2} \right]$$

and we get

$$\delta_{k} \leq C(\epsilon + \delta_{k-1} + \mathbf{E})\omega\left(\frac{\epsilon + \delta_{k-1}}{\epsilon + \delta_{k-1} + \mathbf{E}}\right). \tag{2}$$

where

$$\omega(t) = \left\{ egin{array}{ll} |\log t|^{-(n-2)/4} & {
m for} & 0 < t \leq rac{1}{e^n} \ n^{-(n-2)/4} & {
m for} & t \geq rac{1}{e^n} \end{array}
ight.$$

Since $\delta_0 = 0$ iterating we obtain

$$\delta_k + \epsilon \leq (C+1)^k (E+\epsilon) \omega_k \left(\frac{\epsilon}{\epsilon+E}\right),$$

where ω_k is the composition of ω with itself k times.

Now we recall that $\boldsymbol{E} = \delta_{M}$ and, hence,

$$E + \epsilon \le (C + 1)^M (\epsilon + E) \omega_M \left(\frac{\epsilon}{\epsilon + E}\right)$$

Now, either $\it E \le e$ and this proves Lipschitz stability, or $\it E > e$ and we can write

$$E \leq 2(C+1)^M E \omega_M \left(\frac{\epsilon}{2E}\right),$$

from which

$$\mathbf{E} \le \frac{\epsilon}{2\omega_M^{-1}(\frac{1}{2(C+1)^M})}$$

Part V

Conclusions

Final remarks

Remark1

We expect that Lipschitz continuous dependence of the admittivities on the data still holds replacing the flatness condition on the interfaces with $C^{1,\alpha}$ regularity.

Final remarks

Remark2

In our stability estimate the constant $C = C(r_0, L, A, n, N, \lambda)$ and it diverges exponentially in the number N of the subdomains of the partition of Ω .

Rondi has proved in (2006) that

$$C \geq Aexp(BN^{1/2n})$$

with A and B absolute constants. This inequality can be interpreted as a resolution limit in the determination of γ from Λ_{γ} . If ϵ is the error on the measured data and we can tolerate an error up to $\overline{C}\epsilon$ (\overline{C} error amplification tolerance) and if all the domains D_j have size r_0^n then $r_0=N^{-1/n}$ and we get

$$r_0 \ge \left(\frac{1}{B}\log\frac{\overline{C}}{A}\right)^{-(2n-1)/n}$$

So if we fix \overline{C} no detail smaller than $(\frac{1}{B}\log \frac{\overline{C}}{A})^{-(2n-1)/n}$ can be detected.

Final remarks

Remark3

Observe that in our result we can replace the full Dirichlet to Neumann map with the local Dirichlet to Neumann map. More precisely, let Σ be an open portion of $\partial\Omega$ containing a flat open subset. Let

 $H^{1/2}_{co}(\Sigma)=\left\{\phi\in H^{1/2}(\partial\Omega): \text{ supp }\phi\subset\Sigma
ight\}$ and define the local Dirichlet to Neumann map in the following way: for $\phi\in H^{1/2}_{co}(\Sigma)$ let

$$<\Lambda_{\gamma}^{\Sigma}\phi,\psi>=\int_{\Omega}\gamma\nabla u\nabla\overline{v}\quad {
m for}\ \phi,\psi\in H^{1/2}_{co}(\Sigma)$$

where u solves equation $\operatorname{div}(\gamma \nabla u) = 0$ and $u = \phi$ on $\partial \Omega$ and $v \in H^1(\Omega)$ such that $v = \psi$ on $\partial \Omega$.

We observe that in our proof we apply the Dirichlet to Neumann map to functions whose support is contained in a neighborhood of the flat portion of $\partial\Omega$. Hence we have

$$\|\gamma^1 - \gamma^2\|_{L^{\infty}(\Omega)} \leq C\|\Lambda_1^{\Sigma} - \Lambda_2^{\Sigma}\|_{\mathfrak{L}(H_{co}^{1/2}, H_{co}^{-1/2})}.$$