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Q bounded Lipschitz domain and pu,e,0 € L>(2) with
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a. e. in Q. Given T € TH(9Q), the problem
find E, H € H(Q; curl) solving ME in Q with NxE =T

is well-posed for w € C\ F. F has no accumulation point in C\ {0}.

» w € F is called resonant frequency.
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AN =N = pix = po, 11 =27

» Stability: Is there a modulus of continuity b such that

s = izl gy + 11 = 22l ey < BCIAL = A2l])?

Same kind of problem can be proposed from partial knowledge of A.
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How can we choose w > 0 to be non-resonant in order to use A?
Cauchy data set: Given w >0, (T,S) € C(p,7) iff

» (T,S) € (TH(OQ))?,

» 3E,H € H(Q; curl) solution of Maxwell with NxE = T and

v

NxH=S.
> Given i, with j = 1,2, need to quantify the proximity of
G = Cwj,)-

v

How can we quantify the proximity of Cauchy data sets?

» Pseudo-metric distance:
0(Cy, G3) = max sup inf T,,5)— (Tk, S .
(G, &) 7k (1, 8)ec, (ThS)EC H( i»5i) — (T k)”(TH(aQ))z
”TkHTH(aQ):l

> (5(C1,C2) =0:>?1=C.
» When w is a non-resonant for 17, 7;

(G, G) <M =N £ CH(Gr, G).
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B-stable on the boundary: 11, is in the class of B-stable on the
boundary if

> 1, is admissible,

» 3 a modulus of continuity B : Vi, admissible, one has
10"y = )= omy + 19 (1 = )l oy < B (5(€. ).

with 0 < |a| <1, C:= C(u, ) and C := C(ji,5).
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Stable determination

Theorem
Q bounded Lipschitz domain, w > 0. Then, 3C = C(M) such that, for
any p1,v1 and po, 72 in the class of B-stable on the boundary, one has

171 = Y2l (e) + 12 — 2l gy < Cllog B(6(G, ),

for some 0 < A < 2/3s. Here C; := C(pj, ;) with j =1,2.

Corollary

Assume 8au1|ag = 8au2|39, 8a’Yl|aQ = aa’72|69x with 0 S ‘al S 1.
Then, 3C = C(M) such that

Iy =2l aay + lin = p2llpagy < Cllog6(Gr, G)1 72,

for some 0 < A\ < 2/3s.
It should be possible
» to prove that any admissible coefficient is in the class of
Holder-stable on the boundary,
» to check —following Mandache's arguments— that our modulus of
continuity is optimal.
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The procedure consists in:

> constructing exponential growing solutions (EGS for short),
E = e (E(¢) + Eo(¢) + E-1(¢))
H = e (Hy(¢) + Ho(¢) + H-1())

» plugging these solutions in the above estimate,
> getting the estimate for the stability.
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After some computations and an interpolation argument we end up with

0
Fll2ey + g2y < € (B(6c(Cr. Go))e™ +72/3% ).
where 7 > 1, 53 < 0 and
Fo 7;1/2 [A(,ﬁ/z _ 71/2) n qf( 1/2 ’Yz/ )+ pf( 1/2 M;/z)} ’

g =808 = 1) s’ — 1) + (i = ")
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After some computations and an interpolation argument we end up with
¥l + sy < € (Be(Gr C))e +7275)"

where 7 > 1, 53 < 0 and

f=n'? [A(vi/z —7) +ar(n® = "% + (2 —/é/z)} :

g =n " D04 157 + a5 = 1% + P (1 =22
Using a Carleman estimate with boundary terms we get

72 =72l + e — M2||H1(Q) =

< Ce ™ (B((Sc(Cl7 G))e’™ + 72/35‘> = oy Ce ™ B(6c(C1, G)),

where dy > dy, s1 <0 < s, < 1/2, 7 large enough and h small enough.
In order to obtain the stability, choose

1
= _Zlog B((SC(Clv CZ))'



Thank you for your attention!
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