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DBV problem
I Electromagnetic �elds will be assumed to be time-harmonic

E(t, x) = e−iωtE (x), H(t, x) = e−iωtH(x), ω 6= 0.

I E ,H satisfy the time-harmonic Maxwell equations (ME for short):

∇×H + iωεE = σE , ∇×E − iωµH = 0.

Theorem
Ω bounded Lipschitz domain and µ, ε, σ ∈ L∞(Ω) with

µ(x) ≥ µ′ > 0, ε(x) ≥ ε′ > 0, σ(x) ≥ 0.

a. e. in Ω. Given T ∈ TH(∂Ω), the problem

�nd E ,H ∈ H (Ω; curl) solving ME in Ω with N×E = T

is well-posed for ω ∈ C \ F . F has no accumulation point in C \ {0}.
I ω ∈ F is called resonant frequency.
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IBV problem

Boundary measurements can be modeled by Admittance map:

Λ : T ∈ TH(∂Ω) 7−→ N×H ∈ TH(∂Ω),

where N×E = T with E ,H the solution for

∇×H + iωγE = 0, ∇×E − iωµH = 0;

writing γ = ε+ iσ/ω to be more concise.

Inverse problem: recover µ, γ from Λ.

I Uniqueness: µj , γj ∈ L∞(Ω) and Λj their corresponding admittance
map j = 1, 2.

Λ1 = Λ2 =⇒ µ1 = µ2, γ1 = γ2?

I Stability : Is there a modulus of continuity b such that

‖µ1 − µ2‖L∞(Ω) + ‖γ1 − γ2‖L∞(Ω) ≤ b(‖Λ1 − Λ2‖)?

Same kind of problem can be proposed from partial knowledge of Λ.
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Cauchy data set and δ

I How can we choose ω > 0 to be non-resonant in order to use Λ?

I Cauchy data set: Given ω > 0, (T , S) ∈ C (µ, γ) i�
I (T , S) ∈ (TH(∂Ω))2,
I ∃E ,H ∈ H (Ω; curl) solution of Maxwell with N×E = T and

N×H = S .

I Given µj , γj with j = 1, 2, need to quantify the proximity of
Cj := C (µj , γj).

I How can we quantify the proximity of Cauchy data sets?

I Pseudo-metric distance:

δ(C1,C2) = max
j 6=k

sup
(Tk ,Sk )∈Ck
‖Tk‖TH(∂Ω)=1

inf
(Tj ,Sj )∈Cj

‖(Tj , Sj)− (Tk , Sk)‖(TH(∂Ω))2 .

I δ(C1,C2) = 0 =⇒ C1 = C2.
I When ω is a non-resonant for µj , γj

δ(C1,C2) ≤ ‖Λ1 − Λ2‖ ≤ Cδ(C1,C2).
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Admissible class of coe�cients

Admissible: Given 0 < M, 0 < s < 1/2, µ, γ is admissible if

(i) ellipticity, γ, µ ∈ C 1,1(Ω) with M−1 ≤ Re γ(x), M−1 ≤ µ(x);

(ii) a priori bound on the boundary,

‖γ‖C0,1(∂Ω) + ‖µ‖C0,1(∂Ω) < M;

(iii) a priori bound in the interior,

‖γ‖W 2,∞(Ω) + ‖µ‖W 2,∞(Ω) ≤ M, ‖γ‖H2+s(Ω) + ‖µ‖H2+s(Ω) ≤ M.

B-stable on the boundary: µ, γ is in the class of B-stable on the
boundary if

I µ, γ is admissible,

I ∃ a modulus of continuity B : ∀µ̃, γ̃ admissible, one has

‖∂α(γ − γ̃)‖L∞(∂Ω) + ‖∂α(µ− µ̃)‖L∞(∂Ω) ≤ B
(
δ(C , C̃ )

)
,

with 0 ≤ |α| ≤ 1, C := C (µ, γ) and C̃ := C (µ̃, γ̃).
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Stable determination

Theorem
Ω bounded Lipschitz domain, ω > 0. Then, ∃C = C (M) such that, for
any µ1, γ1 and µ2, γ2 in the class of B-stable on the boundary, one has

‖γ1 − γ2‖H1(Ω) + ‖µ1 − µ2‖H1(Ω) ≤ C |logB(δ(C1,C2))|−λ,

for some 0 < λ < 2/3s. Here Cj := C (µj , γj) with j = 1, 2.

Corollary

Assume ∂αµ1|∂Ω = ∂αµ2|∂Ω, ∂
αγ1|∂Ω = ∂αγ2|∂Ω, with 0 ≤ |α| ≤ 1.

Then, ∃C = C (M) such that

‖γ1 − γ2‖H1(Ω) + ‖µ1 − µ2‖H1(Ω) ≤ C |log δ(C1,C2)|−λ,

for some 0 < λ < 2/3s.

It should be possible

I to prove that any admissible coe�cient is in the class of
Hölder-stable on the boundary,

I to check �following Mandache's arguments� that our modulus of
continuity is optimal.
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Inside out I
E1,H1,F2,G2 ∈ H (Ω; curl) solutions for{

∇×H1 + iωγ1E1 = 0
∇×E1 − iωµ1H1 = 0,

{
∇×G2 + iωγ2F2 = 0
∇×F2 − iωµ2G2 = 0,

in Ω. Then∣∣∣∣∫
Ω

iω[(γ1 − γ2)E1 ·F2 − (µ1 − µ2)H1 ·G2] dV

∣∣∣∣ ≤ δ(C1,C2)

×‖N×E1‖TH(∂Ω)

(
‖N×F2‖TH(∂Ω) + ‖N×G2‖TH(∂Ω)

)
.

The procedure consists in:

I constructing exponential growing solutions (EGS for short),

E = e iζ·x(E1(ζ) + E0(ζ) + E−1(ζ))

H = e iζ·x(H1(ζ) + H0(ζ) + H−1(ζ))

I plugging these solutions in the above estimate,

I getting the estimate for the stability.
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Inside out II
After some computations and an interpolation argument we end up with

‖f ‖L2(Ω) + ‖g‖L2(Ω) ≤ C
(
B
(
δC (C1,C2)

)
ecτ + τ2/3s1

)θ
.

where τ > 1, s1 < 0 and

f = γ
−1/2
1

[
∆(γ

1/2
1
− γ1/2

2
) + qf (γ

1/2
1
− γ1/2

2
) + pf (µ

1/2
1
− µ1/2

2
)
]
,

g = µ
−1/2
1

[
∆(µ

1/2
1
− µ1/2

2
) + qg (µ

1/2
1
− µ1/2

2
) + pg (γ

1/2
1
− γ1/2

2
)
]
.

Using a Carleman estimate with boundary terms we get

‖γ1 − γ2‖H1(Ω) + ‖µ1 − µ2‖H1(Ω) ≤

≤ Ce
d2−d1
2h

(
B
(
δC (C1,C2)

)
ecτ + τ2/3s1

) s2
s2−s1

+ Ce
d2−d1
2h B

(
δC (C1,C2)

)
,

where d2 > d1, s1 < 0 < s2 < 1/2, τ large enough and h small enough.
In order to obtain the stability, choose

τ = − 1

2c
logB

(
δC (C1,C2)

)
.
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Thank you for your attention!
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