# Stable Determination of the Electromagnetic Coefficients by Boundary Measurements



# Pedro Caro

### Outline

#### **IBVP** in electrodynamics

Setting of the problem Main result Inside the proof

### Outline

#### IBVP in electrodynamics Setting of the problem

Main result Inside the proof

▶ Electromagnetic fields will be assumed to be time-harmonic

$$\mathcal{E}(t,x) = e^{-i\omega t} E(x), \qquad \mathcal{H}(t,x) = e^{-i\omega t} H(x), \qquad \omega \neq 0.$$

◆□ > < 個 > < E > < E > E の < @</p>

> Electromagnetic fields will be assumed to be time-harmonic

$$\mathcal{E}(t,x) = e^{-i\omega t} E(x), \qquad \mathcal{H}(t,x) = e^{-i\omega t} H(x), \qquad \omega \neq 0.$$

► *E*, *H* satisfy the time-harmonic Maxwell equations (ME for short):

$$\nabla \times H + i\omega \varepsilon E = \sigma E, \qquad \nabla \times E - i\omega \mu H = 0.$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

• Electromagnetic fields will be assumed to be time-harmonic

$$\mathcal{E}(t,x) = e^{-i\omega t} E(x), \qquad \mathcal{H}(t,x) = e^{-i\omega t} H(x), \qquad \omega \neq 0.$$

► *E*, *H* satisfy the time-harmonic Maxwell equations (ME for short):

$$\nabla \times H + i\omega\varepsilon E = \sigma E, \qquad \nabla \times E - i\omega\mu H = 0.$$

#### Theorem

 $\Omega$  bounded Lipschitz domain and  $\mu, \varepsilon, \sigma \in L^{\infty}(\Omega)$  with

$$\mu(x) \geq \mu' > 0, \quad arepsilon(x) \geq arepsilon' > 0, \quad \sigma(x) \geq 0.$$

a. e. in  $\Omega$ . Given  $T \in TH(\partial \Omega)$ , the problem

find  $E, H \in H(\Omega; \text{curl})$  solving ME in  $\Omega$  with  $N \times E = T$ 

is well-posed for  $\omega \in \mathbb{C} \setminus F$ . F has no accumulation point in  $\mathbb{C} \setminus \{0\}$ .

• Electromagnetic fields will be assumed to be time-harmonic

$$\mathcal{E}(t,x) = e^{-i\omega t} E(x), \qquad \mathcal{H}(t,x) = e^{-i\omega t} H(x), \qquad \omega \neq 0.$$

► *E*, *H* satisfy the time-harmonic Maxwell equations (ME for short):

$$\nabla \times H + i\omega\varepsilon E = \sigma E, \qquad \nabla \times E - i\omega\mu H = 0$$

#### Theorem

 $\Omega$  bounded Lipschitz domain and  $\mu, \varepsilon, \sigma \in L^{\infty}(\Omega)$  with

$$\mu(x) \geq \mu' > 0, \quad arepsilon(x) \geq arepsilon' > 0, \quad \sigma(x) \geq 0.$$

a. e. in  $\Omega$ . Given  $T \in TH(\partial \Omega)$ , the problem

find  $E, H \in H(\Omega; \text{curl})$  solving ME in  $\Omega$  with  $N \times E = T$ 

is well-posed for  $\omega \in \mathbb{C} \setminus F$ . F has no accumulation point in  $\mathbb{C} \setminus \{0\}$ .

•  $\omega \in F$  is called resonant frequency.

Boundary measurements can be modeled by Admittance map:

$$\Lambda: T \in TH(\partial \Omega) \longmapsto N \times H \in TH(\partial \Omega),$$

where  $N \times E = T$  with E, H the solution for

$$\nabla \times H + i\omega\gamma E = 0, \qquad \nabla \times E - i\omega\mu H = 0;$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

writing  $\gamma = \varepsilon + i\sigma/\omega$  to be more concise.

Boundary measurements can be modeled by **Admittance map**:

$$\Lambda: T \in TH(\partial \Omega) \longmapsto N \times H \in TH(\partial \Omega),$$

where  $N \times E = T$  with E, H the solution for

$$abla \times H + i\omega\gamma E = 0,$$
  $abla \times E - i\omega\mu H = 0;$ 

writing  $\gamma = \varepsilon + i\sigma/\omega$  to be more concise. Inverse problem: recover  $\mu, \gamma$  from  $\Lambda$ .

• Uniqueness:  $\mu_j, \gamma_j \in L^{\infty}(\Omega)$  and  $\Lambda_j$  their corresponding admittance map j = 1, 2.

$$\Lambda_1 = \Lambda_2 \Longrightarrow \mu_1 = \mu_2, \ \gamma_1 = \gamma_2?$$

Stability: Is there a modulus of continuity b such that

$$\|\mu_1 - \mu_2\|_{L^{\infty}(\Omega)} + \|\gamma_1 - \gamma_2\|_{L^{\infty}(\Omega)} \le b(\|\Lambda_1 - \Lambda_2\|)?$$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Boundary measurements can be modeled by **Admittance map**:

$$\Lambda: T \in TH(\partial \Omega) \longmapsto N \times H \in TH(\partial \Omega),$$

where  $N \times E = T$  with E, H the solution for

$$abla \times H + i\omega\gamma E = 0,$$
  $abla \times E - i\omega\mu H = 0;$ 

writing  $\gamma = \varepsilon + i\sigma/\omega$  to be more concise. Inverse problem: recover  $\mu, \gamma$  from  $\Lambda$ .

• Uniqueness:  $\mu_j, \gamma_j \in L^{\infty}(\Omega)$  and  $\Lambda_j$  their corresponding admittance map j = 1, 2.

$$\Lambda_1 = \Lambda_2 \Longrightarrow \mu_1 = \mu_2, \ \gamma_1 = \gamma_2?$$

Stability: Is there a modulus of continuity b such that

$$\|\mu_1 - \mu_2\|_{L^{\infty}(\Omega)} + \|\gamma_1 - \gamma_2\|_{L^{\infty}(\Omega)} \le b(\|\Lambda_1 - \Lambda_2\|)?$$

Same kind of problem can be proposed from partial knowledge of  $\Lambda$ .

• How can we choose  $\omega > 0$  to be non-resonant in order to use  $\Lambda$ ?

- How can we choose  $\omega > 0$  to be non-resonant in order to use  $\Lambda$ ?
- Cauchy data set: Given  $\omega > 0$ ,  $(T, S) \in C(\mu, \gamma)$  iff
  - ►  $(T,S) \in (TH(\partial\Omega))^2$ ,
  - ►  $\exists E, H \in H(\Omega; \text{curl})$  solution of Maxwell with  $N \times E = T$  and  $N \times H = S$ .

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- How can we choose  $\omega > 0$  to be non-resonant in order to use  $\Lambda$ ?
- Cauchy data set: Given  $\omega > 0$ ,  $(T, S) \in C(\mu, \gamma)$  iff
  - ►  $(T,S) \in (TH(\partial\Omega))^2$ ,
  - ►  $\exists E, H \in H(\Omega; \text{curl})$  solution of Maxwell with  $N \times E = T$  and  $N \times H = S$ .

- Given  $\mu_j, \gamma_j$  with j = 1, 2, need to quantify the proximity of  $C_j := C(\mu_j, \gamma_j)$ .
- How can we quantify the proximity of Cauchy data sets?

- How can we choose  $\omega > 0$  to be non-resonant in order to use  $\Lambda$ ?
- Cauchy data set: Given  $\omega > 0$ ,  $(T, S) \in C(\mu, \gamma)$  iff
  - ►  $(T,S) \in (TH(\partial\Omega))^2$ ,
  - ►  $\exists E, H \in H(\Omega; \text{curl})$  solution of Maxwell with  $N \times E = T$  and  $N \times H = S$ .
- Given  $\mu_j, \gamma_j$  with j = 1, 2, need to quantify the proximity of  $C_j := C(\mu_j, \gamma_j)$ .
- How can we quantify the proximity of Cauchy data sets?
- Pseudo-metric distance:

$$\delta(C_1, C_2) = \max_{\substack{j \neq k \\ \|T_k, S_k\} \in C_k \\ \|T_k\|_{\mathcal{T}H(\partial\Omega)} = 1}} \inf_{\substack{(T_j, S_j) \in C_j \\ \|(T_j, S_j) = C_j \\ \|(T_j, S_j) - (T_k, S_k)\|_{(\mathcal{T}H(\partial\Omega))^2}}.$$

- $\bullet \ \delta(C_1, C_2) = 0 \Longrightarrow \overline{C_1} = \overline{C_2}.$
- When  $\omega$  is a non-resonant for  $\mu_j, \gamma_j$

$$\delta(C_1, C_2) \leq \|\Lambda_1 - \Lambda_2\| \leq C\delta(C_1, C_2).$$

うして ふゆう ふほう ふほう うらつ

### Outline

#### **IBVP** in electrodynamics

Setting of the problem Main result Inside the proof



### Admissible class of coefficients

Admissible: Given 0 < M, 0 < s < 1/2,  $\mu, \gamma$  is admissible if

(i) ellipticity,  $\gamma, \mu \in C^{1,1}(\overline{\Omega})$  with  $M^{-1} \leq \operatorname{Re} \gamma(x)$ ,  $M^{-1} \leq \mu(x)$ ;

(ii) a priori bound on the boundary,

$$\|\gamma\|_{C^{\mathbf{0},\mathbf{1}}(\partial\Omega)} + \|\mu\|_{C^{\mathbf{0},\mathbf{1}}(\partial\Omega)} < M;$$

(iii) a priori bound in the interior,

 $\|\gamma\|_{W^{2,\infty}(\Omega)} + \|\mu\|_{W^{2,\infty}(\Omega)} \le M, \quad \|\gamma\|_{H^{2+s}(\Omega)} + \|\mu\|_{H^{2+s}(\Omega)} \le M.$ 

うして ふゆう ふほう ふほう うらつ

### Admissible class of coefficients

Admissible: Given 0 < M, 0 < s < 1/2,  $\mu, \gamma$  is admissible if

(i) ellipticity,  $\gamma, \mu \in C^{1,1}(\overline{\Omega})$  with  $M^{-1} \leq \operatorname{Re} \gamma(x)$ ,  $M^{-1} \leq \mu(x)$ ;

(ii) a priori bound on the boundary,

$$\|\gamma\|_{C^{0,1}(\partial\Omega)} + \|\mu\|_{C^{0,1}(\partial\Omega)} < M;$$

(iii) a priori bound in the interior,

$$\|\gamma\|_{W^{2,\infty}(\Omega)} + \|\mu\|_{W^{2,\infty}(\Omega)} \le M, \quad \|\gamma\|_{H^{2+s}(\Omega)} + \|\mu\|_{H^{2+s}(\Omega)} \le M.$$

 $B\text{-stable on the boundary: } \mu,\gamma$  is in the class of B-stable on the boundary if

- $\mu, \gamma$  is admissible,
- ▶ ∃ a modulus of continuity B :  $orall ilde{\mu}, ilde{\gamma}$  admissible, one has

$$\|\partial^{\alpha}(\gamma-\tilde{\gamma})\|_{L^{\infty}(\partial\Omega)}+\|\partial^{\alpha}(\mu-\tilde{\mu})\|_{L^{\infty}(\partial\Omega)}\leq B\left(\delta(\mathcal{C},\tilde{\mathcal{C}})\right),$$

with  $0 \leq |\alpha| \leq 1$ ,  $\mathcal{C} := \mathcal{C}(\mu, \gamma)$  and  $\tilde{\mathcal{C}} := \mathcal{C}(\tilde{\mu}, \tilde{\gamma})$ .

# Stable determination

### Theorem

 $\Omega$  bounded Lipschitz domain,  $\omega > 0$ . Then,  $\exists C = C(M)$  such that, for any  $\mu_1, \gamma_1$  and  $\mu_2, \gamma_2$  in the class of *B*-stable on the boundary, one has

$$\|\gamma_1 - \gamma_2\|_{H^1(\Omega)} + \|\mu_1 - \mu_2\|_{H^1(\Omega)} \le C |\log B(\delta(C_1, C_2))|^{-\lambda},$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

for some  $0 < \lambda < 2/3s$ . Here  $C_j := C(\mu_j, \gamma_j)$  with j = 1, 2.

### Stable determination

### Theorem

 $\Omega$  bounded Lipschitz domain,  $\omega > 0$ . Then,  $\exists C = C(M)$  such that, for any  $\mu_1, \gamma_1$  and  $\mu_2, \gamma_2$  in the class of *B*-stable on the boundary, one has

$$\|\gamma_1 - \gamma_2\|_{H^1(\Omega)} + \|\mu_1 - \mu_2\|_{H^1(\Omega)} \le C |\log B(\delta(C_1, C_2))|^{-\lambda},$$

for some  $0 < \lambda < 2/3s$ . Here  $C_j := C(\mu_j, \gamma_j)$  with j = 1, 2.

### Corollary

Assume  $\partial^{\alpha}\mu_1|_{\partial\Omega} = \partial^{\alpha}\mu_2|_{\partial\Omega}$ ,  $\partial^{\alpha}\gamma_1|_{\partial\Omega} = \partial^{\alpha}\gamma_2|_{\partial\Omega}$ , with  $0 \le |\alpha| \le 1$ . Then,  $\exists C = C(M)$  such that

$$\|\gamma_1 - \gamma_2\|_{H^1(\Omega)} + \|\mu_1 - \mu_2\|_{H^1(\Omega)} \le C |\log \delta(C_1, C_2)|^{-\lambda},$$

for some  $0 < \lambda < 2/3s$ .

# Stable determination

### Theorem

 $\Omega$  bounded Lipschitz domain,  $\omega > 0$ . Then,  $\exists C = C(M)$  such that, for any  $\mu_1, \gamma_1$  and  $\mu_2, \gamma_2$  in the class of *B*-stable on the boundary, one has

$$\|\gamma_1 - \gamma_2\|_{H^1(\Omega)} + \|\mu_1 - \mu_2\|_{H^1(\Omega)} \le C |\log B(\delta(C_1, C_2))|^{-\lambda},$$

for some  $0 < \lambda < 2/3s$ . Here  $C_j := C(\mu_j, \gamma_j)$  with j = 1, 2.

### Corollary

Assume  $\partial^{\alpha}\mu_1|_{\partial\Omega} = \partial^{\alpha}\mu_2|_{\partial\Omega}$ ,  $\partial^{\alpha}\gamma_1|_{\partial\Omega} = \partial^{\alpha}\gamma_2|_{\partial\Omega}$ , with  $0 \le |\alpha| \le 1$ . Then,  $\exists C = C(M)$  such that

$$\|\gamma_1 - \gamma_2\|_{H^1(\Omega)} + \|\mu_1 - \mu_2\|_{H^1(\Omega)} \le C |\log \delta(C_1, C_2)|^{-\lambda},$$

for some  $0 < \lambda < 2/3s$ .

It should be possible

- to prove that any admissible coefficient is in the class of Hölder-stable on the boundary,
- to check –following Mandache's arguments– that our modulus of continuity is optimal.

### Outline

#### **IBVP** in electrodynamics

Setting of the problem Main result Inside the proof



Inside out I

 $E_1, H_1, F_2, G_2 \in H(\Omega; \operatorname{curl})$  solutions for

$$\begin{cases} \nabla \times H_1 + i\omega\gamma_1 E_1 = 0\\ \nabla \times E_1 - i\omega\mu_1 H_1 = 0, \end{cases} \qquad \begin{cases} \nabla \times G_2 + i\omega\overline{\gamma_2}F_2 = 0\\ \nabla \times F_2 - i\omega\mu_2 G_2 = 0, \end{cases}$$

in  $\Omega$ . Then

$$\left| \int_{\Omega} i\omega[(\gamma_1 - \gamma_2)E_1 \cdot \overline{F_2} - (\mu_1 - \mu_2)H_1 \cdot \overline{G_2}] dV \right| \leq \delta(C_1, C_2) \\ \times \|N \times E_1\|_{TH(\partial\Omega)} \left( \|N \times F_2\|_{TH(\partial\Omega)} + \|N \times G_2\|_{TH(\partial\Omega)} \right).$$

◆□ > < 個 > < E > < E > E の < @</p>

Inside out I

 $E_1, H_1, F_2, G_2 \in H(\Omega; \mathrm{curl})$  solutions for

$$\begin{cases} \nabla \times H_1 + i\omega\gamma_1 E_1 = 0\\ \nabla \times E_1 - i\omega\mu_1 H_1 = 0, \end{cases} \qquad \begin{cases} \nabla \times G_2 + i\omega\overline{\gamma_2}F_2 = 0\\ \nabla \times F_2 - i\omega\mu_2 G_2 = 0, \end{cases}$$

in  $\Omega$ . Then

$$\left| \int_{\Omega} i\omega[(\gamma_1 - \gamma_2)E_1 \cdot \overline{F_2} - (\mu_1 - \mu_2)H_1 \cdot \overline{G_2}] dV \right| \le \delta(C_1, C_2)$$
$$\times \|N \times E_1\|_{TH(\partial\Omega)} \left( \|N \times F_2\|_{TH(\partial\Omega)} + \|N \times G_2\|_{TH(\partial\Omega)} \right).$$

The procedure consists in:

constructing exponential growing solutions (EGS for short),

$$E = e^{i\zeta_{x}}(E_{1}(\zeta) + E_{0}(\zeta) + E_{-1}(\zeta))$$
$$H = e^{i\zeta_{x}}(H_{1}(\zeta) + H_{0}(\zeta) + H_{-1}(\zeta))$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

plugging these solutions in the above estimate,

getting the estimate for the stability.

### Inside out II

After some computations and an interpolation argument we end up with

$$\|f\|_{L^{2}(\Omega)}+\|g\|_{L^{2}(\Omega)}\leq C\left(B(\delta_{C}(C_{1},C_{2}))e^{c\tau}+\tau^{2/3s_{1}}\right)^{\theta}.$$

where  $au > 1, \ s_1 < 0$  and

$$\begin{split} f &= \gamma_1^{-1/2} \left[ \Delta(\gamma_1^{1/2} - \gamma_2^{1/2}) + q_f(\gamma_1^{1/2} - \gamma_2^{1/2}) + p_f(\mu_1^{1/2} - \mu_2^{1/2}) \right], \\ g &= \mu_1^{-1/2} \left[ \Delta(\mu_1^{1/2} - \mu_2^{1/2}) + q_g(\mu_1^{1/2} - \mu_2^{1/2}) + p_g(\gamma_1^{1/2} - \gamma_2^{1/2}) \right]. \end{split}$$

### Inside out II

After some computations and an interpolation argument we end up with

$$\|f\|_{L^{2}(\Omega)}+\|g\|_{L^{2}(\Omega)}\leq C\left(B(\delta_{C}(C_{1},C_{2}))e^{c\tau}+\tau^{2/3s_{1}}\right)^{\theta}.$$

where  $\tau > 1, \ s_1 < 0$  and

$$\begin{split} f &= \gamma_1^{-1/2} \left[ \Delta(\gamma_1^{1/2} - \gamma_2^{1/2}) + q_f(\gamma_1^{1/2} - \gamma_2^{1/2}) + p_f(\mu_1^{1/2} - \mu_2^{1/2}) \right], \\ g &= \mu_1^{-1/2} \left[ \Delta(\mu_1^{1/2} - \mu_2^{1/2}) + q_g(\mu_1^{1/2} - \mu_2^{1/2}) + p_g(\gamma_1^{1/2} - \gamma_2^{1/2}) \right]. \end{split}$$

Using a Carleman estimate with boundary terms we get

$$\|\gamma_{1} - \gamma_{2}\|_{H^{1}(\Omega)} + \|\mu_{1} - \mu_{2}\|_{H^{1}(\Omega)} \leq \leq Ce^{\frac{d_{2}-d_{1}}{2h}} \left( B\left(\delta_{C}(C_{1}, C_{2})\right)e^{c\tau} + \tau^{2/3s_{1}} \right)^{\frac{s_{2}}{s_{2}-s_{1}}} + Ce^{\frac{d_{2}-d_{1}}{2h}} B\left(\delta_{C}(C_{1}, C_{2})\right),$$

where  $d_2 > d_1$ ,  $s_1 < 0 < s_2 < 1/2$ ,  $\tau$  large enough and h small enough.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

### Inside out II

After some computations and an interpolation argument we end up with

$$\|f\|_{L^{2}(\Omega)} + \|g\|_{L^{2}(\Omega)} \leq C \left( B \left( \delta_{C}(C_{1}, C_{2}) \right) e^{c\tau} + \tau^{2/3s_{1}} \right)^{\theta}.$$

where  $\tau > 1, \ s_1 < 0$  and

$$\begin{split} f &= \gamma_1^{-1/2} \left[ \Delta(\gamma_1^{1/2} - \gamma_2^{1/2}) + q_f(\gamma_1^{1/2} - \gamma_2^{1/2}) + p_f(\mu_1^{1/2} - \mu_2^{1/2}) \right], \\ g &= \mu_1^{-1/2} \left[ \Delta(\mu_1^{1/2} - \mu_2^{1/2}) + q_g(\mu_1^{1/2} - \mu_2^{1/2}) + p_g(\gamma_1^{1/2} - \gamma_2^{1/2}) \right]. \end{split}$$

Using a Carleman estimate with boundary terms we get

$$\begin{aligned} \|\gamma_{1}-\gamma_{2}\|_{H^{1}(\Omega)}+\|\mu_{1}-\mu_{2}\|_{H^{1}(\Omega)} \leq \\ \leq Ce^{\frac{d_{2}-d_{1}}{2h}}\left(B\big(\delta_{C}(C_{1},C_{2})\big)e^{c\tau}+\tau^{2/3s_{1}}\big)^{\frac{s_{2}}{2-s_{1}}}+Ce^{\frac{d_{2}-d_{1}}{2h}}B\big(\delta_{C}(C_{1},C_{2})\big), \end{aligned}$$

where  $d_2 > d_1$ ,  $s_1 < 0 < s_2 < 1/2$ ,  $\tau$  large enough and h small enough. In order to obtain the stability, choose

$$\tau = -\frac{1}{2c} \log B\big(\delta_C(C_1, C_2)\big).$$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

# Thank you for your attention!

**首下《**月》、《