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Schrödinger Equation in a Slab

(−Δ + q(x)− k2)u(x) = 0 in Ω

u(x) = f (x) on ∂Ω

domain Ω ⊂ ℝn (n ≥ 3) is an infinite slab between two parallel
hyperplanes Γ1 and Γ2.

potential q(x) ∈ L∞(Ω) with compact support in ℝn.

f ∣Γj has compact support in Γj , j = 1,2.

u satisfies the partial radiation condition introduced by Sveshnikov.
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Partial Radiation Condition

WLOG, we assume

Ω = {x = (x ′, xn) ∈ ℝn : x ′ = (x1, ⋅ ⋅ ⋅ , xn−1) ∈ ℝn−1,0 < xn < L}

and
Γ1 = {x ∈ ℝn : xn = L > 0}, Γ2 = {x ∈ ℝn : xn = 0}

Partial radiation condition reads(
∂

∂�
− ikm

)
um(x ′) = o(�

2−n
2 ), as �→∞

where um(x ′) =
2
L

∫ L

0
u(x) sin

m�xn

L
dxn, km = k(1− m2�2

k2L2 )
1
2 ,

� = ∣x ′∣, m = 1,2, ⋅ ⋅ ⋅ .
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The Forward Problem and The Inverse Problem

Theorem: For all k except a discrete set, there exists a unique solution
u ∈ H1(Ω) for any f ∈ H1/2(∂Ω) such that f ∣Γj is compactly supported
in Γj , j = 1,2.

The Dirichlet-to-Neumann map:

Λq : f −→ ∂u
∂�

∣∣∣
∂Ω

where � is the unit outer normal vector.

Inverse Problem: Determine q from Λq.

Inverse Problem with Partial Data:
Determine q from only partial knowledge of Λq.
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Partial Data on the Boundary

Let Γ′1 be any open set on Γ1 containing the support of q∣Γ1 ,
and Γ′2 be any open set on Γ2 containing the support of q∣Γ2 .
Define the following two sets of partial boundary measurements:

CD
q, Γ′2

:= {Λq(f )
∣∣
Γ′2

for all f with supp(f ) ⊂ Γ1}

CS
q, Γ′1

:= {Λq(f )
∣∣
Γ′1

for all f with supp(f ) ⊂ Γ1}
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Main Results

Theorem 1
If CD

q1, Γ
′
2

= CD
q2, Γ

′
2
, then q1(x) = q2(x) in Ω.

Theorem 2
If CS

q1, Γ
′
1

= CS
q2, Γ

′
1
, then q1(x) = q2(x) in Ω.
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Results on Partial Data Inverse Boundary Value
Problems

Bukhgeim and Uhlmann (2002): Half of the boundary

Kenig, Sjöstrand and Uhlmann (2007): Small set of the boundary

Isakov (2007): Special geometry

Nachman and Street (2010): Reconstruction

Imanuvilov, Uhlmann and Yamamoto (2010): Two dimensions

Others...
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Proof of Theorem 1

Key identity: ∫
Ω

(q1 − q2)u1u2dx = −
∫

l1

∂w
∂�

u2ds

where {
(−Δ + q1(x)− k2)u1(x) = 0 in Ω

u1(x) = 0 on Γ2

(−Δ + q2(x)− k2)u2(x) = 0 in Ω

w(x) = v(x)− u1(x){
(−Δ + q2(x)− k2)v(x) = 0 in Ω

v(x) = u1(x) on Γ1 ∪ Γ2
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Carleman Estimate

Carleman estimate:

�

∫
l1

(� ⋅ �) ∣e−�x ⋅� ∂w
∂�
∣2ds ≤

∫
Ω∩B
∣e−�x ⋅�(−Δ + q2 − k2)w ∣2dx

=

∫
Ω∩B
∣e−�x ⋅�(q1 − q2)u1∣2dx

where � is a large parameter.
Choose � = (�1, �2, �3) such that � ⋅ � = �3 > 0 on l1 ⊂ Γ1.

Key inequality:∣∣∣∣∫
Ω

(q1 − q2)u1u2dx
∣∣∣∣

≤
(

1
�(� ⋅ �)

) 1
2
(∫

Ω∩B
∣e−�x ⋅�(q1 − q2)u1∣2dx

) 1
2
(∫

l1

∣∣e�x ⋅�u2
∣∣2ds

) 1
2
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Construction of Complex Geometrical Optics Solutions

For u2:
(−Δ + q2(x)− k2)u2(x) = 0 in Ω

∩ B

For u1: {
(−Δ + q1(x)− k2)u1(x) = 0 in Ω ∩ B

u1(x) = 0 on Γ2

Construction of solutions:

u2(x) = ex ⋅�2(1 +  2(x , �2)), (�2 ⋅ �2 = 0)

 2(x , �2) goes to 0 as ∣�2∣ → ∞.

u1(x) = ex ⋅�1(1 +  1(x , �1))− ex∗⋅�1(1 +  1(x∗, �1)), (�1 ⋅ �1 = 0)

Do even extension about x3 for q1(x) and denote x∗ = (x1, x2,−x3).
 1(x , �1) and  1(x∗, �1) go to 0 as ∣�1∣ → ∞.
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Phase Functions

For any � = (�1, �2, �3) ∈ ℝ3 with �1e =
√
�2

1 + �2
2 > 0, we introduce

e(1) =
1
�1e

(�1, �2,0), e(3) = (0,0,1), e(2)

such that e(1), e(2) and e(3) form a orthogonal normal basis in ℝ3.

Denote the coordinate of x ∈ ℝ3 in this basis by (x1e, x2e, x3e)e.
We have

� = (�1e,0, �3)e

For � >> 0, we choose

�1 = (
i
2
�1e − ��3, i ∣�∣

√
�2 − 1

4
,

i
2
�3 + ��1e)e

�2 = (
i
2
�1e + ��3,−i ∣�∣

√
�2 − 1

4
,

i
2
�3 − ��1e)e
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Identification of the Potential

For � >> 0, we choose

�1 = (
i
2
�1e − ��3, i ∣�∣

√
�2 − 1

4
,

i
2
�3 + ��1e)e

�2 = (
i
2
�1e + ��3,−i ∣�∣

√
�2 − 1

4
,

i
2
�3 − ��1e)e

�1 ⋅ �1 = �2 ⋅ �2 = 0

�1 + �2 = i�

Re (x∗ ⋅ �1 + x ⋅ �2) = −2�x3�1e

� = (−�3,0, �1e)e

∣∣∣∣∫
Ω

eix ⋅�(q1 − q2)dx
∣∣∣∣ = 0 =⇒ q1(x)− q2(x) = 0 in Ω
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Proof of Theorem 2

Key identity: ∫
Ω

(q1 − q2)u1u2dx = −
∫

l2

∂w
∂�

u2ds

where {
(−Δ + q1(x)− k2)u1(x) = 0 in Ω ∩ B

u1(x) = 0 on Γ2

(−Δ + q2(x)− k2)u2(x) = 0 in Ω ∩ B

If we also require that u2(x) = 0 on Γ2, then we have the orthogonality
relation ∫

Ω
(q1 − q2)u1u2dx = 0
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Identification of the Potential

Phase functions:

�1 = (
i
2
�1e − i��3,−∣�∣

√
�2 +

1
4
,

i
2
�3 + i��1e)e

�2 = (
i
2
�1e + i��3, ∣�∣

√
�2 +

1
4
,

i
2
�3 − i��1e)e

Complex geometrical optics solutions:

uj(x) = ex ⋅�j (1 +  j(x , �j))− ex∗⋅�j (1 +  j(x∗, �j)), j = 1,2

Identification:
q1 − q2 = 0 in Ω
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Electrical Impedance Tomography in a Slab

The conductivity equation:{
div(∇u) = 0 in Ω

u(x) = f (x) on ∂Ω

 ∈ C2(Ω̄),  > 0, and  = 1 outside a compact set.
The Dirichlet-to-Neumann map is given by

Λ : f ∈ H1/2(∂Ω) −→
(

∂u
∂�

) ∣∣∣
∂Ω
∈ H−1/2(∂Ω)

Partial Data:
Let Γ′1 be any open set on Γ1 containing the support of ( − 1)∣Γ1 ,
and Γ′2 be any open set on Γ2 containing the support of ( − 1)∣Γ2 .
Define the following two sets of partial boundary measurements:

CD
, Γ′2

:= {Λ(f )
∣∣
Γ′2

for all f with supp(f ) ⊂ Γ1}

CS
, Γ′1

:= {Λ(f )
∣∣
Γ′1

for all f with supp(f ) ⊂ Γ1}
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Electrical Impedance Tomography in a Slab

Theorem 3
If CD

1, Γ
′
2

= CD
2, Γ

′
2

and

1 = 2 on ∂Ω,
∂1

∂�
=
∂2

∂�
on Γ′2

then 1(x) = 2(x) in Ω.

Theorem 4
If CS

1, Γ
′
1

= CS
2, Γ

′
1
, then 1(x) = 2(x) in Ω.

We do not need any further restriction about the conductivity on the
boundary in Theorem 4.
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Reduction to the Schrödinger Equation

Method: well-known transformation

! = 1/2u

Then ! satisfies
(−Δ + q(x))!(x) = 0

with
q(x) = −1/2Δ1/2
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THANK YOU!
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