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1 Competition diffusion systems (stationary cases)

Lotka Volterra systems:

−∆ui = fi(ui)− ui
h∑
j=1
j 6=i

βi,juj in Ω,

Energy minimizing configurations (superconductors or Bose–Einstein condensates)

E(ψ1, · · · , ψh) =

∫ ∑
i

1

2
|∇ψi|2 + Fi(|ψi|2) +

∑
j 6=i

βi,j|ψi|2|ψj|2 in Ω,

Optimal partition problems for Dirichlet eigenvalues:

min

{
h∑
i=1

λp1(ωi) : (ω1, · · · , ωk) ∈ Bh(Ω))

}

where
Bh = {(ω1, . . . , ωh) : ωi open, |ωi ∩ ωj| = 0 for i 6= j and ∪i ωi ⊆ Ω} .



2 Limiting profiles

As the interspecific competition rate β = minβij tends to infinity we find a vector U = (u1, · · · , uh)
of functions

having mutually disjoint supports: ui · uj ≡ 0 in Ω for i 6= j,

satisfying

−∆ui = fi(x, ui) whenever ui 6= 0 , i = 1, . . . , h,

Questions:

Compactness and a priori bounds

Uniqueness vs multiplicity

Extremality conditions

Regularity

of the minimizers
of the interfaces



3 Segregated critical configuration

Let Ω be an open bounded subset of RN , with N ≥ 2. Let U = (u1, . . . , uh) ∈ (H1(Ω))h be a
vector of

non negative, nontrivial Lipschitz functions in Ω,

having mutually disjoint supports: ui · uj ≡ 0 in Ω for i 6= j,

satisfying

−∆ui = fi(x, ui) whenever ui > 0 , i = 1, . . . , h,

where fi : Ω × R+ → R are C1 functions such that fi(x, s) = O(s) when s → 0, uniformly in
x.

Our main interest is the study of the regularity of the nodal set of the segregated configurations
U = (u1, . . . , uh):

ΓU = {x ∈ Ω : U(x) = 0}

Obviously, without other conditions, there is no reason at all why the nodal set should be regular.
We must add some information on the interaction between the components at the interface of their
supports.



4 A weak reflection law

Theorem 1 (Tavares-T, 2010) Let us define, for every x0 ∈ Ω and r ∈ (0, dist(x0, ∂Ω)) the
energy

Ẽ(r) = Ẽ(x0, U, r) =
1

rN−2

∫
Br(x0)

|∇U |2 ,

then, Ẽ(x0, U, ·) is an absolutely continuous function of r, and we assume that it satisfies the
following differential equation

d

dr
Ẽ(x0, U, r) =

2

rN−2

∫
∂Br(x0)

(∂νU)2 dσ+
2

rN−1

∫
Br(x0)

∑
i

fi(x, ui)〈∇ui, x−x0〉.

Then, there exists a set ΣU ⊆ ΓU the regular part, relatively open in ΓU , such that

Hdim(ΓU \ ΣU) ≤ N − 2, and if N = 2 then actually ΓU \ ΣU is a locally finite set;

ΣU is a collection of hyper-surfaces of class C1,α (for every 0 < α < 1). Furthermore for
every x0 ∈ ΣU

lim
x→x+

0

|∇U(x)| = lim
x→x−0

|∇U(x)| 6= 0,

where the limits as x → x±0 are taken from the opposite sides of the hyper-surface. Further-
more, if N = 2 then ΣU consists in a locally finite collection of curves meeting with equal
angles at singular points.



5 Some remarks

d

dr

1

rN−2

∫
Br(x0)

|∇U |2 =
2

rN−2

∫
∂Br(x0)

(∂νU)2 dσ+
2

rN−1

∫
Br(x0)

∑
i

fi(x, ui)〈∇ui, x−x0〉. (WRL)

It is easily checked that equation (WRL) always holds for balls lying entirely inside one of the
component supports, as a consequence of the elliptic equation. Hence, for our class systems,
it represents the only interaction between the different components ui through the common
boundary of their supports;

(WRL) is satisfied by the nodal components of solutions to a single semilinear elliptic equation
of the form −∆u = f (u).

equation (WRL) can be seen as a weak form of a reflection property through the interfaces.
Consider the following example: take two linear functions on complementary half-spaces:

u1(x) = a1x
+
1 u2(x) = a2x

−
1 .

Then

(WRL) ⇐⇒ |a1| = |a2| .



More in general, when we have two components with a smooth interface between the supports,
then

(WRL) ⇐⇒ lim
x→x+

0

|∇U(x)| = lim
x→x−0

|∇U(x)| .

(WRL) as an extremality condition

Although this hypothesis may look weird and may seem hard to check in applications, it occurs
naturally in many situations where the vector U appears as a limit configuration in problems of
spatial segregation.

It has to be noted indeed that a form of (WRL) always holds for solutions of systems of interacting
semilinear equations and that it persists under strong H1 limits.

In addition, (WRL) holds for vector functions U minimizing Lagrangian functional associated
with the system.

It is fullfilled also for strong limits to competition–diffusion systems, both those possessing a
variational structure and those with Lotka-Volterra type interaction.

Our theorem extends also to sign changing, complex and vector valued functions ui. Lipschitz
continuity can be weakened into Hölder continuity for every α ∈ (0, 1)].



6 More remarks

Assume U minimizes a Lagrangian energy with a pointwise constraint of the type U(x) ∈ Σ, for
almost every x ∈ Ω. Let Y ∈ C∞0 (Ω;RN). Then, differentiation of the energy with respect to ε
with U(x) 7→ Uε(x) = U(x + εY (x)) yields the well known identity

∫
Ω

{
dY (x)∇U(x) · ∇U(x)− divY (x)

[
1

2
|∇U(x)|2 − F (U(x))

]}
dx = 0 ,∀Y ∈ C∞0 (Ω;RN) .

By localizing to a regular ω ⊂ Ω this implies

∫
ω

{
dY (x)∇U(x) · ∇U(x)− divY (x)

[
1

2
|∇U(x)|2 − F (U(x))

]}
dx

=

∫
∂ω

{
Y (x) · ∇U(x)ν(x) · ∇U(x)− ν(x) · Y (x)

[
1

2
|∇U(x)|2 − F (U(x))

]}
dσ ,

∀ smooth ω and ∀Y ∈ C∞0 (Ω;RN) . (*)

Next

(∗) +

(
Y (x) = x− x0

ω = Br(x0)

)
=⇒ (WRL)



7 Almgren’s monotonicity formula

E(r) =
1

rN−2

∫
Br(x0)

(
|∇U |2 − 〈F (x, U), U〉

)
,

H(r) =
1

rN−1

∫
∂Br

|U |2,

We define the (modified) Almgren’s quotient as follows:

N(r) =
E(r) + H(r)

H(r)
.

Theorem 2 Assume (WRL). Then, there exist r̄, C > 0, such that for 0 < r < r̄ we have
H(r) 6= 0 and also E(r) + H(r) 6= 0,

N ′(r) ≥ −CrN(r)

in particular the function Ñ = e
C
2 r

2
N(r) is non decreasing and has a limit as r → 0, and

moreover
d

dr
log(H(r)) =

2

r
(N(r)− 1).



8 Ideas of the proof.

Define the Almgen’s quotient as

1
rN−2

∫
Br(x0)

(
|∇U |2 − 〈F (x, U), U〉

)
1

rN−1

∫
∂Br
|U |2

Define the regular and singular parts of the boundary

ΣU = {x ∈ ΓU : lim
r→0

N(x, r)− 1 = 1} ΓU \ ΣU = {x ∈ ΓU : lim
r→0

N(x, r)− 1 > 1}}

First we wish to apply Federer’s reduction principle:

• Almgren monotonicity formula at nodal points

•uniform bounds in Hölder spaces =⇒ strong convergence of blow-up sequences. No equation!

• classification of conic solutions satisfying (WRL)

Next we analyze the non singular part of the free boundary:

• flatness at regular points of the boundary

• clean–up lemma

• regularity of the nodal set

Reflection law:

• (WRL) =⇒ equality of the gradients on the two sides.



9 Conic functions

Lemma 1 Let N ≥ 2. Given Ū = rαG(θ) ∈ Liploc(RN) such that ∆Ū = 0 in {Ū > 0}, and
(WRL) holds, then either α = 1 or α ≥ 1 + δN for some universal constant δN depending only
on the dimension. Moreover if α = 1 then ΓŪ is an hyperplane.

Ū = rα(g1(θ), . . . , γk(θ)). Note that for every connected component A ⊆ {gi > 0} ⊂ SN−1 it
holds

−∆SN−1gi = λgi in A, with λ = α(α + N − 2) and λ = λ1(A).

Lemma 2 If {G > 0} has at least three connected components then there exists an universal
constant δ̄N > 0 such that α ≥ 1 + δ̄N .

Proof: At least one of the connected components, say C, must have a measure less that one third
of the measure of the sphere, and hence λ = λ1(C) ≥ λ1(E(π/2)). Moreover it is well know that
λ1(E(π/2)) = N − 1. This implies the existence of γ > 0 such that λ1(E(π/3)) = N − 1 + γ, and

thus α =

√(
N−2

2

)2
+ λ− N−2

2 ≥ 1 + δ̄N for some δ̄N > 0.

Use an inductive argument on the dimension, starting with dimension 2.



10 Flatness at the regular points

Let x be a regular point:

Lemma 3 For any given 0 < δ < 1 there exists R > 0 such that for every x ∈ Γ?∩ Ω̃ = ΓU ∩ Ω̃
and 0 < r < R there exists an hyper-plane H = Hx,r containing x such that

dH(ΓU ∩Br(x), H ∩Br(x)) ≤ δr.

Proposition 1 (Local Separation Property) Given x0 ∈ ΣU there exists a radius R0 > 0
such that BR0(x0) ∩ ΣU = BR0(x0) ∩ ΓU and BR0(x0) \ ΓU = BR0(x0) ∩ {U > 0} has exactly
two connected components Ω1,Ω2. Moreover, for sufficiently small δ > 0, we have that given
y ∈ ΓU ∩ BR0(x0) and 0 < r < R − |y| there exist a hyper-plane Hy,r (passing through y) and
a unitary vector νy,r (orthogonal to Hy,r) such that

{x+ tνy,r ∈ Br(y) : x ∈ Hy,r, t ≥ δr} ⊂ Ω1, {x− tνy,r ∈ Br(y) : x ∈ Hy,r, t ≥ δr} ⊂ Ω2.



11 The reflection law in action

Lemma 4 (Strong Reflection Law) Let u, v ∈ Liploc(RN) be two non zero and non nega-
tive functions in RN such that u · v = 0 and{

−∆u = f (x, u)− λ
−∆v = g(x, v)− µ in RN

for some λ, µ ∈ Mloc(RN), locally non negative Radon measures supported on the common
zero set. Suppose moreover that (WRL) holds. Then

λ = µ

and in particular ∆(u− v) = f (x, u)− g(x, v) in RN . Moreover ΓU is a regular hyper-surface
of codimension 1 at regular points, and Then for every Borel set E ⊆ RN it holds

λ(E) =

∫
E∩∂{u>0}

−∂νu dσ =

∫
E∩∂{v>0}

−∂νv dσ = µ(E)

In the complex or vector valued case, we obtain that ‖λ‖ = ‖µ‖. With this and an iterative
argument by Caffarelli we deduce the C1 regularity of the regular part of the boundary.



12 Elliptic systems on Riemannian Manifolds

The main theorem extends to segregated configurations associated with systems of semilinear elliptic
equations on Riemannian manifolds, under an appropriate version of the weak reflection law.

We start with a system of semilinear equations involving the Laplace-Beltrami operator on a
Riemannian manifold M :

−∆Mui = f (x, ui) where ui > 0 .

We define the “energy” Ẽ as

Ẽ(r) = Ẽ(x0, U, r) =
1

rN−2

∫
Br(x0)

|∇MU |2dVM ,

where Br(x0) is the geodesic ball of radius r. Let us choose normal coordinates x̃i centered at x0.
By Gauss Lemma we know that, denoting by ρ =

∑
i(x̃

i)2 and θi the radial and angular coordinates,
it holds

g = dρ2 + ρ2
∑
i,j

bij(ρ, θ)dθidθj.

Notice that the variation with respect to the euclidean metric is purely tangential. Moreover the
Christoffel symbols vanish at the origin.



13 The reflection law using normal coordinates

In normal coordinates, denoting, as usual, g̃ij = g(∂i, ∂j) the coefficients of the metric, we require
that Ẽ satisfies the differential equation:

d

dr
Ẽ(x0, U, r) =

2

rN−2

∫
∂Br(x0)

(∂ρU)2 dσM

+
2

rN−1

∫
Br(x0)

ρ
∑
i

fi(x, ui)∂ρui +
1√
g̃

∑
k,j

∂ρ

(√
g̃ g̃kj

)
∂kui∂jui

 dVM .

Here g̃ = | det(g̃kj)| and (g̃kj) is the inverse of the matrix (g̃kj). This identity is satisfied also in
the case of Lipschitz metrics , by any solution u of the semilinear equation

−∆Mu = f (x, u).
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15 Asymptotic limits of a system of Gross-Pitaevskii equations

Consider the following system of nonlinear Schrödinger equations

{
−∆ui + λiui = ωiu

3
i − βui

∑
j 6=i βiju

2
j

ui ∈ H1
0(Ω), ui > 0 in Ω.

i = 1, . . . , h,

in a smooth bounded domain Ω ⊂ RN , N = 2, 3. Such type of systems arises in the theory of
Bose-Einstein condensation in multiple spin states. Here we consider βij = βji 6= 0 (which gives a
variational structure to the problem) and take λi, ωi ∈ R and β ∈ (0,+∞) large. The existence of
solutions for β large is still an open problem for some choices of λi, ωi.

One of the many interesting questions about these systems is the asymptotic study of its solutions
as β → +∞ (which represents an increasing of the interspecies scattering length) and study of the
regularity of the limiting profiles. In a joint paper with Noris, Tavares, T. and Verzini, we have
proved:

C0,α– bounds (for all 0 < α < 1) for any given L∞–bounded family of solutions Uβ =
(u1,β, . . . , uh,β) of the system;

the possible limit configurations U = limβ→+∞Uβ are Lipschitz continuous.

As a byproduct, we have

Theorem 3 Let U be a limit as β → +∞ of a family {Uβ} of L∞–bounded solutions of the
system. Then the conclusion of Theorem 1 holds.



All the required assumptions are satisfied for such limiting profiles, with fi(x, s) = fi(s) =
ωis

3 − λis, except for the weak reflection law. The procedure to verify it is the following: defining
an approximated energy associated with system - which has a variational structure-,

Eβ(r) =
1

rN−2

∫
Br(x0)

(
|∇Uβ|2 − 〈F (Uβ), Uβ〉

)
+

∫
Br(x0)

2β
∑
i<j

u2
i,βu

2
j,β

by a direct calculation it holds

E ′β(r) =
2

rN−2

∫
∂Br(x0)

(∂νUβ)2 dσ +
2

rN−1

∫
Br(x0)

∑
i

fi(ui,β)〈∇ui,β, x− x0〉+

+
1

rN−1

∫
Br(x0)

(N − 2)〈F (Uβ), Uβ〉 −
1

rN−2

∫
∂Br(x0)

〈F (Uβ), Uβ〉 dσ+

+
4−N
rN−1

∫
Br(x0)

β
∑
i<j

u2
i,βu

2
j,β +

∫
∂Br(x0)

β
∑
i<j

u2
i,βu

2
j,β dσ.

We know the following facts:

there holds strong convergence Uβ → U in H1 ∩ C0,α(Ω) for every 0 < α < 1,

and
∫

Ω β
∑

i<j u
2
i,βu

2
j,β → 0.

Hence, as β → +∞, we prove that U satisfies the weak reflection law.



16 Lotka-Volterra competitive interactions with symmetric competition rates

Consider the following Lotka-Volterra model for the competition between h different species.

{
−∆ui = fi(ui)− βui

∑
j 6=i ai,juj in Ω,

ui ≥ 0 in Ω, ui = ϕi on ∂Ω.

with Ω ⊂ RN a smooth bounded domain and ϕi positive W 1,∞(∂Ω)–functions with disjoint
supports. We focus on the asymptotic study of solutions as β → +∞. It is not difficult to show
that all the possible H1–limits U of a given sequence of solutions {Uβ}β>0 (as β → +∞) belong to
the class

S(Ω) =
{

(u1, . . . , uh) ∈
(
H1(Ω)

)h
: ui ≥ 0 in Ω, ui · uj = 0 if i 6= j and −∆ui ≤ fi(ui),

−∆(ui −
∑
j 6=i

aij
aji
uj) ≥ fi(x, ui(x))−

∑
j 6=i

aij
aji
fj(x, uj)

 .

Theorem 4 Let U ∈ S, then if aij = aji, ∀i, j the conclusion of Theorem 1 holds.



17 Asymmetric competition rates

What happens if aij 6= aji?

What doesn’t changes (with re-
spect to the symmetric case):

• lipschitz continuity of the
profiles;

• equi–hölderianity w.r. to
β;

• equi–lipschitzianity w.r. to
β (in the case h = 2);

• vanishing of the gradient
at multiple points (in dimen-
sion N = 2).

What changes:

• no monotonicity formula;

• local expansion at multiple
points (in dimension N = 2).



18 Regularity of interfaces in optimal partition problems related to eigenvalues

Next we consider some optimal partition problems involving eigenvalues. For any integer h ≥ 0, we
define the set of h–partitions of Ω as

Bh = {(ω1, . . . , ωh) : ωi measurable , |ωi ∩ ωj| = 0 for i 6= j and ∪i ωi ⊆ Ω} .
Consider the following optimization problems: for any positive real number p ≥ 1,

Lh,p := inf
Bh

(
1

h

h∑
i=1

(λ1(ωi))
p

)1/p

,

and, for p = +∞ we find the limiting problem

Lh := inf
Bh

max
i=1,...,h

(λ1(ωi)),

where λ1(ω) denotes the first eigenvalue of −∆ in H1
0(ω) in a generalized sense. We refer to the

papers Conti, Verzini, T. and Helffer, Hoffmann-Ostenhof, T., for a more detailed description of
these problems.



Our theorem applies to suitable multiples of the eigenfunctions associated with the optimal par-
tition. More precisely, we proved that

let p ∈ [1,+∞) and let (ω1, . . . , ωh) ∈ Bh be any minimal partition associated with Lh,p and
let (φi)i be any set of positive eigenfunctions normalized in L2 corresponding to (λ1(ωi))i. Then
there exist ai > 0 such that the functions ui = aiφi verify in Ω, for every i = 1, . . . , h, the
differential inequalities (in the distributional sense):

−∆ui ≤ λ1(ωi)ui and −∆(ui−
∑

j 6=i uj) ≥ λ1(ωi)ui−
∑

j 6=i λ1(ωi)uj;

and:

let (ω̃1, . . . , ω̃h) ∈ Bh be any minimal partition associated with Lh and let (φ̃i)i be any set of
positive eigenfunctions normalized in L2 corresponding to (λ1(ω̃i))i. Then there exist ai ≥ 0,
not all vanishing, such that the functions ũi = aiφ̃i verify in Ω, for every i = 1, . . . , h, the
differential inequalities (in the distributional sense):

−∆ũi ≤ Lhũi and −∆(ũi−
∑

j 6=i ũj) ≥ Lh(ũi−
∑

j 6=i ũj).

In particular the functions Ũ = (ũ1, . . . , ũh) and U = (u1, . . . , uh) belong to S(Ω). As conse-
quence, we have the following result:

Theorem 5 Let (ω1, . . . , ωh) ∈ Bh be any minimal partition and let Γ be the union of the
interfaces; then the conclusion of Theorem 1 holds.



19 Extremality conditions for partitions involving higher eigenvalues

We would like to attack the optimal partition problem for higher eigenvalues (k ≥ 2):

L = min
1

h

(
h∑
i=1

λk(ωi)

)
.

Introduce the penalized functional

Eβ(u1, · · · , uh) =

∫
Ω

∑
i

|∇ui|2 + β
∑
i 6=j

|ui|2|uj|2

with constraints

∫
Ω

|ui|2 = 1 ∀ i = 1, · · · , h .

As β +∞, critical points of Eβ converge to pairs of segregated eigenfunctions.

Problem: How to define an appropriate critical level for the penalized functional?

Existence of the minimal partition has been proved by Bucur–Buttazzo.
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21 Spectral partitions

Obviously we have

Lk,p ≤ Lk ,∀k, p.

A straightforward consequence of the Fisher–Courant theorem is that

λk ≤ Lk .

For one dimensional problems we have equality (Sturm oscillation principle) for every k. On
the other hand, in more space dimensions, the k-th eigenfunction may possess less than k nodal
domains.

Given k, we denote by Lk the smallest eigenvalue whose eigenspace contains an eigenfunction
with k nodal domains (Lk = +∞ if no such an eigenfunction exists).

In general, an easy consequence of the Courant nodal theorem for connected domains is that

λk ≤ Lk .



So we have the inequalities

λk ≤ Lk ≤ Lk , ∀k.

Can we characterize the equality cases?

Theorem 6 (Helffer, Hoffman-Ostenhof, T, 2009–2010) Suppose Ω ⊂ RN regular. If
either λk = Lk or Lk = Lk then

λk = Lk = Lk .

In addition, one can find in the eigenspace associated to λk an eigenfunction uk having
extactly k nodal domains.

The k–th eigenfunction has k nodal domains (i.e. is sharp with respect to the Courant nodal
Theorem) if and only if the associated nodal k–partition is optimal.

As a consequence, every time we know (for instance for the symmetries of the problem) that the
second eigenvalue is degenerate, then the minimal spectral 3-partition has necessarily a nontrivial
clustering point.



22 The case of the sphere

We consider the Laplace-Beltrami operator on the two-sphere.

Conjecture 1 (Bishop 1992) The minimal 3-partition for 1
3(
∑3

i=1 λ1(Di)) corresponds to
the Y-partition, whose boundary is given by the intersection of S2 with the three half-planes
defined respectively by φ = 0, 2π

3 ,
−2π

3

The conjecture can be restated as

L3,1(S2) =
15

4

and also

L3,p(S2) = L3(S2) =
15

4
,∀p

Bishop’s Conjecture was motivated by the analysis of the properties of harmonic functions in
conic sets. A reference paper in this context is that by Friedland-Hayman. It is proved there that
the optimal two-partition is achieved by the two half spheres.



23 Uniqueness for L3 in two dimensions

Theorem 7 (Helffer, Hoffman-Ostenhof, T) Any minimal spectral 3-partition of S2 is
(up to a rotation) obtained by the Y-partition. Hence

L3(S2) =
15

4
.

Consider a homogeneous function in R3 of the form

u(x) = rαg(θ, φ)

which is harmonic outside its nodal set: −∆u = 0 , u > 0 and such that the nodal set divides
the sphere in three parts, then

α(α + 1) ≥ L3(S2) .

Hence our theorem implies that α ≥ 3/2.



24 Ideas of the proof:

first, minimal partitions on S2 in three parts exist and share the same properties as for planar
domains: regularity and equal angle meeting property. Hence the nodal set is a finite union of
arcs.

because the second eigenvalue of the Laplace-Beltrami operator is singular (has nontrivial mul-
tiplicity), then the minimal 3-partition cannot be a nodal partition.

use Euler’s formula and deduce that the nodal line s of a minimal 3-partitions consists exactly
two points x1 and x2 and three arcs joining these two points.

use Borsuk (or Ljusternik-Schnirelman) theorem to prove that the nodal set contains a pair of
antipodal points.

the next point is that any minimal 3-partition which contains two antipodal points in its bound-
ary can be lifted to a symmetric 6-partition on the double covering S2

C.

finally, the last point is to show that on the double covering a minimal symmetric 6-partition is
necessarily the lifting on the double covering of the Y-partition.

– use the knowledge of the spectrum of the Laplace-Beltrami on the double covering and classify
all odd and even spectrum.

– use again the characterization of the eigenvalues whose nodal partition is minimal: this holds
if and only the minimal eigenvalue whose nodal partition has k nodal domain is the minimal
one,
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