Analytic Isomorphisms of Artin K-algebras

Maria Evelina Rossi

University of Genova, Italy Department of Mathematics

http://www.dima.unige.it/ rossim/Berkeley.pdf

- Notations and definitions
- 2 Examples
- Method: Macaulay's Inverse system
- Isomorphisms of Compressed algebras
 - References

Contents

Notations and definitions

2 Examples

- 3 Macaulay's Inverse system
- 4 Compressed algebras

Denote

$$R = K[[x_1,\ldots,x_n]]$$

where $K = \overline{K}$ and char K = 0.

We recall that a K-algebra automorphism of R acts as substitution

$$arphi: \mathbf{R} o \mathbf{R}$$

$$x_j \rightsquigarrow y_j = f_j(x_1,\ldots,x_n)$$

such that $\mathfrak{m}_{R} = (x_{1}, \dots, x_{n}) = (y_{1}, \dots, y_{n}).$

 $arphi \in Aut(R) \quad \Longleftrightarrow \quad J_{arphi}(0)
eq 0$ (Jacobian condition)

Denote

$$R = K[[x_1, \ldots, x_n]]$$

where $K = \overline{K}$ and char K = 0.

We recall that a *K*-algebra automorphism of *R* acts as **substitution**

 $arphi: \mathbf{R} o \mathbf{R}$

 $X_j \rightsquigarrow Y_j = f_j(X_1, \ldots, X_n)$

such that $\mathfrak{m}_{R} = (x_{1}, \ldots, x_{n}) = (y_{1}, \ldots, y_{n}).$

 $\varphi \in Aut(R) \iff J_{\varphi}(0) \neq 0$ (Jacobian condition)

Denote

$$R = K[[x_1, \ldots, x_n]]$$

where $K = \overline{K}$ and char K = 0.

We recall that a K-algebra automorphism of R acts as substitution

$$\varphi: \mathbf{R} \to \mathbf{R}$$

$$x_j \rightsquigarrow y_j = f_j(x_1, \ldots, x_n)$$

such that $\mathfrak{m}_{R} = (x_{1}, ..., x_{n}) = (y_{1}, ..., y_{n}).$

 $arphi \in Aut(R) \quad \Longleftrightarrow \quad J_{arphi}(0)
eq 0$ (Jacobian condition)

Denote

$$R = K[[x_1, \ldots, x_n]]$$

where $K = \overline{K}$ and char K = 0.

We recall that a K-algebra automorphism of R acts as substitution

$$\varphi: \mathbf{R} \to \mathbf{R}$$

$$x_j \rightsquigarrow y_j = f_j(x_1,\ldots,x_n)$$

such that $\mathfrak{m}_{R} = (x_{1}, ..., x_{n}) = (y_{1}, ..., y_{n}).$

 $\varphi \in Aut(R) \iff J_{\varphi}(0) \neq 0$ (Jacobian condition)

$$R/I \xrightarrow{\sim} R/J \iff \exists \varphi \in Aut(R) \text{ s.t. } \varphi(I) = J.$$

We will write

 $I \sim J$.

Example

Consider $R = \mathbb{C}[[x, y]]$ then

$$I = (y^{2} - x^{3}, x^{3}y) \sim J = (y^{2} - x^{2}y - x^{3}, x^{3}y)$$

 $\varphi: R \to R$ $x \rightsquigarrow 9x + y$ $v \rightsquigarrow -27v + xv + 9x^{2}$

It is easy to see that $\varphi(I) \subseteq J$ and we conclude because they have the same Hilbert function $\{1, 2, 2, 2, 2, 1\}$.

Maria Evelina Rossi (University of Genova, Italy)

Analytic Isomorphisms

$$R/I \xrightarrow{\sim} R/J \iff \exists \varphi \in Aut(R) \text{ s.t. } \varphi(I) = J.$$

We will write

 $I \sim J$.

Example

Consider $R = \mathbb{C}[[x, y]]$ then $I = (y^2 - x^3, x^3y) \sim J = (y^2 - x^2y - x^3, x^3y)$

Maria Evelina Rossi (University of Genova, Italy)

Analytic Isomorphisms

$$R/I \xrightarrow{\sim} R/J \iff \exists \varphi \in Aut(R) \text{ s.t. } \varphi(I) = J.$$

We will write

 $I \sim J$.

Example

Consider $R = \mathbb{C}[[x, y]]$ then $I = (y^2 - x^3, x^3y) \sim J = (y^2 - x^2y - x^3, x^3y)$ $\varphi : R \rightarrow R$ $x \rightsquigarrow 9x + y$ $y \rightsquigarrow -27y + xy + 9x^2$

It is easy to see that $\varphi(I) \subseteq J$ and we conclude because they have the same Hilbert function $\{1, 2, 2, 2, 2, 1\}$.

Maria Evelina Rossi (University of Genova, Italy)

Analytic Isomorphisms

$$R/I \xrightarrow{\sim} R/J \iff \exists \varphi \in Aut(R) \text{ s.t. } \varphi(I) = J.$$

We will write

 $I \sim J$.

Example

Consider $R = \mathbb{C}[[x, y]]$ then $I = (y^2 - x^3, x^3y) \sim J = (y^2 - x^2y - x^3, x^3y)$ $\varphi : R \rightarrow R$ $x \rightsquigarrow 9x + y$ $y \rightsquigarrow -27y + xy + 9x^2$

It is easy to see that $\varphi(I) \subseteq J$ and we conclude because they have the same Hilbert function $\{1, 2, 2, 2, 2, 1\}$.

From now on A = R/I is Artinian (finite length)

- $s := \max\{n : \mathfrak{m}_A^n \neq 0\}$ the socle degree of A.
- $t := \dim_{\mathcal{K}}(0 :_{\mathcal{A}} \mathfrak{m}_{\mathcal{A}})$ is the type of \mathcal{A} .
- A is Gorenstein if t = 1.

The Hilbert function $HF_A: \mathbb{N} \to \mathbb{N}$

$$h_i = HF_A(i) = \mu(\mathfrak{m}^i) = \dim_k \mathfrak{m}^i/\mathfrak{m}^{i+1}$$

and denote the *h*-vector

$$h_A = (h_0, h_1, \ldots, h_s)$$

$d = \dim_k A = \sum_{i=0}^s h_i$ multiplicity (length)

From now on A = R/I is Artinian (finite length)

 $s := \max\{n : \mathfrak{m}_A^n \neq 0\}$ the socle degree of A.

 $t := \dim_{\mathcal{K}}(0 :_{\mathcal{A}} \mathfrak{m}_{\mathcal{A}})$ is the type of \mathcal{A} .

A is Gorenstein if t = 1.

The Hilbert function $HF_A : \mathbb{N} \to \mathbb{N}$

$$h_i = HF_A(i) = \mu(\mathfrak{m}^i) = \dim_k \mathfrak{m}^i/\mathfrak{m}^{i+1}$$

and denote the *h*-vector

 $h_A = (h_0, h_1, \ldots, h_s)$

$d = \dim_k A = \sum_{i=0}^s h_i$ multiplicity (length)

From now on A = R/I is Artinian (finite length)

- $s := \max\{n : \mathfrak{m}_A^n \neq 0\}$ the socle degree of A.
- $t := \dim_{\mathcal{K}}(0 :_{\mathcal{A}} \mathfrak{m}_{\mathcal{A}})$ is the type of \mathcal{A} .
- A is Gorenstein if t = 1.

The Hilbert function $HF_A : \mathbb{N} \to \mathbb{N}$

$$h_i = HF_A(i) = \mu(\mathfrak{m}^i) = \dim_k \mathfrak{m}^i/\mathfrak{m}^{i+1}$$

and denote the *h*-vector

$$h_A = (h_0, h_1, \ldots, h_s)$$

$d = \dim_k A = \sum_{i=0}^{s} h_i$ multiplicity (length)

From now on A = R/I is Artinian (finite length)

- $s := \max\{n : \mathfrak{m}_A^n \neq 0\}$ the socle degree of A.
- $t := \dim_{\mathcal{K}}(0 :_{\mathcal{A}} \mathfrak{m}_{\mathcal{A}})$ is the type of \mathcal{A} .
- A is Gorenstein if t = 1.

The Hilbert function $HF_A : \mathbb{N} \to \mathbb{N}$

$$h_i = HF_A(i) = \mu(\mathfrak{m}^i) = \dim_k \mathfrak{m}^i/\mathfrak{m}^{i+1}$$

and denote the *h*-vector

$$h_A = (h_0, h_1, \ldots, h_s)$$

 $d = \dim_k A = \sum_{i=0}^s h_i$ multiplicity (length)

Describe the isomorphism classes (or to give information on the structure) of local Artin *K*-algebras of given length *d* (or given Hilbert function)

The problem is related to the study of the components of the Hilbert scheme

 $Hilb_d(\mathbb{A}^n)$

- of d points in the affine space \mathbb{A}^n . Possible fields of interest:
- Irreducibility of *Hilb*_d(Aⁿ)
- Rationality of $P_{K}^{A}(z)$ (the Poincare' Series)
- Koszulness of A

Describe the isomorphism classes (or to give information on the structure) of local Artin K-algebras of given length d (or given Hilbert function)

The problem is related to the study of the components of the Hilbert scheme

 $Hilb_d(\mathbb{A}^n)$

of d points in the affine space \mathbb{A}^n . Possible fields of interest:

- Irreducibility of *Hilb*_d(Aⁿ)
- Rationality of $P_{K}^{A}(z)$ (the Poincare' Series)
- Koszulness of A

Describe the isomorphism classes (or to give information on the structure) of local Artin K-algebras of given length d (or given Hilbert function)

The problem is related to the study of the components of the Hilbert scheme

 $Hilb_d(\mathbb{A}^n)$

of *d* points in the affine space \mathbb{A}^n . Possible fields of interest:

Irreducibility of *Hilb_d*(Aⁿ)

- Rationality of $P_{K}^{A}(z)$ (the Poincare' Series)
- Koszulness of A

Describe the isomorphism classes (or to give information on the structure) of local Artin K-algebras of given length d (or given Hilbert function)

The problem is related to the study of the components of the Hilbert scheme

 $Hilb_d(\mathbb{A}^n)$

of *d* points in the affine space \mathbb{A}^n . Possible fields of interest:

- Irreducibility of *Hilb*_d(Aⁿ)
- Rationality of $P_{K}^{A}(z)$ (the Poincare' Series)
- Koszulness of A

Some results

- G. Mazzola, *Manuscripta Math.* (1979)
- B. Poonen, Contemp. Math., vol. 463, (2008)
- D.A. Cartwright, D. Erman, M. Velasco, B. Viray, *Algebra and Number Theory* (2009).
- G. Casnati, R. Notari, J. of Algebra (2008), J. Pure and Applied Algebra (2009)
- J. Elias, G. Valla, Michigan J. of Math (2008)

Some results

- G. Mazzola, Manuscripta Math. (1979)
- B. Poonen, Contemp. Math., vol. 463, (2008)
- D.A. Cartwright, D. Erman, M. Velasco, B. Viray, *Algebra and Number Theory* (2009).
- G. Casnati, R. Notari, J. of Algebra (2008), J. Pure and Applied Algebra (2009)
- J. Elias, G. Valla, Michigan J. of Math (2008)

The Hilbert function is a first constraint for being isomorphic.

 $A \simeq B \implies HF_A = HF_B$

Remark that

 $HF_A = HF_G$

where

$$G = gr_{\mathfrak{m}}(A) = \oplus_{i \geq 0} \mathfrak{m}^i / \mathfrak{m}^{i+1}$$

is the associated graded ring.

Notice that $gr_m(A) = K[x_1, ..., x_n]/I^*$ where I^* is the homogeneous ideal generated by the initial forms of the elements in I.

$$I \sim I^*$$
 ?

The Hilbert function is a first constraint for being isomorphic.

$$A \simeq B \implies HF_A = HF_B$$

Remark that

 $HF_A = HF_G$

where

$$G = gr_{\mathfrak{m}}(A) = \oplus_{i \ge 0} \mathfrak{m}^i / \mathfrak{m}^{i+1}$$

is the associated graded ring.

Notice that $gr_m(A) = K[x_1, ..., x_n]/I^*$ where I^* is the homogeneous ideal generated by the initial forms of the elements in I.

$$I \sim I^*$$
 ?

The Hilbert function is a first constraint for being isomorphic.

$$A \simeq B \implies HF_A = HF_B$$

Remark that

 $HF_A = HF_G$

where

$$G = gr_{\mathfrak{m}}(A) = \oplus_{i \geq 0} \mathfrak{m}^i / \mathfrak{m}^{i+1}$$

is the associated graded ring.

Notice that $gr_{\mathfrak{m}}(A) = K[x_1, \ldots, x_n]/I^*$ where I^* is the homogeneous ideal generated by the initial forms of the elements in *I*.

$$I \sim I^*$$
 ?

The Hilbert function is a first constraint for being isomorphic.

$$A \simeq B \implies HF_A = HF_B$$

Remark that

 $HF_A = HF_G$

where

$$G = gr_{\mathfrak{m}}(A) = \oplus_{i \ge 0} \mathfrak{m}^i / \mathfrak{m}^{i+1}$$

is the associated graded ring.

Notice that $gr_m(A) = K[x_1, ..., x_n]/I^*$ where I^* is the homogeneous ideal generated by the initial forms of the elements in I.

Following a definition given by J. Emsalem:

Definition

A local algebra (A, \mathfrak{m}) is canonically graded if there exists a *K*-algebra isomorphism between *A* and its associated graded ring $gr_{\mathfrak{m}}(A)$.

!!!! Consider

$$A = K[[t^2, t^3]] \simeq K[x, y]/(y^2 - x^3)$$

is graded setting deg(x) = 2 and deg(y) = 3, but it is not canonically graded because A is reduced and $gr_{\mathfrak{m}}(A) = K[x, y]/(y^2)$ is not reduced.

Following a definition given by J. Emsalem:

Definition

A local algebra (A, \mathfrak{m}) is canonically graded if there exists a *K*-algebra isomorphism between *A* and its associated graded ring $gr_{\mathfrak{m}}(A)$.

!!!! Consider

$$A = K[[t^2, t^3]] \simeq K[x, y]/(y^2 - x^3)$$

is graded setting deg(x) = 2 and deg(y) = 3, but it is not canonically graded because A is reduced and $gr_{\mathfrak{m}}(A) = K[x, y]/(y^2)$ is not reduced.

Following a definition given by J. Emsalem:

Definition

A local algebra (A, \mathfrak{m}) is canonically graded if there exists a *K*-algebra isomorphism between *A* and its associated graded ring $gr_{\mathfrak{m}}(A)$.

!!!! Consider

$$A = K[[t^2, t^3]] \simeq K[x, y]/(y^2 - x^3)$$

is graded setting deg(x) = 2 and deg(y) = 3, but it is not canonically graded because A is reduced and $gr_m(A) = K[x, y]/(y^2)$ is not reduced.

Following a definition given by J. Emsalem:

Definition

A local algebra (A, \mathfrak{m}) is canonically graded if there exists a *K*-algebra isomorphism between *A* and its associated graded ring $gr_{\mathfrak{m}}(A)$.

!!!! Consider

$$A = K[[t^2, t^3]] \simeq K[x, y]/(y^2 - x^3)$$

is graded setting deg(x) = 2 and deg(y) = 3, but it is not canonically graded because A is reduced and $gr_{\mathfrak{m}}(A) = K[x, y]/(y^2)$ is not reduced.

Contents

Notations and definitions

2 Examples

3 Macaulay's Inverse system

4 Compressed algebras

Example

Consider the Gorenstein local rings A with *h*-vector:

h = (1, 2, 2, 1)

We have only two models: I =

Remark that both the models are homogeneous !!! Hence A is graded.

We will see later (not trivial) that if A is Gorenstein

h = (1, 2, 3, 2, 1)

is still graded, but

h = (1, 2, 2, 2, 1)

Example

Consider the Gorenstein local rings A with h-vector:

$$h = (1, 2, 2, 1)$$

We have only two models: I =

$$\begin{pmatrix} (x^2, y^3) \\ (xy, x^3 - y^3) \end{pmatrix}$$

Remark that both the models are homogeneous !!! Hence A is graded.

We will see later (not trivial) that if A is Gorenstein

h = (1, 2, 3, 2, 1)

is still graded, but

h = (1, 2, 2, 2, 1)

Example

Consider the Gorenstein local rings A with h-vector:

$$h = (1, 2, 2, 1)$$

 $(\sqrt{2},\sqrt{3})$

We have only two models: I =

$$I = \begin{cases} (x, y) \\ (xy, x^3 - y^3) \end{cases}$$

1

Remark that both the models are homogeneous !!! Hence A is graded.

We will see later (not trivial) that if A is Gorenstein

h = (1, 2, 3, 2, 1)

is still graded, but

h = (1, 2, 2, 2, 1)

Example

Consider the Gorenstein local rings A with h-vector:

$$h = (1, 2, 2, 1)$$

We have only two models: $I = \int_{-\infty}^{\infty}$

*I*e have only two models:
$$I = \begin{cases} (x^2, y^3) \\ (xy, x^3 - y^3) \end{cases}$$

Remark that both the models are homogeneous !!! Hence A is graded.

We will see later (not trivial) that if A is Gorenstein

$$h = (1, 2, 3, 2, 1)$$

is still graded, but

Example

Consider the Gorenstein local rings A with h-vector:

$$h = (1, 2, 2, 1)$$

We have only two models: $I = \begin{cases} (x^2, y^3) \\ (xy, x^3 - y^3) \end{cases}$

Remark that both the models are homogeneous !!! Hence A is graded.

We will see later (not trivial) that if A is Gorenstein

$$h = (1, 2, 3, 2, 1)$$

is still graded, but

h = (1, 2, 2, 2, 1)

Example (Elias, Valla)

Consider Gorenstein local rings with *h*-vector:

h = (1, 2, 2, 2, 1)

We have three models:

$$l_2 = (x^4, x^2 + y^2)$$
$$l_3 = (x^4, y^2 - x^3)$$

Notice that $l_3^* = (x^4, y^2) = l_1$, but $l_1 \neq l_3$.
Example (Elias, Valla)

Consider Gorenstein local rings with *h*-vector:

We have three models:
$$\begin{cases} h = (1, 2, 2, 2, 1) \\ l_1 = (x^4, y^2) \\ l_2 = (x^4, x^2 + y^2) \\ l_3 = (x^4, y^2 - x^3) \end{cases}$$

Notice that $I_3^* = (x^4, y^2) = I_1$, but $I_1 \not\simeq I_3$.

Example (Elias, Valla)

Consider Gorenstein local rings with *h*-vector:

$$h = (1, 2, 2, 2, 1)$$

We have three models:
$$\begin{cases} I_1 = (x^4, y^2) \\ I_2 = (x^4, x^2 + y^2) \\ I_3 = (x^4, y^2 - x^3) \end{cases}$$

Notice that $I_3^* = (x^4, y^2) = I_1$, but $I_1 \not\simeq I_3$.

Examples

Finitely many isomorphism classes?

B. Poonen proved: d = 7 B × isomorphism classes. B. Somorphism classes.

h = (1, 2, 2, 2, 1, 1, 1)

$$I_{\rho} = (x^3y - \rho x^5, y^2 - x^4)$$

with $p \notin \mathfrak{m}$ and $p^2 - 1 \notin \mathfrak{m}$.

Examples

Finitely many isomorphism classes?

• B. Poonen proved: $d = 7 \exists \infty$ isomorphism classes.

● Elias-Valla proved: d = 10 ∃ 1-dimensional family of c.i.:

h = (1, 2, 2, 2, 1, 1, 1)

$$l_{p} = (x^{3}y - px^{5}, y^{2} - x^{4})$$

with $p \notin \mathfrak{m}$ and $p^2 - 1 \notin \mathfrak{m}$.

Examples

Finitely many isomorphism classes?

- B. Poonen proved: $d = 7 \exists \infty$ isomorphism classes.
- Elias-Valla proved: $d = 10 \exists 1$ -dimensional family of c.i.:

h = (1, 2, 2, 2, 1, 1, 1)

$$l_p = (x^3y - px^5, y^2 - x^4)$$

with $p \notin \mathfrak{m}$ and $p^2 - 1 \notin \mathfrak{m}$.

Contents

Notations and definitions

- Macaulay's Inverse system
 - 4) Compressed algebras

The dual module: V = Hom(A, K)

Macaulay's Inverse system

Let $R = K[[x_1, ..., x_n]]$ and $P = K[y_1, ..., y_n]$ $\begin{cases} (R/I, \mathfrak{m}) \text{ Artin local rings :} \\ \text{with socdeg}(R/I) = s. \end{cases} \xrightarrow{1-1} \begin{cases} f. g. R-\text{submodules of } P \\ generated in degree \leq s \end{cases}$

> Translate the analytic isomorphisms in terms of the dual module in an effective framework

In the graded case it is well understood in terms of $GL_n(K)$, see larrobino and Kanev's book (Appendix).

The dual module: V = Hom(A, K)

Macaulay's Inverse system

Let
$$R = K[[x_1, ..., x_n]]$$
 and $P = K[y_1, ..., y_n]$

$$\begin{cases} (R/I, \mathfrak{m}) \text{ Artin local rings :} \\ \text{with socdeg}(R/I) = s. \end{cases} \xrightarrow{1-1} \begin{cases} f. g. R-\text{submodules of } P \\ generated in degree \leq s \end{cases}$$

Translate the analytic isomorphisms in terms of the dual module in an effective framework

In the graded case it is well understood in terms of $GL_n(K)$, see larrobino and Kanev's book (Appendix).

The dual module: V = Hom(A, K)

Let
$$R = K[[x_1, ..., x_n]]$$
 and $P = K[y_1, ..., y_n]$

$$\begin{cases} (R/I, \mathfrak{m}) \text{ Artin local rings :} \\ \text{with socdeg}(R/I) = s. \end{cases} \xrightarrow{1-1} \begin{cases} f. g. R-\text{submodules of } P \\ generated in degree \leq s \end{cases}$$

Translate the analytic isomorphisms in terms of the dual module in an effective framework

In the graded case it is well understood in terms of $GL_n(K)$, see larrobino and Kanev's book (Appendix).

Macaulay's Inverse System

Let

$$R = K[[x_1, \ldots, x_n]]$$
 and $P = K[y_1, \ldots, y_n]$

P has a structure of R-module by the following action

$$\begin{array}{cccc} \circ : & {\pmb{R}} \times {\pmb{P}} & \longrightarrow & {\pmb{P}} \\ & (f,g) & \to & f \circ g = f(\partial_{y_1},\ldots,\partial_{y_n})(g) \end{array}$$

where ∂_{y_i} denotes the partial derivative with respect to y_i .

Starting from \circ we consider the following pairing of *K*-vector spaces:

$$egin{array}{cccc} \langle \,,\,
angle: & {m R} imes {m P} & \longrightarrow & K \ & (f,g) & o & (f\circ g)(0) \end{array}$$

In the following ()* means w.r.t. \langle , \rangle

Macaulay's Inverse System

Let

$$R = K[[x_1, \ldots, x_n]]$$
 and $P = K[y_1, \ldots, y_n]$

P has a structure of R-module by the following action

$$\begin{array}{cccc} \circ : & {\pmb{R}} \times {\pmb{P}} & \longrightarrow & {\pmb{P}} \\ & (f,g) & \to & f \circ g = f(\partial_{y_1},\ldots,\partial_{y_n})(g) \end{array}$$

where ∂_{y_i} denotes the partial derivative with respect to y_i .

Starting from \circ we consider the following pairing of *K*-vector spaces:

$$\langle \ , \
angle : egin{array}{ccc} R imes P & \longrightarrow & K \ (f,g) &
ightarrow & (f \circ g)(0) \end{array}$$

In the following $()^*$ means w.r.t. \langle , \rangle

Macaulay's Inverse System

Let

$$R = K[[x_1, \ldots, x_n]]$$
 and $P = K[y_1, \ldots, y_n]$

P has a structure of R-module by the following action

$$\begin{array}{cccc} \circ : & {\pmb{R}} \times {\pmb{P}} & \longrightarrow & {\pmb{P}} \\ & (f,g) & \to & f \circ g = f(\partial_{y_1},\ldots,\partial_{y_n})(g) \end{array}$$

where ∂_{y_i} denotes the partial derivative with respect to y_i .

Starting from \circ we consider the following pairing of *K*-vector spaces:

$$egin{array}{rcl} \langle \;,\;
angle: & {m R} imes {m P} & \longrightarrow & {m K} \ & (f,g) & o & (f\circ g)(0) \end{array}$$

In the following ($\)^*$ means w.r.t. $\langle \;,\;\rangle$

Let $E = E(A) = (e_1, \dots, e_s)$ the socle type and $t = \sum_{i=1}^s e_i$.

Macaulay's Inverse system

R/I is Artin local algebra with type t and socle type E

$$\left. \right\} \quad \stackrel{1-1}{\longleftrightarrow} \quad$$

$$M = < f_1, \dots, f_t >_R$$

R-submodule of *P*
gen. by *e_i* polynomials *f_i*
of degree *i* = 1, ..., *s*

 $\rightarrow \quad l^\perp = \{g \in P : l \circ g = 0\} = (R/l)^*$

 $Ann_{R}(\underline{E}) = \{ g \in R : g \circ f_{i} = 0 \} \quad \longleftarrow \quad M = \langle \underline{E} \rangle_{R} = \langle f_{1}, \dots, f_{t} \rangle_{R}$

We will write $A_F = R / Ann_R(F)$. Hence if A is Gorenstein

Let $E = E(A) = (e_1, \dots, e_s)$ the socle type and $t = \sum_{i=1}^s e_i$.

Macaulay's Inverse system

 $\left\{\begin{array}{c} R/I \text{ is Artin local algebra} \\ \text{with type } t \text{ and socle type } E \end{array}\right\} \stackrel{1-1}{\longleftrightarrow} \left. \left. \right\}$

$$M = < f_1, \dots, f_t >_R$$

R-submodule of *P*
gen. by e_i polynomials f_i
of degree $i = 1, \dots, s$

 $I \longrightarrow I^{\perp} = \{g \in P : I \circ g = 0\} = (R/I)^{*}$ $Ann_{R}(E) = \{g \in R : g \circ f_{i} = 0\} \longleftarrow M = \langle E \rangle_{R} = \langle f_{1}, \dots, f_{i} \rangle_{R}$

We will write $A_F = R / Ann_R(F)$. Hence if A is Gorenstein

Let $E = E(A) = (e_1, \dots, e_s)$ the socle type and $t = \sum_{i=1}^s e_i$.

Macaulay's Inverse system

 $\left\{\begin{array}{c} R/I \text{ is Artin local algebra} \\ \text{with type } t \text{ and socle type } E \end{array}\right\} \stackrel{1-1}{\longleftrightarrow} \left.\right\}$

1

$$M = < f_1, \dots, f_t >_R$$

R-submodule of P
gen. by e_i polynomials f_i
of degree $i = 1, \dots, s$

 $\longrightarrow I^{\perp} = \{g \in P : I \circ g = 0\} = (R/I)^*$

 $Ann_{R}(\underline{F}) = \{ g \in R : g \circ f_{i} = 0 \} \quad \longleftarrow \quad M = \langle \underline{F} \rangle_{R} = \langle f_{1}, \dots, f_{t} \rangle_{R}$

We will write $A_F = R / Ann_R(\underline{F})$. Hence if A is Gorenstein

Let $E = E(A) = (e_1, \dots, e_s)$ the socle type and $t = \sum_{i=1}^s e_i$.

Macaulay's Inverse system

$$\begin{cases} R/I \text{ is Artin local algebra} \\ \text{with type } t \text{ and socle type } E \end{cases} \xrightarrow{1-1} \begin{cases} I-1 \\ H-1 \\ H-1$$

1

 $M \rightarrow f_{t}$ $f_{t} \rightarrow p$

We will write $A_F = R / Ann_R(\underline{F})$. Hence if A is Gorenstein

Let $E = E(A) = (e_1, \ldots, e_s)$ the socle type and $t = \sum_{i=1}^s e_i$.

Macaulay's Inverse system

$$\begin{cases} R/l \text{ is Artin local algebra} \\ \text{with type } t \text{ and socle type } E \end{cases} \xrightarrow{1-1} \begin{cases} R-\text{submodule of } P \\ \text{gen. by } e_i \text{ polynomials } f_i \\ \text{of degree } i = 1, \dots, s \end{cases}$$

(

 $M = \langle f_1, \ldots, f_t \rangle_P$

)

 $Ann_{B}(F) = \{g \in R : g \circ f_{i} = 0\} \qquad \longleftarrow \qquad M = \langle F \rangle_{B} = \langle f_{1}, \dots, f_{t} \rangle_{B}$

We will write $A_F = R/Ann_R(F)$. Hence if A is Gorenstein

 $A = R / Ann_B(f) := A_f$

1

Let $E = E(A) = (e_1, \ldots, e_s)$ the socle type and $t = \sum_{i=1}^s e_i$.

Macaulay's Inverse system

$$\begin{cases} R/l \text{ is Artin local algebra} \\ \text{with type } t \text{ and socle type } E \end{cases} \xrightarrow{1-1} \begin{cases} R-\text{submodule of } P \\ \text{gen. by } e_i \text{ polynomials } f_i \\ \text{of degree } i = 1, \dots, s \end{cases}$$

(

 $M = \langle f_1, \ldots, f_t \rangle_P$

)

 $Ann_{B}(F) = \{g \in R : g \circ f_{i} = 0\} \qquad \longleftarrow \qquad M = \langle F \rangle_{B} = \langle f_{1}, \dots, f_{t} \rangle_{B}$

We will write $A_F = R/Ann_R(F)$. Hence if A is Gorenstein

 $A = R / Ann_B(f) := A_f$

1

Macaulay's Inverse system

Hilbert function via Inverse system

Graded case: $A = R/I = R/Ann(\underline{F})$

$$HF_{R/I}(i) = \dim_{K}(I^{\perp})_{i} = \dim_{K}\langle \partial_{d_{I}-i}F_{J}\rangle$$

where ∂_{d_i-i} denotes the partial derivative of order $d_j - i$ with $d_j = degF_j$.

If I is not necessarily homogeneous, we define the following K-vector space:

$$(l^{\perp})_i := rac{l^{\perp} \cap P_{\leq l} + P_{\leq l}}{P_{\leq i}}.$$

 $HF_{R/l}(i) = \dim_{\mathcal{K}}(l^{\perp})_i.$

Macaulay's Inverse system

Hilbert function via Inverse system

Graded case: $A = R/I = R/Ann(\underline{F})$

$$HF_{R/I}(i) = \dim_{K}(I^{\perp})_{i} = \dim_{K}\langle \partial_{d_{j}-i}F_{j}\rangle$$

where ∂_{d_i-i} denotes the partial derivative of order $d_j - i$ with $d_j = degF_j$.

If I is not necessarily homogeneous, we define the following K-vector space:

$$(I^{\perp})_i := rac{I^{\perp} \cap P_{\leq I^{\perp}} P_{\leq I}}{P_{\leq i}}.$$

 $HF_{R/I}(i) = \dim_{\mathcal{K}}(I^{\perp})_i.$

Macaulay's Inverse system

Hilbert function via Inverse system

Graded case: $A = R/I = R/Ann(\underline{F})$

$$HF_{R/I}(i) = \dim_{\mathcal{K}}(I^{\perp})_i = \dim_{\mathcal{K}}\langle \partial_{d_j-i}F_j \rangle$$

where ∂_{d_i-i} denotes the partial derivative of order $d_j - i$ with $d_j = degF_j$.

If I is not necessarily homogeneous, we define the following K-vector space:

$$(I^{\perp})_i := rac{I^{\perp} \cap P_{\leq i} + P_{< i}}{P_{< i}}.$$

 $HF_{R/I}(i) = \dim_{\mathcal{K}}(I^{\perp})_i.$

Aut(R/I) via Inverse System

Given *I* and *J* ideals of *R* such that $\mathfrak{m}^{s+1} \subset I, J$, let φ be an isomorphism of *K*-algebras

 $\varphi: R/I = A_{\underline{F}} \xrightarrow{\sim} R/J = A_{\underline{G}}.$

In particular $\varphi \in Aut_R(R/\mathfrak{m}^{s+1}) \subseteq Aut_{\mathcal{K}}(R/\mathfrak{m}^{s+1})$ and denote by $M(\varphi)$ the associated matrix w.r.t. a basis Ω of $P_{\leq s}$.

 $M(\varphi)$ is an element of $Gl_r(K)$ where $r = dim_k(R/\mathfrak{m}^{s+1}) = \binom{n+s}{s}$.

Dualizing

 $\varphi^*: J^{\perp} = \langle \underline{G} \rangle \longrightarrow l^{\perp} = \langle \underline{F} \rangle$

where ${}^{t}M(\varphi)$ is the matrix associated to φ^{*} with respect to the basis Ω^{*} .

(if $\Omega = \langle x^{\alpha} \rangle$, then $\Omega^* = \langle \frac{1}{\alpha^1} y^{\alpha} \rangle$).

 $arphi^*$ does not act as a substitution !!!

Aut(R/I) via Inverse System

Given *I* and *J* ideals of *R* such that $\mathfrak{m}^{s+1} \subset I, J$, let φ be an isomorphism of *K*-algebras

 $\varphi: R/I = A_{\underline{F}} \xrightarrow{\sim} R/J = A_{\underline{G}}.$

In particular $\varphi \in Aut_R(R/\mathfrak{m}^{s+1}) \subseteq Aut_{\mathcal{K}}(R/\mathfrak{m}^{s+1})$ and denote by $M(\varphi)$ the associated matrix w.r.t. a basis Ω of $P_{\leq s}$.

 $M(\varphi)$ is an element of $Gl_r(K)$ where $r = dim_k(R/\mathfrak{m}^{s+1}) = \binom{n+s}{s}$.

Dualizing

 $\varphi^*: \boldsymbol{J}^{\perp} = \langle \underline{\boldsymbol{G}} \rangle \longrightarrow \boldsymbol{I}^{\perp} = \langle \underline{\boldsymbol{F}} \rangle$

where ${}^{t}M(\varphi)$ is the matrix associated to φ^{*} with respect to the basis Ω^{*} .

(if $\Omega = \langle x^{\alpha} \rangle$, then $\Omega^* = \langle \frac{1}{\alpha!} y^{\alpha} \rangle$).

 φ^* does not act as a substitution !!!

Aut(R/I) via Inverse System

The classification, up to analytic isomorphism, of the Artin local K-algebras of

multiplicity d, socle degree s and embedding dimension n

is equivalent

to the classification, up to the action of $\mathcal{R} \subseteq Aut_{\mathcal{K}}(R/\mathfrak{m}^{s+1})$, of the *K*-vector

subspaces of $P_{<s}$ of dimension d, stable by derivations and containing

 $P_{\leq 1} = K[y_1,\ldots,y_n]_{\leq 1}.$

The classification, up to analytic isomorphism, of the Artin local K-algebras of

multiplicity d, socle degree s and embedding dimension n

is equivalent

to the classification, up to the action of $\mathcal{R} \subseteq Aut_{\mathcal{K}}(R/\mathfrak{m}^{s+1})$, of the *K*-vector

subspaces of $P_{\leq s}$ of dimension d, stable by derivations and containing

 $\boldsymbol{P}_{\leq 1} = \boldsymbol{K}[\boldsymbol{y}_1, \ldots, \boldsymbol{y}_n]_{\leq 1}.$

Contents

Notations and definitions

2 Examples

3 Macaulay's Inverse system

Theorem (J. Elias,---)

Let A = R/I be an Artinian Gorenstein local K-algebra with h-vector

(1, *n*, *n*, 1)

Then A is canonically graded.

"Sketch of the proof" If $A = A_f$ with $f = F_3 + \dots$ lower terms, we prove

 $A_f \simeq A_{F_3}$

We show that $\forall f \in P$ of degree three $\exists \varphi \in Aut(R/\mathfrak{m}^4)$ such that

Theorem (J. Elias,---)

Let A = R/I be an Artinian Gorenstein local K-algebra with h-vector

(1, *n*, *n*, 1)

Then A is canonically graded.

"Sketch of the proof" If $A = A_f$ with $f = F_3 + \dots$ lower terms, we prove

 $A_f \simeq A_{F_3}$

We show that $\forall f \in P$ of degree three $\exists \varphi \in Aut(R/\mathfrak{m}^4)$ such that

Theorem (J. Elias,---)

Let A = R/I be an Artinian Gorenstein local K-algebra with h-vector

(1, n, n, 1)

Then A is canonically graded.

"Sketch of the proof" If $A = A_f$ with $f = F_3 + \dots$ lower terms, we prove

 $A_f \simeq A_{F_3}$

We show that $\forall f \in P$ of degree three $\exists \varphi \in Aut(R/\mathfrak{m}^4)$ such that

Theorem (J. Elias,---)

Let A = R/I be an Artinian Gorenstein local K-algebra with h-vector

(1, *n*, *n*, 1)

Then A is canonically graded.

"Sketch of the proof" If $A = A_f$ with $f = F_3 + ...$ lower terms, we prove

 $A_f \simeq A_{F_3}$

We show that $\forall f \in P$ of degree three $\exists \varphi \in Aut(R/\mathfrak{m}^4)$ such that

Theorem (J. Elias,—)

Let A = R/I be an Artinian Gorenstein local K-algebra with h-vector

(1, *n*, *n*, 1)

Then A is canonically graded.

"Sketch of the proof" If $A = A_f$ with $f = F_3 + ...$ lower terms, we prove

 $A_f \simeq A_{F_3}$

We show that $\forall f \in P$ of degree three $\exists \varphi \in Aut(R/\mathfrak{m}^4)$ such that

Artinian Gorenstein K-algebras of socle degree 3

with $f = F_3 + \ldots$, is not necessarily symmetric

h = (1, m, n, 1) with $m \ge n$

If m > n the associated graded ring $gr_{\mathfrak{m}}(A)$ is not longer Gorenstein, but

 $A_{F_3} = R / Ann_R(F_3)$

is graded Gorenstein with h = (1, n, n, 1).

Theorem (Elias, –

The following facts are equivalent:

(a) A is an Artinian Gorenstein local ring with h-vector (1, m, n, 1), m ≥ n
(b) A ≃ A_f where f ∈ K[y₁,..., y_m],

$$f = F_3 + y_{n+1}^2 + \dots + y_m^2$$

with F_3 a non degenerate form of degree three in $K[y_1, \ldots, y_n]$

Maria Evelina Rossi (University of Genova, Italy)

Artinian Gorenstein K-algebras of socle degree 3

The Hilbert function of a Gorenstein local algebra of socle degree 3, say A_f with $f = F_3 + ...$, is not necessarily symmetric:

h = (1, m, n, 1) with $m \ge n$

If m > n the associated graded ring $gr_{\mathfrak{m}}(A)$ is not longer Gorenstein, but

 $A_{F_3} = R / Ann_R(F_3)$

is graded Gorenstein with h = (1, n, n, 1).

Theorem (Elias, –

The following facts are equivalent:

(a) A is an Artinian Gorenstein local ring with h-vector (1, m, n, 1), m ≥ n
(b) A ≃ A_f where f ∈ K[y₁,..., y_m],

$$f = F_3 + y_{n+1}^2 + \dots + y_m^2$$

with F_3 a non degenerate form of degree three in $K[y_1, \ldots, y_n]$

Maria Evelina Rossi (University of Genova, Italy)

Artinian Gorenstein K-algebras of socle degree 3

The Hilbert function of a Gorenstein local algebra of socle degree 3, say A_f with $f = F_3 + ...$, is not necessarily symmetric:

h = (1, m, n, 1) with $m \ge n$

If m > n the associated graded ring $gr_{\mathfrak{m}}(A)$ is not longer Gorenstein, but

 $A_{F_3} = R / Ann_R(F_3)$

is graded Gorenstein with h = (1, n, n, 1).

Theorem (Elias, -

The following facts are equivalent:

(a) A is an Artinian Gorenstein local ring with h-vector (1, m, n, 1), m ≥ n
(b) A ≃ A_f where f ∈ K[y₁,..., y_m],

$$f = F_3 + y_{n+1}^2 + \dots + y_m^2$$

with F_3 a non degenerate form of degree three in $K[y_1, \ldots, y_n]$

Artinian Gorenstein K-algebras of socle degree 3

The Hilbert function of a Gorenstein local algebra of socle degree 3, say A_f with $f = F_3 + ...$, is not necessarily symmetric:

h = (1, m, n, 1) with $m \ge n$

If m > n the associated graded ring $gr_{\mathfrak{m}}(A)$ is not longer Gorenstein, but

 $A_{F_3} = R / Ann_R(F_3)$

is graded Gorenstein with h = (1, n, n, 1).

Theorem (Elias, —)

The following facts are equivalent:

(a) A is an Artinian Gorenstein local ring with h-vector (1, m, n, 1), $m \ge n$ (b) $A \simeq A_f$ where $f \in K[y_1, \ldots, y_m]$,

$$f = F_3 + y_{n+1}^2 + \dots + y_m^2$$

with F_3 a non degenerate form of degree three in $K[y_1, \ldots, y_n]$

Classification

Corollary

The classification of Artinian Gorenstein k -algebras A with h -vector

(1, *m*, *n*, 1),

 $m \geq n,$ is equivalent to the projective classification of the cubic hypersurfaces $V(F) \subset \mathbb{P}_k^{n-1}$

By taking advantage of the projective classification of the cubic hypersurfaces in \mathbb{P}^2 we can can give a geometric description of the models corresponding to:

(1, *m*, 3, 1)
Classification

Corollary

The classification of Artinian Gorenstein k -algebras A with h -vector

(1, *m*, *n*, 1),

 $m \geq n,$ is equivalent to the projective classification of the cubic hypersurfaces $V(F) \subset \mathbb{P}_k^{n-1}$

By taking advantage of the projective classification of the cubic hypersurfaces in \mathbb{P}^2 we can can give a geometric description of the models corresponding to:

(1, m, 3, 1)

Socle degree > 3 ?

We recall that the Gorenstein local rings with Hilbert function

are not necessarily graded.

I have anticipated that if the Gorenstein local algebra has Hilbert function

(1, 2, 3, 2, 1)

then it is graded.

In both cases $gr_{\mathfrak{m}}(A)$ is Gorenstein, but in the second case the local algebra is compressed.

Definition

An Artin algebra A = R/I of socle type *E* is compressed if and only if it has maximal length $e(A) = \dim_{\mathcal{K}} A$ among Artin quotients of *R* having socle type *E* and embedding dimension *n*.

A compressed $\implies E(A) = E(gr_{\mathfrak{m}}(A))$ and hence $gr_{\mathfrak{m}}(A)$ compressed

It is also known that if A is compressed

 $l^{\perp} = \langle g_1, \dots, g_l \rangle \implies (l^*)^{\perp} = \langle G_1, \dots, G_l \rangle$ the corresp. leading forms $(g_i = G_i + ...)$

Definition

An Artin algebra A = R/I of socle type *E* is compressed if and only if it has maximal length $e(A) = \dim_K A$ among Artin quotients of *R* having socle type *E* and embedding dimension *n*.

A compressed $\implies E(A) = E(gr_{\mathfrak{m}}(A))$ and hence $gr_{\mathfrak{m}}(A)$ compressed

It is also known that if A is compressed

 $l^{\perp} = \langle g_1, \dots, g_t \rangle \implies (l^*)^{\perp} = \langle G_1, \dots, G_t \rangle$ the corresp. leading forms $(g_i = G_i + ...)$

Definition

An Artin algebra A = R/I of socle type *E* is compressed if and only if it has maximal length $e(A) = \dim_K A$ among Artin quotients of *R* having socle type *E* and embedding dimension *n*.

A compressed $\implies E(A) = E(gr_{\mathfrak{m}}(A))$ and hence $gr_{\mathfrak{m}}(A)$ compressed

It is also known that if A is compressed

 $I^{\perp} = \langle g_1, \dots, g_t \rangle \implies (I^*)^{\perp} = \langle G_1, \dots, G_t \rangle$ the corresp. leading forms $(g_i = G_i +)$

Theorem (Elias, -

Let A be an Artin compressed Gorenstein local K -algebra.

If $s \leq 4$ then A is canonically graded.

The result cannot be extended to s = 5.

Example

Let us consider the ideal

$$I = (x_1^4, x_2^3 - 2x_1^3 x_2) \subset R = K[[x_1, x_2]].$$

The quotient A = R/I is a compressed Gorenstein algebra with

h = (1, 2, 3, 3, 2, 1)

 $l^* = (x_1^4, x_2^3)$ and $l^\perp = \langle y_1^3 y_2^2 + y_2^4 \rangle$. One can prove that $l \not\simeq l^*$.

Theorem (Elias, ----)

Let A be an Artin compressed Gorenstein local K -algebra.

If $s \leq 4$ then A is canonically graded.

The result cannot be extended to s = 5.

Example

Let us consider the ideal

$$I = (x_1^4, x_2^3 - 2x_1^3 x_2) \subset R = K[[x_1, x_2]].$$

The quotient A = R/I is a compressed Gorenstein algebra with

h = (1, 2, 3, 3, 2, 1)

 $l^* = (x_1^4, x_2^3)$ and $l^\perp = \langle y_1^3 y_2^2 + y_2^4 \rangle$. One can prove that $l \not\simeq l^*$.

Theorem (Elias, ----)

Let A be an Artin compressed Gorenstein local K -algebra.

If $s \leq 4$ then A is canonically graded.

The result cannot be extended to s = 5.

Example

Let us consider the ideal

$$I = (x_1^4, x_2^3 - 2x_1^3x_2) \subset R = K[[x_1, x_2]].$$

The quotient A = R/I is a compressed Gorenstein algebra with

$$h = (1, 2, 3, 3, 2, 1)$$

 $I^* = (x_1^4, x_2^3)$ and $I^{\perp} = \langle y_1^3 y_2^2 + y_2^4 \rangle$. One can prove that $I \not\simeq I^*$.

Theorem (Elias, —

Let A be an Artin compressed K-algebra of embedding dimension n, socle degree s and socle type $E = (e_1, \ldots, e_s)$. Then A is canonically graded in the following cases:

- (1) $s \leq 3$,
- (2) s = 4 and $e_4 = 1$,
- (3) s = 4 and n = 2.

The result includes:

- Compressed level algebras of socle degree *s* = 3. (A. De Stefani, *Comm. Algebra*)
- Gorenstein s = 5 $h = (1, n, \binom{n+1}{2}, n, 1)$
 - More in general: Socle type $(e_1, e_2, e_3, 1)$.

Theorem (Elias, —)

Let A be an Artin compressed K-algebra of embedding dimension n, socle degree s and socle type $E = (e_1, ..., e_s)$. Then A is canonically graded in the following cases:

- (1) $s \le 3$,
- (2) s = 4 and $e_4 = 1$,
- (3) s = 4 and n = 2.

The result includes:

- Compressed level algebras of socle degree *s* = 3. (A. De Stefani, *Comm. Algebra*)
- Gorenstein s = 5 $h = (1, n, \binom{n+1}{2}, n, 1)$
 - More in general: Socle type $(e_1, e_2, e_3, 1)$.

Theorem (Elias, —)

Let A be an Artin compressed K-algebra of embedding dimension n, socle degree s and socle type $E = (e_1, ..., e_s)$. Then A is canonically graded in the following cases:

- (1) $s \leq 3$,
- (2) s = 4 and $e_4 = 1$,
- (3) s = 4 and n = 2.

The result includes:

- Compressed level algebras of socle degree *s* = 3. (A. De Stefani, *Comm. Algebra*)
- Gorenstein s = 5 $h = (1, n, \binom{n+1}{2}, n, 1)$

More in general: Socle type $(e_1, e_2, e_3, 1)$.

Theorem (Elias, —)

Let A be an Artin compressed K-algebra of embedding dimension n, socle degree s and socle type $E = (e_1, ..., e_s)$. Then A is canonically graded in the following cases:

- (1) $s \le 3$,
- (2) s = 4 and $e_4 = 1$,
- (3) s = 4 and n = 2.

The result includes:

- Compressed level algebras of socle degree s = 3. (A. De Stefani, Comm. Algebra)
- Gorenstein s = 5 $h = (1, n, \binom{n+1}{2}, n, 1)$

More in general: Socle type $(e_1, e_2, e_3, 1)$.

We have seen that the result cannot be extended to s = 5 and $e_4 = 1$.

The result cannot be extended to s = 4 and $e_4 > 1$.

Example

Let us consider the forms of degree 4 in $P = K[y_1, y_2, y_3]$:

$$F = y_1^2 y_2 y_3, \quad G = y_1 y_2^2 y_3 + y_2 y_3^3$$

and define in $R = K[[x_1, x_2, x_3]]$ the ideal

 $I = Ann(F + y_3^3, G).$

Then A = R/I is a compressed level algebra with socle degree 4, type 2 and Hilbert function

$$h = (1, 3, 6, 6, 2).$$

One can prove that $I \not\simeq I^*$.

References

- J. Elias, M. E. Rossi, *Isomorphism classes of Artinian local rings via Macaulay's inverse system*, Trans. AMS, Trans. A.M.S., Vol.364, Number 9, September 2012, 4589–4604,
- J. Elias, M. E. Rossi, *Analytic Isomorphisms of compressed local algebras*, arXiv:1207.6919v1 [math.AC].

- G. Casnati, J. Elias, R. Notari, M.E. Rossi, Poincare' series and deformations of Gorenstein local algebras, Comm. in Algebra, DOI number: 10.1080/00927872.2011.636643 (2012)
- J. Elias, M. E. Rossi, G. Valla, On the Hilbert function of one-dimensional local complete intersections, arXiv:1205.5357v1 [math.AC].

References

- J. Elias, M. E. Rossi, *Isomorphism classes of Artinian local rings via Macaulay's inverse system*, Trans. AMS, Trans. A.M.S., Vol.364, Number 9, September 2012, 4589–4604,
- J. Elias, M. E. Rossi, *Analytic Isomorphisms of compressed local algebras*, arXiv:1207.6919v1 [math.AC].

- G. Casnati, J. Elias, R. Notari, M.E. Rossi, Poincare' series and deformations of Gorenstein local algebras, Comm. in Algebra, DOI number: 10.1080/00927872.2011.636643 (2012)
- J. Elias, M. E. Rossi, G. Valla, On the Hilbert function of one-dimensional local complete intersections, arXiv:1205.5357v1 [math.AC].