Analytic Isomorphisms of Artin *K* -algebras

Maria Evelina Rossi

University of Genova, Italy Department of Mathematics

http://www.dima.unige.it/ rossim/Berkeley.pdf

- **1** Notations and definitions
- ² Examples
- ³ Method: Macaulay's Inverse system
- 4 Isomorphisms of Compressed algebras
	- **References**

Contents

[Notations and definitions](#page-2-0)

[Examples](#page-29-0)

[Macaulay's Inverse system](#page-41-0)

[Compressed algebras](#page-61-0)

$$
R = K[[x_1, \ldots, x_n]]
$$

Denote

$$
R = K[[x_1, \ldots, x_n]]
$$

where $K = \overline{K}$ and char $K = 0$.

Denote

$$
R=K[[x_1,\ldots,x_n]]
$$

where $K = \overline{K}$ and char $K = 0$.

We recall that a *K* -algebra automorphism of *R* acts as **substitution**

$$
\varphi:\quad R\to R
$$

$$
x_j \rightsquigarrow y_j = f_j(x_1, \ldots, x_n)
$$

such that $m_B = (x_1, ..., x_n) = (y_1, ..., y_n)$.

Denote

$$
R = K[[x_1, \ldots, x_n]]
$$

where $K = \overline{K}$ and char $K = 0$.

We recall that a *K* -algebra automorphism of *R* acts as **substitution**

$$
\varphi: \quad R \to R
$$

$$
x_j \leadsto y_j = f_j(x_1, \ldots, x_n)
$$

such that $m_R = (x_1, ..., x_n) = (y_1, ..., y_n)$.

 $\varphi \in Aut(R) \quad \Longleftrightarrow \quad J_{\varphi}(0) \neq 0$ (Jacobian condition)

$$
R/I \xrightarrow{\sim} R/J \iff \exists \varphi \in Aut(R) \text{ s.t. } \varphi(I) = J.
$$

We will write

I ∼ *J*.

$$
I = (y^2 - x^3, x^3y) \sim J = (y^2 - x^2y - x^3, x^3y)
$$

 $\varphi: R \to R$ $x \rightsquigarrow 9x + y$ *y* −27*y* + *xy* + 9*x* 2

It is easy to see that $\varphi(I) \subseteq J$ and we conclude because they have the same Hilbert function $\{1, 2, 2, 2, 2, 1\}$.

$$
R/I \xrightarrow{\sim} R/J \iff \exists \varphi \in Aut(R) \text{ s.t. } \varphi(I) = J.
$$

We will write

I ∼ *J*.

Example

Consider $R = \mathbb{C}[[x, y]]$ then $J = (y^2 - x^3, x^3y) \sim J = (y^2 - x^2y - x^3, x^3y)$

$$
R/I \xrightarrow{\sim} R/J \iff \exists \varphi \in Aut(R) \text{ s.t. } \varphi(I) = J.
$$

We will write

I ∼ *J*.

Example

Consider $R = \mathbb{C}[[x, y]]$ then $J = (y^2 - x^3, x^3y) \sim J = (y^2 - x^2y - x^3, x^3y)$ $\varphi: R \to R$ $x \rightsquigarrow 9x + y$ *y* −27*y* + *xy* + 9*x* 2

$$
R/I \xrightarrow{\sim} R/J \iff \exists \varphi \in Aut(R) \text{ s.t. } \varphi(I) = J.
$$

We will write

I ∼ *J*.

Example

Consider $R = \mathbb{C}[[x, y]]$ then

$$
I = (y^2 - x^3, x^3y) \sim J = (y^2 - x^2y - x^3, x^3y)
$$

 $\varphi: R \to R$ $x \rightsquigarrow 9x + y$ *y* −27*y* + *xy* + 9*x* 2

It is easy to see that $\varphi(I) \subseteq J$ and we conclude because they have the same Hilbert function $\{1, 2, 2, 2, 2, 1\}$.

From now on $A = R/I$ is Artinian (finite length)

- $\mathbf{s} := \max\{n : \mathfrak{m}_A^n \neq 0\}$ the socle degree of *A*.
- $t := \dim_K(0 :_A m_A)$ is the type of A.
- *A* is Gorenstein if $t = 1$.

$$
h_i = HF_A(i) = \mu(\mathfrak{m}^i) = \dim_k \mathfrak{m}^i / \mathfrak{m}^{i+1}
$$

$$
h_A=(h_0,h_1,\ldots,h_s)
$$

From now on $A = R/I$ is Artinian (finite length)

- $\mathbf{s} := \max\{n : \mathfrak{m}_A^n \neq 0\}$ the socle degree of *A*.
- $t := \dim_K(0 :_A m_A)$ is the type of A.
- *A* is Gorenstein if $t = 1$.

The Hilbert function $HF_A: \mathbb{N} \to \mathbb{N}$

$$
h_i = HF_A(i) = \mu(\mathfrak{m}^i) = \dim_k \mathfrak{m}^i / \mathfrak{m}^{i+1}
$$

From now on $A = R/I$ is Artinian (finite length)

- $\mathbf{s} := \max\{n : \mathfrak{m}_A^n \neq 0\}$ the socle degree of *A*.
- $t := \dim_{K}(0 :_{A} m_{A})$ is the type of A.
- *A* is Gorenstein if $t = 1$.

The Hilbert function $HF_A: \mathbb{N} \to \mathbb{N}$

$$
h_i = HF_A(i) = \mu(\mathfrak{m}^i) = \dim_k \mathfrak{m}^i / \mathfrak{m}^{i+1}
$$

and denote the *h*-vector

$$
h_A=(h_0,h_1,\ldots,h_s)
$$

From now on $A = R/I$ is Artinian (finite length)

- $\mathbf{s} := \max\{n : \mathfrak{m}_A^n \neq 0\}$ the socle degree of *A*.
- $t := \dim_{K}(0 :_{A} m_{A})$ is the type of A.
- *A* is Gorenstein if $t = 1$.

The Hilbert function $HF_A: \mathbb{N} \to \mathbb{N}$

$$
h_i = HF_A(i) = \mu(\mathfrak{m}^i) = \dim_k \mathfrak{m}^i / \mathfrak{m}^{i+1}
$$

and denote the *h*-vector

$$
h_A=(h_0,h_1,\ldots,h_s)
$$

 $d = \dim_k A = \sum_{i=0}^s h_i$ multiplicity (length)

-
-
- Rationality of $P_K^A(z)$ (the Poincare' Series)
-

Describe the isomorphism classes (or to give information on the structure) of local Artin *K*-algebras of given length *d* (or given Hilbert function)

-
-
- Rationality of $P_K^A(z)$ (the Poincare' Series)
- Koszulness of *A*

Describe the isomorphism classes (or to give information on the structure) of local Artin *K*-algebras of given length *d* (or given Hilbert function)

The problem is related to the study of the components of the Hilbert scheme

 $Hilb_d(\mathbb{A}^n)$

of *d* points in the affine space A *n* . Possible fields of interest:

-
- Rationality of $P_K^A(z)$ (the Poincare' Series)
- Koszulness of *A*

Describe the isomorphism classes (or to give information on the structure) of local Artin *K*-algebras of given length *d* (or given Hilbert function)

The problem is related to the study of the components of the Hilbert scheme

 $Hilb_d(\mathbb{A}^n)$

of *d* points in the affine space A *n* . Possible fields of interest:

- Irreducibility of $Hilb_d(\mathbb{A}^n)$
- Rationality of $P_K^A(z)$ (the Poincare' Series)
- Koszulness of *A*

Some results

-
-
-
-
-

Some results

- G. Mazzola, *Manuscripta Math.* (1979)
- B. Poonen, *Contemp. Math.*, vol. 463, (2008)
- D.A. Cartwright, D. Erman, M. Velasco, B. Viray, *Algebra and Number Theory* (2009).
- G. Casnati, R. Notari, *J. of Algebra (2008), J. Pure and Applied Algebra (2009)*
- *J. Elias, G. Valla, Michigan J. of Math (2008)*

The Hilbert function is a first constraint for being isomorphic.

 $A \simeq B$ \implies $HF_A = HF_B$

$$
G=gr_{\mathfrak{m}}(A)=\oplus_{i\geq 0}\mathfrak{m}^i/\mathfrak{m}^{i+1}
$$

$$
I \sim I^* \ ?
$$

The Hilbert function is a first constraint for being isomorphic.

$$
A \simeq B \qquad \Longrightarrow \qquad HF_A = HF_B
$$

Remark that

 $HF_A = HF_G$

where

$$
G=gr_{\mathfrak{m}}(A)=\oplus_{i\geq 0}\mathfrak{m}^i/\mathfrak{m}^{i+1}
$$

is the associated graded ring.

$$
I \sim I^* \ ?
$$

The Hilbert function is a first constraint for being isomorphic.

$$
A \simeq B \qquad \Longrightarrow \qquad HF_A = HF_B
$$

Remark that

 $HF_A = HF_G$

where

$$
G=gr_{\mathfrak{m}}(A)=\oplus_{i\geq 0}\mathfrak{m}^i/\mathfrak{m}^{i+1}
$$

is the associated graded ring.

Notice that $gr_{m}(A) = K[x_{1},...,x_{n}]/I^{*}$ where I^{*} is the homogeneous ideal generated by the initial forms of the elements in *I*.

$$
\boxed{1 \sim l^* \ ?}
$$

The Hilbert function is a first constraint for being isomorphic.

$$
A \simeq B \qquad \Longrightarrow \qquad HF_A = HF_B
$$

Remark that

 $HF_A = HF_G$

where

$$
G=gr_{\mathfrak{m}}(A)=\oplus_{i\geq 0}\mathfrak{m}^i/\mathfrak{m}^{i+1}
$$

is the associated graded ring.

Notice that $gr_{m}(A) = K[x_{1},...,x_{n}]/I^{*}$ where I^{*} is the homogeneous ideal generated by the initial forms of the elements in *I*.

$$
I \sim I^*?
$$

Following a definition given by J. Emsalem:

Definition

A local algebra (*A*, m) is canonically graded if there exists a *K* -algebra isomorphism between A and its associated graded ring $gr_{m}(A)$.

$$
A = K[[t^2, t^3]] \simeq K[x, y]/(y^2 - x^3)
$$

Following a definition given by J. Emsalem:

Definition

A local algebra (*A*, m) is canonically graded if there exists a *K* -algebra isomorphism between A and its associated graded ring $gr_{m}(A)$.

$$
A = K[[t^2, t^3]] \simeq K[x, y]/(y^2 - x^3)
$$

Following a definition given by J. Emsalem:

Definition

A local algebra (*A*, m) is canonically graded if there exists a *K* -algebra isomorphism between A and its associated graded ring $gr_{m}(A)$.

!!!! Consider

$$
A = K[[t^2, t^3]] \simeq K[x, y]/(y^2 - x^3)
$$

is graded setting $deg(x) = 2$ **and** $deg(y) = 3$ **, but it is not canonically graded**

Following a definition given by J. Emsalem:

Definition

A local algebra (*A*, m) is canonically graded if there exists a *K* -algebra isomorphism between *A* and its associated graded ring *gr*m(*A*).

!!!! Consider

$$
A = K[[t^2, t^3]] \simeq K[x, y]/(y^2 - x^3)
$$

is graded setting $deg(x) = 2$ and $deg(y) = 3$, but it is not canonically graded because A is reduced and $gr_{\mathfrak m}(A)=\mathcal K[x,y]/(y^2)$ is not reduced.

Contents

¹ [Notations and definitions](#page-2-0)

[Macaulay's Inverse system](#page-41-0)

Example

Consider the Gorenstein local rings *A* with *h*-vector:

$$
h=(1,2,2,1)
$$

Consider the Gorenstein local rings *A* with *h*-vector:

$$
h=(1,2,2,1)
$$

We have only two models: $I = \{$

$$
\begin{cases}\n(x^2, y^3) \\
(xy, x^3 - y^3)\n\end{cases}
$$

[Examples](#page-31-0)

Consider the Gorenstein local rings *A* with *h*-vector:

$$
h=(1,2,2,1)
$$

 (x^2, y^3)

We have only two models: $I = \{$

$$
(xy, x^3 - y^3)
$$

Remark that both the models are homogeneous !!! Hence *A* is graded.

 $\sqrt{ }$

[Examples](#page-32-0)

Consider the Gorenstein local rings *A* with *h*-vector:

$$
h=(1,2,2,1)
$$

 (x^2, y^3)

 $(xy, x^3 - y^3)$

We have only two models: *I* =

Remark that both the models are homogeneous !!! Hence *A* is graded.

 $\sqrt{ }$ $\left\{\right\}$ \mathcal{L}

[Examples](#page-33-0)

We will see later (not trivial) that if *A* is Gorenstein

 $h = (1, 2, 3, 2, 1)$

is still graded, but

Consider the Gorenstein local rings *A* with *h*-vector:

$$
h=(1,2,2,1)
$$

 (x^2, y^3)

 $(xy, x^3 - y^3)$

We have only two models: *I* =

Remark that both the models are homogeneous !!! Hence *A* is graded.

 $\sqrt{ }$ $\left\{\right\}$ \mathcal{L}

[Examples](#page-34-0)

We will see later (not trivial) that if *A* is Gorenstein

$$
h=(1,2,3,2,1)
$$

is still graded, but

 $h = (1, 2, 2, 2, 1)$

can support Gorenstein not graded algebras.

Example (Elias, Valla)

Consider Gorenstein local rings with *h*-vector:

 $h = (1, 2, 2, 2, 1)$

$$
I_2 = (x^4, x^2 + y^2)
$$

$$
I_2 = (x^4, x^2 - y^3)
$$
Example (Elias, Valla)

Consider Gorenstein local rings with *h*-vector:

$$
h = (1, 2, 2, 2, 1)
$$

We have three models:
$$
\begin{cases} l_1 = (x^4, y^2) \\ l_2 = (x^4, x^2 + y^2) \\ l_3 = (x^4, y^2 - x^3) \end{cases}
$$

Example (Elias, Valla)

Consider Gorenstein local rings with *h*-vector:

$$
h = (1, 2, 2, 2, 1)
$$

We have three models:
$$
\begin{cases} l_1 = (x^4, y^2) \\ l_2 = (x^4, x^2 + y^2) \\ l_3 = (x^4, y^2 - x^3) \end{cases}
$$

Notice that $I_3^* = (x^4, y^2) = I_1$, but $I_1 \not\simeq I_3$.

[Examples](#page-38-0)

Finitely many isomorphism classes?

$$
I_p = (x^3y - px^5, y^2 - x^4)
$$

[Examples](#page-39-0)

Finitely many isomorphism classes?

• B. Poonen proved: $d = 7 \exists \infty$ isomorphism classes.

$$
I_p = (x^3y - px^5, y^2 - x^4)
$$

[Examples](#page-40-0)

Finitely many isomorphism classes?

- **•** B. Poonen proved: $d = 7 \exists \infty$ isomorphism classes.
- Elias-Valla proved: *d* = 10 ∃ 1 -dimensional family of c.i.:

 $h = (1, 2, 2, 2, 1, 1, 1)$

$$
I_p = (x^3y - px^5, y^2 - x^4)
$$

with $p \notin \mathfrak{m}$ and $p^2 - 1 \notin \mathfrak{m}$.

Contents

[Notations and definitions](#page-2-0)

³ [Macaulay's Inverse system](#page-41-0)

The dual module: $V = Hom(A, K)$

Let
$$
R = K[[x_1, \ldots, x_n]]
$$
 and $P = K[y_1, \ldots, y_n]$ \n $\left\{\n \begin{array}{c}\n (R/I, m) \text{ Artin local rings: } \\
\text{with } \text{socdeg}(R/I) = s.\n \end{array}\n\right\}\n \xrightarrow{t-1}\n \left\{\n \begin{array}{c}\n f. \text{ g. } R\text{-submodules of } P \\
\text{generated in degree } \leq s\n \end{array}\n\right.$

 \mathcal{L}

The dual module: $V = Hom(A, K)$

Let
$$
R = K[[x_1, \ldots, x_n]]
$$
 and $P = K[y_1, \ldots, y_n]$ \n $\int (R/I, \mathfrak{m})$ Artin local rings: $\int f$, f , g . R -submod!

with $\mathsf{socdeg}(R/I) = s$.

1−1 ←→ generated in degree ≤ *s* ules of *P*

Translate the analytic isomorphisms in terms of the dual module in an effective framework

 \mathcal{L}

The dual module: $V = Hom(A, K)$

Let
$$
R = K[[x_1, \ldots, x_n]]
$$
 and $P = K[y_1, \ldots, y_n]$ \n $\left\{\n \begin{array}{c}\n (R/I, \mathfrak{m}) \text{ Artin local rings: } \\
\text{with } \text{socdeg}(R/I) = s.\n \end{array}\n\right\}\n \xrightarrow{\begin{array}{c}\n 1-1 \\
\longrightarrow\n \end{array}\n \left\{\n \begin{array}{c}\n \text{f. g. } R\text{-submodules of } P \\
\text{generated in degree } \leq s\n \end{array}\n\right.$

Translate the analytic isomorphisms in terms of the dual module in an effective framework

In the graded case it is well understood in terms of *GLn*(*K*), see Iarrobino and Kanev's book (Appendix).

 \mathcal{L}

Let

$$
R = K[[x_1, \ldots, x_n]] \quad \text{and} \quad P = K[y_1, \ldots, y_n]
$$

P has a structure of *R* -module by the following action

$$
\circ: \begin{array}{ccc} R \times P & \longrightarrow & P \\ (f,g) & \to & f \circ g = f(\partial_{y_1}, \ldots, \partial_{y_n})(g) \end{array}
$$

where ∂*^yⁱ* denotes the partial derivative with respect to *yⁱ* .

$$
\begin{array}{cccc}(\ ,\) : & R \times P & \longrightarrow & K \\ & (f,g) & \rightarrow & (f \circ g)(0) \end{array}
$$

Let

$$
R = K[[x_1, \ldots, x_n]] \quad \text{and} \quad P = K[y_1, \ldots, y_n]
$$

P has a structure of *R* -module by the following action

$$
\circ: \begin{array}{ccc} R \times P & \longrightarrow & P \\ (f,g) & \to & f \circ g = f(\partial_{y_1}, \ldots, \partial_{y_n})(g) \end{array}
$$

where ∂*^yⁱ* denotes the partial derivative with respect to *yⁱ* .

Starting from ◦ we consider the following pairing of *K* -vector spaces:

$$
\langle , \rangle: R \times P \longrightarrow K
$$

$$
(f,g) \rightarrow (f \circ g)(0)
$$

Let

$$
R = K[[x_1, \ldots, x_n]] \quad \text{and} \quad P = K[y_1, \ldots, y_n]
$$

P has a structure of *R* -module by the following action

$$
\circ: \begin{array}{ccc} R \times P & \longrightarrow & P \\ (f,g) & \to & f \circ g = f(\partial_{y_1}, \ldots, \partial_{y_n})(g) \end{array}
$$

where ∂*^yⁱ* denotes the partial derivative with respect to *yⁱ* .

Starting from ◦ we consider the following pairing of *K* -vector spaces:

$$
\begin{array}{cccc} \langle \; , \; \rangle : & R \times P & \longrightarrow & K \\ & (f,g) & \rightarrow & (f \circ g)(0) \end{array}
$$

In the following $(\)^*$ means w.r.t. \langle , \rangle

Let $E = E(A) = (e_1, \ldots, \ldots, e_s)$ the socle type and $t = \sum_{i=1}^s e_i$.

 R/*I* is Artin local algebra with type *t* and socle type *E*

$$
\Biggr\} \quad \overset{1-1}{\longleftrightarrow} \quad
$$

 $\sqrt{ }$ \int

 $\overline{\mathcal{L}}$

 $M = < f_1, \ldots, f_t >_R$ *R*-submodule of *P* gen. by *eⁱ* polynomials *fⁱ* of degree *i* = 1, . . . , *s*

 \mathcal{L} \overline{a}

 \int

I −→ *I*

Ann_R(*F*) = {*g* ∈ *R* : *g* ◦ *f_i* = 0} ← *M* = $\langle F \rangle_B$ = $\langle f_1, \ldots, f_t \rangle_B$

Let $E = E(A) = (e_1, \ldots, \ldots, e_s)$ the socle type and $t = \sum_{i=1}^s e_i$.

 R/*I* is Artin local algebra with type *t* and socle type *E*

$$
M = \langle f_1, \ldots, f_t \rangle_R
$$

\n*R*-submodule of *P*
\ngen. by e_i polynomials f_i
\nof degree $i = 1, \ldots, s$

 \mathcal{L} \overline{a}

 \int

I $→$ $I^{\perp} = \{ g \in P : I \circ g = 0 \} = (R/I)^*$

 $\sqrt{ }$ \int

 $\overline{\mathcal{L}}$

Ann_R(*F*) = {*g* ∈ *R* : *g* ∘ *f_i* = 0} ← *M* = $\langle F \rangle_B$ = $\langle f_1, ..., f_t \rangle_B$

 $\left\{\longrightarrow \frac{1-1}{\longleftarrow} \right\}$

Let $E = E(A) = (e_1, \ldots, \ldots, e_s)$ the socle type and $t = \sum_{i=1}^s e_i$.

 R/*I* is Artin local algebra with type *t* and socle type *E*

$$
M = f1,..., ft >r\nR-submodule of P\ngen. by ei polynomials fi\nof degree i = 1,..., s
$$

I \longrightarrow $I^{\perp} = \{g \in P : I \circ g = 0\} = (R/I)^*$

 \mathcal{A} *nn_R*(*E*) = {*g* ∈ *R* : *g* ◦ *f_i* = 0} ← *M* = $\langle F \rangle_R$ = $\langle f_1, \ldots, f_l \rangle_R$

 $\left\{\longrightarrow \frac{1-1}{\longleftarrow} \right\}$

 $\sqrt{ }$ \int

 $\overline{\mathcal{L}}$

Let $E = E(A) = (e_1, \ldots, \ldots, e_s)$ the socle type and $t = \sum_{i=1}^s e_i$.

$\left\{\n \begin{array}{c}\n R/I \text{ is Artin local algebra} \\ \text{with type } t \text{ and solve type } E\n \end{array}\n \right\}\n \xrightarrow{\begin{array}{c}\n 1-1 \\ 1-1 \\ \text{gen. by } e_i \text{ polynomials } f_i \\ \text{of degree } i = 1, ..., s\n \end{array}\n \right\}$ \n
$I \longrightarrow I^{\perp} = \{g \in P : I \circ g = 0\} = (R/I)^*$ \n

 ϵ

 $M \equiv c f_1 \qquad f_2 > R$

 \rightarrow

 \mathcal{A} nn_{*R*}(*F*) = {*g* ∈ *R* : *g* ◦ *f_i* = 0} ← *M* = $\langle F \rangle_B$ = $\langle f_1, \ldots, f_t \rangle_B$

Let $E = E(A) = (e_1, \ldots, \ldots, e_s)$ the socle type and $t = \sum_{i=1}^s e_i$.

$$
\begin{array}{cc}\n & R/I \text{ is Artin local algebra} \\
& \text{with type } t \text{ and sole type } E\n\end{array}\n\quad \begin{array}{c}\n1-1 \\
\longrightarrow \\
& \end{array}
$$

$$
M = $f_1, \ldots, f_t >_R$
\nR-submodule of P
\ngen. by e_i polynomials f_i
\nof degree $i = 1, \ldots, s$
$$

I \longrightarrow $I^{\perp} = \{g \in P : I \circ g = 0\} = (R/I)^*$ \mathcal{A} *nn_R*(*F*) = {*g* ∈ *R* : *g* ◦ *f_i* = 0} ← *M* = $\langle F \rangle$ _{*R*} = $\langle f_1, \ldots, f_t \rangle$ _{*R*}

 $\sqrt{ }$ \int

 $\overline{\mathcal{L}}$

We will write $A_F = R/Ann_R(F)$. Hence if *A* is Gorenstein

 $A = R/Ann_B(f) := A_f$

Let $E = E(A) = (e_1, \ldots, \ldots, e_s)$ the socle type and $t = \sum_{i=1}^s e_i$.

$$
\begin{array}{cc}\n & R/I \text{ is Artin local algebra} \\
& \text{with type } t \text{ and sole type } E\n\end{array}\n\quad \begin{array}{c}\n1-1 \\
\longrightarrow \\
& \end{array}
$$

$$
M = $f_1, \ldots, f_t >_R$
\nR-submodule of P
\ngen. by e_i polynomials f_i
\nof degree $i = 1, \ldots, s$
$$

I \longrightarrow $I^{\perp} = \{g \in P : I \circ g = 0\} = (R/I)^*$ \mathcal{A} *nn_R*(*F*) = {*g* ∈ *R* : *g* ◦ *f_i* = 0} ← *M* = $\langle F \rangle$ _{*R*} = $\langle f_1, \ldots, f_t \rangle$ _{*R*}

 $\sqrt{ }$ \int

 $\overline{\mathcal{L}}$

We will write $A_F = R/Ann_R(F)$. Hence if *A* is Gorenstein

 $A = R/Ann_B(f) := A_f$

Hilbert function via Inverse system

$$
HF_{R/I}(i) = \dim_K(I^{\perp})_i = \dim_K\langle \partial_{d_j-i}F_j \rangle
$$

$$
(I^{\perp})_i := \frac{I^{\perp} \cap P_{\leq i} + P_{\leq i}}{P_{\leq i}}.
$$

$$
HF_{R/I}(i) = \dim_K (I^{\perp})_i.
$$

Hilbert function via Inverse system

Graded case: $A = R/I = R/Ann(F)$

$$
HF_{R/I}(i) = \dim_K(I^{\perp})_i = \dim_K\langle \partial_{d_j-i}F_j \rangle
$$

where ∂*^dj*−*ⁱ* denotes the partial derivative of order *d^j* − *i* with *d^j* = *degF^j* .

$$
(I^{\perp})_i := \frac{I^{\perp} \cap P_{\leq i} + P_{\leq i}}{P_{\leq i}}.
$$

$$
HF_{R/I}(i) = \dim_K(I^{\perp})_i.
$$

Hilbert function via Inverse system

Graded case: $A = R/I = R/Ann(F)$

$$
HF_{R/I}(i) = \dim_K(I^{\perp})_i = \dim_K\langle \partial_{d_j-i}F_j \rangle
$$

where ∂*^dj*−*ⁱ* denotes the partial derivative of order *d^j* − *i* with *d^j* = *degF^j* .

If *I* is not necessarily homogeneous, we define the following *K* -vector space:

$$
(I^{\perp})_i := \frac{I^{\perp} \cap P_{\leq i} + P_{\leq i}}{P_{\leq i}}.
$$

$$
HF_{R/I}(i) = \dim_K (I^{\perp})_i.
$$

Given *I* and *J* ideals of *R* such that $m^{s+1} \subset I$, *J*, let φ be an isomorphism of *K* -algebras

 $\varphi: R/I = A_{\underline{F}} \xrightarrow{\sim} R/J = A_{\underline{G}}.$

In particular $\varphi \in Aut_R(R/\mathfrak{m}^{s+1}) \subseteq Aut_K(R/\mathfrak{m}^{s+1})$ and denote by $M(\varphi)$ the associated matrix w.r.t. a basis Ω of $P_{\leq s}$.

 $M(\varphi)$ is an element of $Gl_r(K)$ where $r = dim_k(R/\mathfrak{m}^{s+1}) = \binom{n+s}{s}$.

Given *I* and *J* ideals of *R* such that $m^{s+1} \subset I$, *J*, let φ be an isomorphism of *K* -algebras

 $\varphi: R/I = A_{\underline{F}} \xrightarrow{\sim} R/J = A_{\underline{G}}.$

In particular $\varphi \in Aut_R(R/\mathfrak{m}^{s+1}) \subseteq Aut_K(R/\mathfrak{m}^{s+1})$ and denote by $M(\varphi)$ the associated matrix w.r.t. a basis Ω of $P_{\leq s}$.

 $M(\varphi)$ is an element of $Gl_r(K)$ where $r = dim_k(R/\mathfrak{m}^{s+1}) = \binom{n+s}{s}$.

Dualizing

 $\varphi^*: \pmb{J}^\perp = \langle \pmb{G} \rangle \longrightarrow \pmb{I}^\perp = \langle \pmb{F} \rangle$

where ${}^t{\cal M}(\varphi)\;$ is the matrix associated to φ^* with respect to the basis $\Omega^*.$

(if $\Omega = \langle X^{\alpha} \rangle$, then $\Omega^* = \langle \frac{1}{\alpha!} y^{\alpha} \rangle$).

 φ^* does not act as a substitution !!!

The classification, up to analytic isomorphism, of the Artin local *K* -algebras of

multiplicity *d*, socle degree *s* and embedding dimension *n*

is equivalent

to the classification, up to the action of $\mathcal{R} \subseteq \textit{Aut}_\mathcal{K}(R/\mathfrak{m}^{s+1}),$ of the $\mathcal{K}\text{-vector}$

subspaces of *P*[≤]*^s* of dimension *d*, stable by derivations and containing

 $P_{\leq 1} = K[y_1, \ldots, y_n]_{\leq 1}.$

Contents

¹ [Notations and definitions](#page-2-0)

[Examples](#page-29-0)

[Macaulay's Inverse system](#page-41-0)

Then A is canonically graded.

Theorem (J. Elias,—)

Let A = *R*/*I be an Artinian Gorenstein local K -algebra with h -vector*

 $(1, n, n, 1)$

Theorem (J. Elias,—)

Let A = *R*/*I be an Artinian Gorenstein local K -algebra with h -vector*

 $(1, n, n, 1)$

Then A is canonically graded.

Theorem (J. Elias,—)

Let A = *R*/*I be an Artinian Gorenstein local K -algebra with h -vector*

 $(1, n, n, 1)$

Then A is canonically graded.

"Sketch of the proof" If $A = A_f$ with $f = F_3 + \ldots$ lower terms, we prove

 $A_f \simeq A_{F_2}$

Theorem (J. Elias,—)

Let A = *R*/*I be an Artinian Gorenstein local K -algebra with h -vector*

 $(1, n, n, 1)$

Then A is canonically graded.

"Sketch of the proof" If $A = A_f$ with $f = F_3 + \ldots$ lower terms, we prove

 $A_f \simeq A_{F_2}$

We show that \forall $f \in P$ of degree three $\exists \varphi \in Aut(R/\mathfrak{m}^4)$ such that

 $[F_3]_{E^*}$ *M*(φ) = $[f]_{E^*}$

Artinian Gorenstein K-algebras of socle degree 3

$$
f = F_3 + y_{n+1}^2 + \dots + y_m^2
$$

Artinian Gorenstein K-algebras of socle degree 3

The Hilbert function of a Gorenstein local algebra of socle degree 3, say *A^f* with $f = F_3 + \ldots$, is not necessarily symmetric:

 $h = (1, m, n, 1)$ with $m > n$

$$
f = F_3 + y_{n+1}^2 + \dots + y_m^2
$$

Artinian Gorenstein K-algebras of socle degree 3

The Hilbert function of a Gorenstein local algebra of socle degree 3, say *A^f* with $f = F_3 + \ldots$, is not necessarily symmetric:

 $h = (1, m, n, 1)$ with $m \ge n$

If $m > n$ the associated graded ring $gr_m(A)$ is not longer Gorenstein, but

 $A_{F_3} = R/Ann_B(F_3)$

is graded Gorenstein with $h = (1, n, n, 1)$.

$$
f = F_3 + y_{n+1}^2 + \dots + y_m^2
$$

Artinian Gorenstein K-algebras of socle degree 3

The Hilbert function of a Gorenstein local algebra of socle degree 3, say *A^f* with $f = F_3 + \ldots$, is not necessarily symmetric:

 $h = (1, m, n, 1)$ with $m > n$

If $m > n$ the associated graded ring $gr_{m}(A)$ is not longer Gorenstein, but

 $A_{F_3} = R/Ann_B(F_3)$

is graded Gorenstein with $h = (1, n, n, 1)$.

Theorem (Elias, —)

The following facts are equivalent:

(a) *A* is an Artinian Gorenstein local ring with h-vector $(1, m, n, 1)$, $m > n$ (b) $A \simeq A_f$ *where* $f \in K[y_1, \ldots, y_m],$

$$
f = F_3 + y_{n+1}^2 + \cdots + y_m^2
$$

*with F*₃ *a non degenerate form of degree three in* $K[y_1, \ldots, y_n]$

Classification

Corollary

The classification of Artinian Gorenstein k -algebras A with h -vector

 $(1, m, n, 1),$

m ≥ *n*, *is equivalent to the projective classification of the cubic hypersurfaces V*(*F*) ⊂ \mathbb{P}_{k}^{n-1}

Classification

Corollary

The classification of Artinian Gorenstein k -algebras A with h -vector

 $(1, m, n, 1),$

m ≥ *n*, *is equivalent to the projective classification of the cubic hypersurfaces V*(*F*) ⊂ \mathbb{P}_{k}^{n-1}

By taking advantage of the projective classification of the cubic hypersurfaces in \mathbb{P}^2 we can can give a geometric description of the models corresponding to:

 $(1, m, 3, 1)$

Socle degree $>$ 3 ?

We recall that the Gorenstein local rings with Hilbert function

$$
\left(1,2,2,2,1\right)
$$

are not necessarily graded.

I have anticipated that if the Gorenstein local algebra has Hilbert function

 $(1, 2, 3, 2, 1)$

then it is graded.

In both cases $gr_{m}(A)$ is Gorenstein, but in the second case the local algebra is compressed.

Compressed algebras

Compressed algebras

Definition

An Artin algebra $A = R/I$ of socle type E is compressed if and only if it has maximal length $e(A) = \dim_K A$ among Artin quotients of R having socle type *E* and embedding dimension *n*.

Compressed algebras

Definition

An Artin algebra $A = R/I$ of socle type E is compressed if and only if it has maximal length $e(A) = \dim_K A$ among Artin quotients of R having socle type *E* and embedding dimension *n*.

A compressed \implies $E(A) = E(g r_m(A))$ and hence $gr_m(A)$ compressed

It is also known that if *A* is compressed

 $I^\perp = \langle g_1, \ldots, g_t \rangle \qquad \implies \qquad (I^*)^\perp = \langle G_1, \ldots, G_t \rangle$ the corresp. leading forms $(g_i = G_i +)$

$$
I=(x_1^4,x_2^3-2x_1^3x_2)\subset R=K[[x_1,x_2]].
$$

Theorem (Elias, —-)

Let A be an Artin compressed Gorenstein local K -algebra.

If s ≤ 4 *then A is canonically graded.*

$$
I=(x_1^4,x_2^3-2x_1^3x_2)\subset R=K[[x_1,x_2]].
$$

Theorem (Elias, —-)

Let A be an Artin compressed Gorenstein local K -algebra.

If s ≤ 4 *then A is canonically graded.*

The result cannot be extended to $s = 5$.

Example

Let us consider the ideal

$$
I=(x_1^4,x_2^3-2x_1^3x_2)\subset R=K[[x_1,x_2]].
$$

The quotient $A = R/I$ is a compressed Gorenstein algebra with

$$
h=(1,2,3,3,2,1)
$$

 $I^* = (x_1^4, x_2^3)$ and $I^{\perp} = \langle y_1^3 y_2^2 + y_2^4 \rangle$. One can prove that $I \ncong I^*$.

-
-
-

-
-
	-

Theorem (Elias, —)

Let A be an Artin compressed K -algebra of embedding dimension n, *socle degree s and socle type* $E = (e_1, \ldots, e_s)$. *Then A is canonically graded in the following cases:*

- (1) **s** \leq 3
- (2) $s = 4$ *and* $e_4 = 1$.
- (3) $s = 4$ *and* $n = 2$.

-
-
	-

Theorem (Elias, —)

Let A be an Artin compressed K -algebra of embedding dimension n, *socle degree s and socle type* $E = (e_1, \ldots, e_s)$ *. Then A is canonically graded in the following cases:*

- (1) **s** \leq 3
- (2) $s = 4$ *and* $e_4 = 1$.
- (3) $s = 4$ *and* $n = 2$.

The result includes:

- Compressed level algebras of socle degree $s = 3$. (A. De Stefani, *Comm. Algebra*)
-

Theorem (Elias, —)

Let A be an Artin compressed K -algebra of embedding dimension n, *socle degree s and socle type* $E = (e_1, \ldots, e_s)$ *. Then A is canonically graded in the following cases:*

- (1) **s** \leq 3
- (2) $s = 4$ *and* $e_4 = 1$.
- (3) $s = 4$ *and* $n = 2$.

The result includes:

- Compressed level algebras of socle degree $s = 3$. (A. De Stefani, *Comm. Algebra*)
- Gorenstein $s = 5$ $h = (1, n, \binom{n+1}{2}, n, 1)$

More in general: Socle type $(e_1, e_2, e_3, 1)$.

We have seen that the result cannot be extended to $s = 5$ and $e_4 = 1$.

The result cannot be extended to $s = 4$ and $e_4 > 1$.

Example

Let us consider the forms of degree 4 in $P = K[y_1, y_2, y_3]$:

$$
F = y_1^2 y_2 y_3, \quad G = y_1 y_2^2 y_3 + y_2 y_3^3
$$

and define in $R = K[[x_1, x_2, x_3]]$ the ideal

 $I = Ann(F + y_3^3, G).$

Then $A = R/I$ is a compressed level algebra with socle degree 4, type 2 and Hilbert function

$$
h=(1,3,6,6,2).
$$

One can prove that $I \not\simeq I^*$.

References

J. Elias, M. E. Rossi, *Isomorphism classes of Artinian local rings via Macaulay's inverse system*, Trans. AMS, Trans. A.M.S., Vol.364, Number 9, September 2012, 4589–4604,

J. Elias, M. E. Rossi, *Analytic Isomorphisms of compressed local algebras*, arXiv:1207.6919v1 [math.AC].

靠

F

References

- J. Elias, M. E. Rossi, *Isomorphism classes of Artinian local rings via Macaulay's inverse system*, Trans. AMS, Trans. A.M.S., Vol.364, Number 9, September 2012, 4589–4604,
- J. Elias, M. E. Rossi, *Analytic Isomorphisms of compressed local algebras*, arXiv:1207.6919v1 [math.AC].

- G. Casnati, J. Elias, R. Notari, M.E. Rossi, Poincare' series and deformations of Gorenstein local algebras, Comm. in Algebra, DOI number: 10.1080/00927872.2011.636643 (2012)
- J. Elias, M. E. Rossi, G. Valla, On the Hilbert function of one-dimensional local complete intersections, arXiv:1205.5357v1 [math.AC].