IMPLICITIZATION OF RATIONAL SURFACES: EASY ALGORITHMS, DEEP PROOFS

Alicia Dickenstein

Departamento de Matemática, FCEN, Universidad de Buenos Aires, and Instituto de Matemática Luis A. Santaló, Argentina

MSRI, August 24 2012

PROBLEM

• Let f be a rational parametrization of a (hyper)surface $S = (F = 0) \subset \mathbb{A}^3$, $F \in \mathbb{K}[T_1, T_2, T_3]$.

$$\begin{array}{ccc} \mathbb{A}^2 & \stackrel{f}{\dashrightarrow} & \mathbb{A}^3 \\ s = (s_1, s_2) & \mapsto & \left(\frac{f_1(s)}{f_0(s)}, \frac{f_2(s)}{f_0(s)}, \frac{f_3(s)}{f_0(s)} \right) \end{array}$$

- $f_i \in \mathbb{K}[s_1, s_2]$ with $gcd(f_0, \dots, f_3) = 1$ and F is irreducible with F(f(s)) = 0 (whenever defined).
- We assume the parametrization *f* known but the implicit equation *F* not known
- That, is, we want to switch from parametric to implicit representations of rational surfaces.

PROBLEM

• Let f be a rational parametrization of a (hyper)surface $S = (F = 0) \subset \mathbb{A}^3$, $F \in \mathbb{K}[T_1, T_2, T_3]$.

$$\begin{array}{ccc} \mathbb{A}^2 & \stackrel{f}{\dashrightarrow} & \mathbb{A}^3 \\ s = (s_1, s_2) & \mapsto & \left(\frac{f_1(s)}{f_0(s)}, \frac{f_2(s)}{f_0(s)}, \frac{f_3(s)}{f_0(s)} \right) \end{array}$$

- $f_i \in \mathbb{K}[s_1, s_2]$ with $gcd(f_0, ..., f_3) = 1$ and *F* is irreducible with F(f(s)) = 0 (whenever defined).
- We assume the **parametrization** *f* known but the implicit equation *F* not known

That, is, we want to switch from parametric to implicit representations of rational surfaces.

PROBLEM

• Let f be a rational parametrization of a (hyper)surface $S = (F = 0) \subset \mathbb{A}^3$, $F \in \mathbb{K}[T_1, T_2, T_3]$.

$$\begin{array}{ccc} \mathbb{A}^2 & \stackrel{f}{\dashrightarrow} & \mathbb{A}^3 \\ s = (s_1, s_2) & \mapsto & \left(\frac{f_1(s)}{f_0(s)}, \frac{f_2(s)}{f_0(s)}, \frac{f_3(s)}{f_0(s)} \right) \end{array}$$

- $f_i \in \mathbb{K}[s_1, s_2]$ with $gcd(f_0, \dots, f_3) = 1$ and *F* is irreducible with F(f(s)) = 0 (whenever defined).
- We assume the parametrization *f* known but the implicit equation *F* not known
- That, is, we want to switch from *parametric* to *implicit* representations of rational surfaces.

PROBLEM

• Let f be a rational parametrization of a (hyper)surface $S = (F = 0) \subset \mathbb{A}^3$, $F \in \mathbb{K}[T_1, T_2, T_3]$.

$$\begin{array}{ccc} \mathbb{A}^2 & \stackrel{f}{\dashrightarrow} & \mathbb{A}^3 \\ s = (s_1, s_2) & \mapsto & \left(\frac{f_1(s)}{f_0(s)}, \frac{f_2(s)}{f_0(s)}, \frac{f_3(s)}{f_0(s)} \right) \end{array}$$

- $f_i \in \mathbb{K}[s_1, s_2]$ with $gcd(f_0, \dots, f_3) = 1$ and *F* is irreducible with F(f(s)) = 0 (whenever defined).
- We assume the parametrization *f* known but the implicit equation *F* not known
- That, is, we want to switch from parametric to implicit representations of rational surfaces.

- The convex hull of the exponents of the monomials ocurring in a non zero polynomial *h* is called the Newton polytope N(*h*) of *h*.
- When *h* is a polynomial in (s_1, s_2) of degree (at most) *d*, its Newton polytope N(*F*) is (contained in) the triangle with vertices (0,0), (d,0), (0,d). Its Euclidean area is $\frac{d^2}{2}$ and its lattice area is $2\frac{d^2}{2} = d^2$.

THEOREM (CLASSIC, [BUSÉ-JOUANOLOU'03])

For generic polynomials f_0, \ldots, f_3 of degree d, the degree of F is d^2 and its Newton polytope is the triangle with vertices $(0, 0, 0), (d^2, 0, 0), (0, d^2, 0), (0, 0, d^2)$.

THEOREM ([STURMFELS-YU'94])

For generic polynomials f_0, \ldots, f_3 with fixed Newton polytope P, the degree of F is the lattice area v of P and its Newton polytope is the triangle with vertices (0, 0, 0), (v, 0, 0), (0, v, 0), (0, 0, v).

A. DICKENSTEIN (UBA)

- The convex hull of the exponents of the monomials ocurring in a non zero polynomial *h* is called the Newton polytope N(*h*) of *h*.
- When h is a polynomial in (s₁, s₂) of degree (at most) d, its Newton polytope N(F) is (contained in) the triangle with vertices (0,0), (d,0), (0,d). Its Euclidean area is d²/₂ and its lattice area is 2 d²/₂ = d².

THEOREM (CLASSIC, [BUSÉ-JOUANOLOU'03])

For generic polynomials f_0, \ldots, f_3 of degree d, the degree of F is d^2 and its Newton polytope is the triangle with vertices $(0,0,0), (d^2,0,0), (0,d^2,0), (0,0,d^2)$.

THEOREM ([STURMFELS-YU'94])

For generic polynomials f_0, \ldots, f_3 with fixed Newton polytope P, the degree of F is the lattice area v of P and its Newton polytope is the triangle with vertices (0, 0, 0), (v, 0, 0), (0, v, 0), (0, 0, v).

A. DICKENSTEIN (UBA)

- The convex hull of the exponents of the monomials ocurring in a non zero polynomial *h* is called the Newton polytope N(*h*) of *h*.
- When h is a polynomial in (s₁, s₂) of degree (at most) d, its Newton polytope N(F) is (contained in) the triangle with vertices (0,0), (d,0), (0,d). Its Euclidean area is d²/₂ and its lattice area is 2 d²/₂ = d².

THEOREM (CLASSIC, [BUSÉ-JOUANOLOU'03])

For generic polynomials f_0, \ldots, f_3 of degree d, the degree of F is d^2 and its Newton polytope is the triangle with vertices $(0, 0, 0), (d^2, 0, 0), (0, d^2, 0), (0, 0, d^2)$.

Theorem ([Sturmfels-Yu'94])

For generic polynomials f_0, \ldots, f_3 with fixed Newton polytope P, the degree of F is the lattice area v of P and its Newton polytope is the triangle with vertices (0, 0, 0), (v, 0, 0), (0, v, 0), (0, 0, v).

A. DICKENSTEIN (UBA)

- The convex hull of the exponents of the monomials ocurring in a non zero polynomial *h* is called the Newton polytope N(*h*) of *h*.
- When h is a polynomial in (s₁, s₂) of degree (at most) d, its Newton polytope N(F) is (contained in) the triangle with vertices (0,0), (d,0), (0,d). Its Euclidean area is d²/₂ and its lattice area is 2 d²/₂ = d².

THEOREM (CLASSIC, [BUSÉ-JOUANOLOU'03])

For generic polynomials f_0, \ldots, f_3 of degree d, the degree of F is d^2 and its Newton polytope is the triangle with vertices $(0, 0, 0), (d^2, 0, 0), (0, d^2, 0), (0, 0, d^2)$.

THEOREM ([STURMFELS-YU'94])

For generic polynomials f_0, \ldots, f_3 with fixed Newton polytope P, the degree of F is the lattice area v of P and its Newton polytope is the triangle with vertices (0,0,0), (v,0,0), (0,v,0), (0,0,v).

- Assume the Newton polytope N(F) of F is known (as in the previous theorems) and number $m_1, \ldots, m_N \in \mathbb{N}^3$ the integer (lattice) points in N(F).
- Consider indeterminates $c = (c_1, ..., c_N)$ and write $F = \sum_{i=1}^{N} c_i T^{m_i}$.
- Substitute T = f(s) and equate to 0 the coefficient of each power of (s_1, s_2) that occurs.
- This sets a system L of linear equations in c, with solution space of dimension 1. Any nonzero solution c will give a choice of implicit equation F.

- Assume the Newton polytope N(F) of F is known (as in the previous theorems) and number $m_1, \ldots, m_N \in \mathbb{N}^3$ the integer (lattice) points in N(F).
- Consider indeterminates $c = (c_1, ..., c_N)$ and write $F = \sum_{i=1}^{N} c_i T^{m_i}$.
- Substitute T = f(s) and equate to 0 the coefficient of each power of (s_1, s_2) that occurs.
- This sets a system L of linear equations in c, with solution space of dimension 1. Any nonzero solution c will give a choice of implicit equation F.

- Assume the Newton polytope N(F) of F is known (as in the previous theorems) and number $m_1, \ldots, m_N \in \mathbb{N}^3$ the integer (lattice) points in N(F).
- Consider indeterminates $c = (c_1, ..., c_N)$ and write $F = \sum_{i=1}^{N} c_i T^{m_i}$.
- Substitute T = f(s) and equate to 0 the coefficient of each power of (s_1, s_2) that occurs.
- This sets a system L of linear equations in c, with solution space of dimension 1. Any nonzero solution c will give a choice of implicit equation F.

- Assume the Newton polytope N(F) of F is known (as in the previous theorems) and number $m_1, \ldots, m_N \in \mathbb{N}^3$ the integer (lattice) points in N(F).
- Consider indeterminates $c = (c_1, ..., c_N)$ and write $F = \sum_{i=1}^{N} c_i T^{m_i}$.
- Substitute T = f(s) and equate to 0 the coefficient of each power of (s_1, s_2) that occurs.
- This sets a system *L* of linear equations in *c*, with solution space of dimension 1. Any nonzero solution *c* will give a choice of implicit equation *F*.

- Assume the Newton polytope N(F) of F is known (as in the previous theorems) and number $m_1, \ldots, m_N \in \mathbb{N}^3$ the integer (lattice) points in N(F).
- Consider indeterminates $c = (c_1, ..., c_N)$ and write $F = \sum_{i=1}^{N} c_i T^{m_i}$.
- Substitute T = f(s) and equate to 0 the coefficient of each power of (s_1, s_2) that occurs.
- This sets a system *L* of linear equations in *c*, with solution space of dimension 1. Any nonzero solution *c* will give a choice of implicit equation *F*.

WHICH IS THE SIZE OF THE LINEAR SYSTEM

LEMMA

In case f_i are generic polynomials of degree d in (s_1, s_2) , the number of unknowns in \mathcal{L} is $\binom{d^2+3}{3}$ ($\approx d^6/6$) and the number of equations is $\binom{d^3+2}{2}$ ($\approx d^6/2$).

Lemma

For any lattice polygon P and generic polynomials f_i with Newton polytope P, the linear system \mathcal{L} has $\binom{\operatorname{vol}_{\mathbb{Z}}(P)+3}{3} (\approx \frac{\operatorname{vol}_{\mathbb{Z}}(P)^3}{6})$ variables and $\frac{\operatorname{vol}_{\mathbb{Z}}(P)^3}{2} + \frac{\operatorname{vol}_{\mathbb{Z}}(P)^2}{2} \operatorname{vol}_{\mathbb{Z}}(\partial P) + 1$ equations $(\approx \frac{\operatorname{vol}_{\mathbb{Z}}(P)^3}{2})$.

Uses Pick's formula (Erharht's theorem).

WHICH IS THE SIZE OF THE LINEAR SYSTEM

LEMMA

In case f_i are generic polynomials of degree d in (s_1, s_2) , the number of unknowns in \mathcal{L} is $\binom{d^2+3}{3}$ ($\approx d^6/6$) and the number of equations is $\binom{d^3+2}{2}$ ($\approx d^6/2$).

LEMMA

For any lattice polygon P and generic polynomials f_i with Newton polytope P, the linear system \mathcal{L} has $\binom{\operatorname{vol}_{\mathbb{Z}}(P)+3}{3}$ ($\approx \frac{\operatorname{vol}_{\mathbb{Z}}(P)^3}{6}$) variables and $\frac{\operatorname{vol}_{\mathbb{Z}}(P)^3}{2} + \frac{\operatorname{vol}_{\mathbb{Z}}(P)^2}{2} \operatorname{vol}_{\mathbb{Z}}(\partial P) + 1$ equations ($\approx \frac{\operatorname{vol}_{\mathbb{Z}}(P)^3}{2}$).

Uses Pick's formula (Erharht's theorem).

- Reduce the problem to a linear algebra problem
- Hide the variables one wants to eliminate in the (monomial) basis.
- Use determinants.

- Reduce the problem to a linear algebra problem
- Hide the variables one wants to eliminate in the (monomial) basis.
- Use determinants.

- Reduce the problem to a linear algebra problem
- Hide the variables one wants to eliminate in the (monomial) basis.
- Use determinants.

- Reduce the problem to a linear algebra problem
- Hide the variables one wants to eliminate in the (monomial) basis.
- Use determinants.

Restating the problem: find a representation matrix

A rational surface S is given as the closed image of a map

$$\begin{array}{ccc} \mathbb{A}^2 & \stackrel{f}{\dashrightarrow} & \mathbb{A}^3 \\ s & \mapsto & \left(\frac{f_1(s)}{f_0(s)}, \frac{f_2(s)}{f_0(s)}, \frac{f_3(s)}{f_0(s)}\right) \end{array}$$

where the f_i are polynomials such that $gcd(f_0, \ldots, f_3) = 1$.

DEFINITION

A matrix representation M of S is a matrix with entries in $\mathbb{K}[T_1, T_2, T_3]$, generically of full rank, such that the rank of M(P) drops iff the point P lies on S.

Moreover, the greatest common divisor of all minors of *M* of maximal size equals $F^{\deg(f)}$.

Having the matrix M is sufficiently good for many purposes (like checking if a point lies on the surface), well adapted for numerical computations and cheaper to get!

A. DICKENSTEIN (UBA)

Restating the problem: find a representation matrix

A rational surface S is given as the closed image of a map

$$\begin{array}{ccc} \mathbb{A}^2 & \stackrel{f}{\dashrightarrow} & \mathbb{A}^3 \\ s & \mapsto & \left(\frac{f_1(s)}{f_0(s)}, \frac{f_2(s)}{f_0(s)}, \frac{f_3(s)}{f_0(s)}\right) \end{array}$$

where the f_i are polynomials such that $gcd(f_0, \ldots, f_3) = 1$.

DEFINITION

A matrix representation M of S is a matrix with entries in $\mathbb{K}[T_1, T_2, T_3]$, generically of full rank, such that the rank of M(P) drops iff the point P lies on S.

Moreover, the greatest common divisor of all minors of *M* of maximal size equals $F^{\deg(f)}$.

Having the matrix M is sufficiently good for many purposes (like checking if a point lies on the surface), well adapted for numerical computations and cheaper to get!

A. DICKENSTEIN (UBA)

Restating the problem: find a representation matrix

A rational surface S is given as the closed image of a map

$$\begin{array}{ccc} \mathbb{A}^2 & \stackrel{f}{\dashrightarrow} & \mathbb{A}^3 \\ s & \mapsto & \left(\frac{f_1(s)}{f_0(s)}, \frac{f_2(s)}{f_0(s)}, \frac{f_3(s)}{f_0(s)}\right) \end{array}$$

where the f_i are polynomials such that $gcd(f_0, \ldots, f_3) = 1$.

DEFINITION

A matrix representation M of S is a matrix with entries in $\mathbb{K}[T_1, T_2, T_3]$, generically of full rank, such that the rank of M(P) drops iff the point P lies on S.

Moreover, the greatest common divisor of all minors of *M* of maximal size equals $F^{\deg(f)}$.

Having the matrix *M* is sufficiently good for many purposes (like checking if a point lies on the surface), well adapted for numerical computations and cheaper to get!

A. DICKENSTEIN (UBA)

MAIN TOOLS

LINEAR SYZYGIES

Given polynomials $f_0, \ldots, f_3 \in \mathbb{K}[s_1, s_2]$, a syzygy on f_0, \ldots, f_3 is a 4-tuple of polynomials (h_0, \ldots, h_3) such that $\sum_{i=0}^3 h_i f_i = 0$.

MONOMIAL STRUCTURE OF THE INPUT POLYNOMIALS

Study supports of local cohomology over toric rings (embedded or not), extending results of Busé, Chardin and Jouanolou for the homogeneous case.

MAIN TOOLS

LINEAR SYZYGIES

Given polynomials $f_0, \ldots, f_3 \in \mathbb{K}[s_1, s_2]$, a syzygy on f_0, \ldots, f_3 is a 4-tuple of polynomials (h_0, \ldots, h_3) such that $\sum_{i=0}^3 h_i f_i = 0$.

MONOMIAL STRUCTURE OF THE INPUT POLYNOMIALS

Study supports of local cohomology over toric rings (embedded or not), extending results of Busé, Chardin and Jouanolou for the homogeneous case.

- THE USE OF SYZYGIES FOR THE IMPLICITIZATION OF (CONIC) SURFACES GOES BACK TO **Steiner** in 1832.
- MEYER IN 1887 DESCRIBED SYZYGIES OF 3 POLYNOMIALS AND MADE A GENERAL CONJECTURE PROVED BY HILBERT IN 1890.
- IN 1995, SEDERBERG AND CHEN REINTRODUCED THE USE OF SYZYGIES, BY A METHOD TERMED AS MOVING CURVES AND SURFACES.
- COX REALIZED THEY WERE USING SYZYGIES. SEVERAL PAPERS WITH OTHER COAUTHORS (BUSÉ, CHEN, D'ANDREA, GOLDMAN, SEDERBERG, ZHANG).
- JOUANOLOU AND BUSÉ IN 2002 ABSTRACTED, GENERALIZED ON A SOUND BASIS THE METHOD OF SEDERBERG-CHEN VIA APPROXIMATION COMPLEXES, A TOOL IN HOMOLOGICAL COMMUTATIVE ALGEBRA THAT HAD BEEN DEVELOPED BY HERZOG, SIMIS AND VASCONCELOS.

A. DICKENSTEIN (UBA)

- THE USE OF SYZYGIES FOR THE IMPLICITIZATION OF (CONIC) SURFACES GOES BACK TO STEINER IN 1832.
- MEYER IN 1887 DESCRIBED SYZYGIES OF 3 POLYNOMIALS AND MADE A GENERAL CONJECTURE PROVED BY HILBERT IN 1890.
- IN 1995, SEDERBERG AND CHEN REINTRODUCED THE USE OF SYZYGIES, BY A METHOD TERMED AS MOVING CURVES AND SURFACES.
- COX REALIZED THEY WERE USING SYZYGIES. SEVERAL PAPERS WITH OTHER COAUTHORS (BUSÉ, CHEN, D'ANDREA, GOLDMAN, SEDERBERG, ZHANG).
- JOUANOLOU AND BUSÉ IN 2002 ABSTRACTED, GENERALIZED ON A SOUND BASIS THE METHOD OF SEDERBERG-CHEN VIA APPROXIMATION COMPLEXES, A TOOL IN HOMOLOGICAL COMMUTATIVE ALGEBRA THAT HAD BEEN DEVELOPED BY HERZOG, SIMIS AND VASCONCELOS.

A. DICKENSTEIN (UBA)

- THE USE OF SYZYGIES FOR THE IMPLICITIZATION OF (CONIC) SURFACES GOES BACK TO STEINER IN 1832.
- MEYER IN 1887 DESCRIBED SYZYGIES OF 3 POLYNOMIALS AND MADE A GENERAL CONJECTURE PROVED BY HILBERT IN 1890.
- SURFACE IMPLICITIZATION BY ELIMINATING PARAMETERS WAS STUDIED BY SALMON IN 1862 AND DIXON IN 1908 USING RESULTANTS.
- IN 1995, SEDERBERG AND CHEN REINTRODUCED THE USE OF SYZYGIES, BY A METHOD TERMED AS MOVING CURVES AND SURFACES.
- COX REALIZED THEY WERE USING SYZYGIES. SEVERAL PAPERS WITH OTHER COAUTHORS (BUSÉ, CHEN, D'ANDREA, GOLDMAN, SEDERBERG, ZHANG).
- JOUANOLOU AND BUSÉ IN 2002 ABSTRACTED, GENERALIZED ON A SOUND BASIS THE METHOD OF SEDERBERG-CHEN VIA

A. DICKENSTEIN (UBA)

- THE USE OF SYZYGIES FOR THE IMPLICITIZATION OF (CONIC) SURFACES GOES BACK TO STEINER IN 1832.
- MEYER IN 1887 DESCRIBED SYZYGIES OF 3 POLYNOMIALS AND MADE A GENERAL CONJECTURE PROVED BY HILBERT IN 1890.
- IN 1995, SEDERBERG AND CHEN REINTRODUCED THE USE OF SYZYGIES, BY A METHOD TERMED AS MOVING CURVES AND SURFACES.
- COX REALIZED THEY WERE USING SYZYGIES. SEVERAL PAPERS WITH OTHER COAUTHORS (BUSÉ, CHEN, D'ANDREA, GOLDMAN, SEDERBERG, ZHANG).
- JOUANOLOU AND BUSÉ IN 2002 ABSTRACTED, GENERALIZED ON A SOUND BASIS THE METHOD OF SEDERBERG-CHEN VIA APPROXIMATION COMPLEXES, A TOOL IN HOMOLOGICAL COMMUTATIVE ALGEBRA THAT HAD BEEN DEVELOPED BY HERZOG, SIMIS AND VASCONCELOS.

A. DICKENSTEIN (UBA)

- THE USE OF SYZYGIES FOR THE IMPLICITIZATION OF (CONIC) SURFACES GOES BACK TO STEINER IN 1832.
- MEYER IN 1887 DESCRIBED SYZYGIES OF 3 POLYNOMIALS AND MADE A GENERAL CONJECTURE PROVED BY HILBERT IN 1890.
- IN 1995, SEDERBERG AND CHEN REINTRODUCED THE USE OF SYZYGIES, BY A METHOD TERMED AS MOVING CURVES AND SURFACES.
- COX REALIZED THEY WERE USING SYZYGIES. SEVERAL PAPERS WITH OTHER COAUTHORS (BUSÉ, CHEN, D'ANDREA, GOLDMAN, SEDERBERG, ZHANG).
- JOUANOLOU AND BUSÉ IN 2002 ABSTRACTED, GENERALIZED ON A SOUND BASIS THE METHOD OF SEDERBERG-CHEN VIA APPROXIMATION COMPLEXES, A TOOL IN HOMOLOGICAL COMMUTATIVE ALGEBRA THAT HAD BEEN DEVELOPED BY HERZOG, SIMIS AND VASCONCELOS.

A. DICKENSTEIN (UBA)

- THE USE OF SYZYGIES FOR THE IMPLICITIZATION OF (CONIC) SURFACES GOES BACK TO STEINER IN 1832.
- MEYER IN 1887 DESCRIBED SYZYGIES OF 3 POLYNOMIALS AND MADE A GENERAL CONJECTURE PROVED BY HILBERT IN 1890.
- IN 1995, SEDERBERG AND CHEN REINTRODUCED THE USE OF SYZYGIES, BY A METHOD TERMED AS MOVING CURVES AND SURFACES.
- COX REALIZED THEY WERE USING SYZYGIES. SEVERAL PAPERS WITH OTHER COAUTHORS (BUSÉ, CHEN, D'ANDREA, GOLDMAN, SEDERBERG, ZHANG).
- JOUANOLOU AND BUSÉ IN 2002 ABSTRACTED, GENERALIZED ON A SOUND BASIS THE METHOD OF SEDERBERG-CHEN VIA APPROXIMATION COMPLEXES, A TOOL IN HOMOLOGICAL COMMUTATIVE ALGEBRA THAT HAD BEEN DEVELOPED BY HERZOG, SIMIS AND VASCONCELOS.

A. DICKENSTEIN (UBA)

- Busé, Chardin and Jouanolou (several papers) in the homogeneous case.
- Generalization to square polytopes Busé and Dohm '08 (squares), and to any polytope by Botbol, D. and Dohm '09, and Botbol ('09,'10,'11)
- Khetan and D'Andrea'06 generalized moving quadrics to the toric case.
- Goldman et al., Busé and D'Andrea studied singularities of parametric curves. Many other articles (like the recent monograph by Cox, Kustin, Polini, Ulrich).

- Busé, Chardin and Jouanolou (several papers) in the homogeneous case.
- Generalization to square polytopes Busé and Dohm '08 (squares), and to any polytope by Botbol, D. and Dohm '09, and Botbol ('09,'10,'11)
- Khetan and D'Andrea'06 generalized moving quadrics to the toric case.
- Goldman et al., Busé and D'Andrea studied singularities of parametric curves. Many other articles (like the recent monograph by Cox, Kustin, Polini, Ulrich).

- Busé, Chardin and Jouanolou (several papers) in the homogeneous case.
- Generalization to square polytopes Busé and Dohm '08 (squares), and to any polytope by Botbol, D. and Dohm '09, and Botbol ('09,'10,'11)
- Khetan and D'Andrea'06 generalized moving quadrics to the toric case.
- Goldman et al., Busé and D'Andrea studied singularities of parametric curves. Many other articles (like the recent monograph by Cox, Kustin, Polini, Ulrich).

- Busé, Chardin and Jouanolou (several papers) in the homogeneous case.
- Generalization to square polytopes Busé and Dohm '08 (squares), and to any polytope by Botbol, D. and Dohm '09, and Botbol ('09,'10,'11)
- Khetan and D'Andrea'06 generalized moving quadrics to the toric case.
- Goldman et al., Busé and D'Andrea studied singularities of parametric curves. Many other articles (like the recent monograph by Cox, Kustin, Polini, Ulrich).

- Busé, Chardin and Jouanolou (several papers) in the homogeneous case.
- Generalization to square polytopes Busé and Dohm '08 (squares), and to any polytope by Botbol, D. and Dohm '09, and Botbol ('09,'10,'11)
- Khetan and D'Andrea'06 generalized moving quadrics to the toric case.
- Goldman et al., Busé and D'Andrea studied singularities of parametric curves. Many other articles (like the recent monograph by Cox, Kustin, Polini, Ulrich).
■ A planar rational curve C over a field K is given as the image of a map

$$\begin{array}{ccc} \mathbb{P}^1 & \stackrel{f}{\dashrightarrow} & \mathbb{P}^2 \\ s & \mapsto & (f_0(s):f_1(s):f_2(s)), \end{array}$$

 $f_i \in \mathbb{K}[s]$ homogeneous polynomials of degree d in s, $gcd(f_0, f_1, f_2) = 1$.

• A (linear) syzygy can be represented as a linear form $L = h_0 T_0 + h_1 T_1 + h_2 T_2$ in the new variables $T = (T_0, T_1, T_2)$ with $h_i \in \mathbb{K}[s]$ such that

$$\sum_{i=0,1,2} h_i f_i = 0.$$

■ A planar rational curve C over a field K is given as the image of a map

$$\begin{array}{ccc} \mathbb{P}^1 & \stackrel{f}{\dashrightarrow} & \mathbb{P}^2 \\ s & \mapsto & (f_0(s):f_1(s):f_2(s)), \end{array}$$

 $f_i \in \mathbb{K}[s]$ homogeneous polynomials of degree d in s, $gcd(f_0, f_1, f_2) = 1$.

• A (linear) syzygy can be represented as a linear form $L = h_0 T_0 + h_1 T_1 + h_2 T_2$ in the new variables $T = (T_0, T_1, T_2)$ with $h_i \in \mathbb{K}[s]$ such that

$$\sum_{i=0,1,2} h_i f_i = 0.$$

- Syz(ϕ) = { all linear syzygies}. For $\nu \in \mathbb{N}$, the graded part Syz(ϕ)_{ν} (deg(h_i) $\leq \nu$) is a K-vector space with dimension $N(\nu) < \infty$.
- Attention: here comes the main elimination step:

Write for each syzygy (h_0^i, \ldots, h_3^i) , $i = 1, \ldots, N(\nu)$, in a basis:

$$L_{i} = L_{i}(s, T) = \sum_{j=0,1,2} h_{j}^{i}(s)T_{j} = \sum_{j=0,1,2} \left(\sum_{k=0}^{\nu} c_{jk}^{k} s_{1}^{k} s_{2}^{\nu-k}\right)T_{j}$$
$$= \sum_{j=0,1,2}^{\nu} \left(\sum_{j=0}^{\nu} c_{jk}^{k} T_{j}\right) s_{1}^{k} s_{2}^{\nu-k}.$$

• Let M_{ν} be the $N(\nu) \times (\nu + 1)$ matrix of coefficients of the L_i 's with respect to a \mathbb{K} -basis of $\mathbb{K}[s]_{\nu}$:

$$M_{\nu} = \left(\sum_{j=0,1,2} c_{jk}^{l} T_{j} \right)_{i=1,\dots,N(\nu), j=0,\dots}$$

- Syz(ϕ) = { all linear syzygies}. For $\nu \in \mathbb{N}$, the graded part Syz(ϕ)_{ν} (deg(h_i) $\leq \nu$) is a \mathbb{K} -vector space with dimension $N(\nu) < \infty$.
- Attention: here comes the main elimination step:

Write for each syzygy (h_0^i, \ldots, h_3^i) , $i = 1, \ldots, N(\nu)$, in a basis:

Let M_{ν} be the $N(\nu) \times (\nu + 1)$ matrix of coefficients of the L_i 's with respect to a K-basis of $K[s]_{\nu}$:

$$M_{\nu} = \left(\sum_{j=0,1,2} c_{jk}^{i} T_{j}\right)_{i=1,\dots,N(\nu), j=0,\dots,\nu}$$

- Syz(ϕ) = { all linear syzygies}. For $\nu \in \mathbb{N}$, the graded part Syz(ϕ)_{ν} (deg(h_i) $\leq \nu$) is a \mathbb{K} -vector space with dimension $N(\nu) < \infty$.
- Attention: here comes the main elimination step:

Write for each syzygy (h_0^i, \ldots, h_3^i) , $i = 1, \ldots, N(\nu)$, in a basis:

$$L_{i} = L_{i}(s,T) = \sum_{j=0,1,2} h_{j}^{i}(s)T_{j} = \sum_{j=0,1,2} (\sum_{k=0}^{\nu} c_{jk}^{i} s_{1}^{k} s_{2}^{\nu-k})T_{j}$$
$$= \sum_{k=0}^{\nu} (\sum_{j=0,1,2} c_{jk}^{i} T_{j}) s_{1}^{k} s_{2}^{\nu-k}.$$

• Let M_{ν} be the $N(\nu) \times (\nu + 1)$ matrix of coefficients of the L_i 's with respect to a K-basis of $K[s]_{\nu}$:

$$M_{\nu} = \left(\sum_{j=0,1,2} c_{jk}^{i} T_{j}\right)_{i=1,\dots,N(\nu),j=0,\dots,\nu}$$

- If $\nu = d 1$, then M_{ν} is a square matrix, such that $det(M_{\nu}) = F^{deg(f)}$, where F is an implicit equation of C.

- If $\nu = d 1$, then M_{ν} is a square matrix, such that $det(M_{\nu}) = F^{deg(f)}$, where F is an implicit equation of C.

- If $\nu = d 1$, then M_{ν} is a square matrix, such that $det(M_{\nu}) = F^{deg(f)}$, where F is an implicit equation of C.
- If $\nu \geq d$, then M_{ν} is a non-square matrix with more columns than rows, such that the gcd of its minors of maximal size equals $F^{\deg(f)}$.

- If $\nu = d 1$, then M_{ν} is a square matrix, such that $det(M_{\nu}) = F^{deg(f)}$, where F is an implicit equation of C.
- If $\nu \geq d$, then M_{ν} is a non-square matrix with more columns than rows, such that the gcd of its minors of maximal size equals $F^{\deg(f)}$.

- If $\nu = d 1$, then M_{ν} is a square matrix, such that $det(M_{\nu}) = F^{deg(f)}$, where F is an implicit equation of C.
- If $\nu \geq d$, then M_{ν} is a non-square matrix with more columns than rows, such that the gcd of its minors of maximal size equals $F^{\deg(f)}$.
- For $\nu \geq d-1$, a point $P \in \mathbb{P}^2$ lies on \mathcal{C} iff the rank of $M_{\nu}(P)$ drops.
- When working with surfaces, we will in general get non-square

- If $\nu = d 1$, then M_{ν} is a square matrix, such that $det(M_{\nu}) = F^{deg(f)}$, where F is an implicit equation of C.
- If $\nu \geq d$, then M_{ν} is a non-square matrix with more columns than rows, such that the gcd of its minors of maximal size equals $F^{\deg(f)}$.
- For $\nu \geq d-1$, a point $P \in \mathbb{P}^2$ lies on \mathcal{C} iff the rank of $M_{\nu}(P)$ drops.
- When working with surfaces, we will in general get non-square representation matrices (so det of a matrix has to be replaced by det of a complex).

USING SYZYGIES

SURFACES

LINEAR SYZYGIES, QUADRATIC SYZYGIES, ..., IMPLICIT EOUATION A COMMON SHAPE

• Linear syzygies of degree ν : $H(s,T) = \sum_{i=0}^{3} h_i(s)T_i$ such that $\sum_{i=0}^{3} h_i(s)f_i(s) = 0$. Thus, deg(H) in s variables is ν , deg(H) in T variables is 1.

Quadratic syzygies of degree ν' : $H(s,T) = \sum_{i \le j=0}^{3} h_{i,j}(s)T_iT_j$ such that $\sum_{i,j=0}^{3} h_{i,j}(s)f_if_j(s) = 0$. Thus, deg(*H*) in *s* variables is ν' , deg(*H*) in *T* variables is 2.

Implicit equation (of degree *D*): $H(s,T) = \sum_{|\alpha| \le D} h_{\alpha}T^{\alpha}$ such that $\sum_{\alpha} h_{\alpha}f^{\alpha}(s) = 0$. Thus, deg(*H*) in *s* variables is 0, deg(*H*) in *T* variables is *D*.

So to go from linear syzygies to the implicit equation we play the game of lowering the degree in the *s* variables to 0 (which increases the degree in the *T* variables up to (at most) *D*)!

USING SYZYGIES

SURFACES

LINEAR SYZYGIES, QUADRATIC SYZYGIES, ..., IMPLICIT EOUATION A COMMON SHAPE

• Linear syzygies of degree ν : $H(s,T) = \sum_{i=0}^{3} h_i(s)T_i$ such that $\sum_{i=0}^{3} h_i(s)f_i(s) = 0$. Thus, deg(H) in s variables is ν , deg(H) in T variables is 1.

• Quadratic syzygies of degree ν' : $H(s,T) = \sum_{i \le j=0}^{3} h_{i,j}(s)T_iT_j$ such that $\sum_{i,j=0}^{3} h_{i,j}(s)f_if_j(s) = 0$. Thus, deg(*H*) in *s* variables is ν' , deg(*H*) in *T* variables is 2.

Implicit equation (of degree *D*): $H(s,T) = \sum_{|\alpha| \le D} h_{\alpha}T^{\alpha}$ such that $\sum_{\alpha} h_{\alpha}f^{\alpha}(s) = 0$. Thus, deg(*H*) in *s* variables is 0, deg(*H*) in *T* variables is *D*.

So to go from linear syzygies to the implicit equation we play the game of lowering the degree in the *s* variables to 0 (which increases the degree in the *T* variables up to (at most) *D*)!

USING SYZYGIES SURFACES

LINEAR SYZYGIES, QUADRATIC SYZYGIES, ..., IMPLICIT EQUATION A COMMON SHAPE

- Linear syzygies of degree ν : $H(s,T) = \sum_{i=0}^{3} h_i(s)T_i$ such that $\sum_{i=0}^{3} h_i(s) f_i(s) = 0$. Thus, deg(H) in s variables is ν , deg(H) in T variables is 1.
- Quadratic syzygies of degree ν' : $H(s,T) = \sum_{i \le i=0}^{3} h_{i,i}(s)T_iT_i$ such that $\sum_{i,i=0}^{3} h_{i,i}(s) f_i f_i(s) = 0$. Thus, deg(H) in s variables is ν' , deg(H) in T variables is 2.
- Implicit equation (of degree D): $H(s,T) = \sum_{|\alpha| < D} h_{\alpha}T^{\alpha}$ such that $\sum_{\alpha} h_{\alpha} f^{\alpha}(s) = 0$. Thus, deg(H) in s variables is 0, deg(H) in T variables is D.

USING SYZYGIES SURFACES

LINEAR SYZYGIES, OUADRATIC SYZYGIES, ..., IMPLICIT EOUATION A COMMON SHAPE

- Linear syzygies of degree ν : $H(s,T) = \sum_{i=0}^{3} h_i(s)T_i$ such that $\sum_{i=0}^{3} h_i(s) f_i(s) = 0$. Thus, deg(H) in s variables is ν , deg(H) in T variables is 1.
- Quadratic syzygies of degree ν' : $H(s,T) = \sum_{i \le i=0}^{3} h_{i,i}(s)T_iT_i$ such that $\sum_{i=0}^{3} h_{i,i}(s) f_i f_i(s) = 0$. Thus, deg(H) in s variables is ν' , deg(H) in T variables is 2.
- Implicit equation (of degree D): $H(s,T) = \sum_{|\alpha| \le D} h_{\alpha} T^{\alpha}$ such that $\sum_{\alpha} h_{\alpha} f^{\alpha}(s) = 0$. Thus, deg(H) in s variables is 0, deg(H) in T variables is D.
- So to go from linear syzygies to the implicit equation we play the game of lowering the degree in the s variables to 0 (which increases the degree in the T varibles up to (at most) D)!

BASIC GENERAL ALGORITHM [BDD] SPARSE, [BCJ] CLASSIC

- **INPUT:** (*f*₀(*s*), *f*₁(*s*), *f*₂(*s*), *f*₃(*s*)) with Newton polytopes contained in *P* (a lattice polygon in the first quadrant), satisfying suitable hypotheses.
- **STEP 1:** Consider syzygies (h_0, \ldots, h_3) with $N(h_i) \subset \mathbf{2P} = \{p_1 + p_2, p_i \in P\}$. Let $(h_0^{(j)}, \ldots, h_3^{(j)}), j = 1, \ldots, N$, be a \mathbb{K} -basis of such syzygies.
- **STEP 2:** Represent the syzygies as linear forms $L_j = h_0^{(j)} T_0 + \dots + h_3^{(j)} T_3$. Write $h_i^{(j)} = \sum_{\beta \in 2P \cap \mathbb{Z}^2} h_{i,\beta}^{(j)} s^{\beta}$ and switch:

$$L_j = \sum_i h_i^{(j)} T_i = \sum_{\beta} \left(\sum_i h_{i,\beta}^{(j)} T_i \right) s^{\beta}.$$

BASIC GENERAL ALGORITHM [BDD] SPARSE, [BCJ] CLASSIC

- **INPUT:** (*f*₀(*s*), *f*₁(*s*), *f*₂(*s*), *f*₃(*s*)) with Newton polytopes contained in *P* (a lattice polygon in the first quadrant), satisfying suitable hypotheses.
- **STEP 1:** Consider syzygies (h_0, \ldots, h_3) with $N(h_i) \subset 2P = \{p_1 + p_2, p_i \in P\}$. Let $(h_0^{(j)}, \ldots, h_3^{(j)}), j = 1, \ldots, N$, be a K-basis of such syzygies
- **STEP 2:** Represent the syzygies as linear forms $L_j = h_0^{(j)} T_0 + \dots + h_3^{(j)} T_3$. Write $h_i^{(j)} = \sum_{\beta \in 2P \cap \mathbb{Z}^2} h_{i,\beta}^{(j)} s^{\beta}$ and switch:

$$L_j = \sum_i h_i^{(j)} T_i = \sum_{\beta} \left(\sum_i h_{i,\beta}^{(j)} T_i \right) s^{\beta}$$

BASIC GENERAL ALGORITHM [BDD] SPARSE, [BCJ] CLASSIC

- **INPUT:** (*f*₀(*s*), *f*₁(*s*), *f*₂(*s*), *f*₃(*s*)) with Newton polytopes contained in *P* (a lattice polygon in the first quadrant), satisfying suitable hypotheses.
- **STEP 1:** Consider syzygies (h_0, \ldots, h_3) with $N(h_i) \subset 2P = \{p_1 + p_2, p_i \in P\}$. Let $(h_0^{(j)}, \ldots, h_3^{(j)}), j = 1, \ldots, N$, be a \mathbb{K} -basis of such syzygies.
- **STEP 2:** Represent the syzygies as linear forms $L_j = h_0^{(j)} T_0 + \dots + h_3^{(j)} T_3$. Write $h_i^{(j)} = \sum_{\beta \in 2P \cap \mathbb{Z}^2} h_{i,\beta}^{(j)} s^{\beta}$ and switch:

$$L_j = \sum_i h_i^{(j)} T_i = \sum_{\beta} \left(\sum_i h_{i,\beta}^{(j)} T_i \right) s^{\beta}$$

BASIC GENERAL ALGORITHM [BDD] SPARSE, [BCJ] CLASSIC

- **INPUT:** (*f*₀(*s*), *f*₁(*s*), *f*₂(*s*), *f*₃(*s*)) with Newton polytopes contained in *P* (a lattice polygon in the first quadrant), satisfying suitable hypotheses.
- **STEP 1:** Consider syzygies (h_0, \ldots, h_3) with $N(h_i) \subset 2P = \{p_1 + p_2, p_i \in P\}$. Let $(h_0^{(j)}, \ldots, h_3^{(j)}), j = 1, \ldots, N$, be a K-basis of such syzygies.
- STEP 2: Represent the syzygies as linear forms $L_j = h_0^{(j)} T_0 + \dots + h_3^{(j)} T_3$. Write $h_i^{(j)} = \sum_{\beta \in 2P \cap \mathbb{Z}^2} h_{i,\beta}^{(j)} s^{\beta}$ and switch:

$$L_j = \sum_i h_i^{(j)} T_i = \sum_{\beta} \left(\sum_i h_{i,\beta}^{(j)} T_i \right) s^{\beta}.$$

BASIC GENERAL ALGORITHM [BDD] SPARSE, [BCJ] CLASSIC

- **INPUT:** (*f*₀(*s*), *f*₁(*s*), *f*₂(*s*), *f*₃(*s*)) with Newton polytopes contained in *P* (a lattice polygon in the first quadrant), satisfying suitable hypotheses.
- **STEP 1:** Consider syzygies (h_0, \ldots, h_3) with $N(h_i) \subset 2P = \{p_1 + p_2, p_i \in P\}$. Let $(h_0^{(j)}, \ldots, h_3^{(j)}), j = 1, \ldots, N$, be a K-basis of such syzygies.
- **STEP 2:** Represent the syzygies as linear forms $L_j = h_0^{(j)} T_0 + \dots + h_3^{(j)} T_3$. Write $h_i^{(j)} = \sum_{\beta \in 2P \cap \mathbb{Z}^2} h_{i,\beta}^{(j)} s^{\beta}$ and switch:

$$L_j = \sum_i h_i^{(j)} T_i = \sum_{\beta} \left(\sum_i h_{i,\beta}^{(j)} T_i \right) s^{\beta}.$$

THEOREM([BOTBOL-D.-DOHM])

If the "suitable hypotheses" are satisfied, the matrix M is a representation matrix for the closed image S of f: its rank drops precisely at the points of S and the gcd of its maximal minors equals $F^{\text{deg}(f)}$.

This method can be called Instant Elimination (cf [Eisenbud, Huneke, Ulrich], OWR report 2004])

Remark

In fact, the previous algorithm can be run without checking anything beforehand (more in a while).

THEOREM([BOTBOL-D.-DOHM])

If the "suitable hypotheses" are satisfied, the matrix M is a representation matrix for the closed image S of f: its rank drops precisely at the points of S and the gcd of its maximal minors equals $F^{\text{deg}(f)}$.

This method can be called Instant Elimination (cf [Eisenbud, Huneke, Ulrich], OWR report 2004])

Remark

In fact, the previous algorithm can be run without checking anything beforehand (more in a while).

THEOREM([BOTBOL-D.-DOHM])

If the "suitable hypotheses" are satisfied, the matrix M is a representation matrix for the closed image S of f: its rank drops precisely at the points of S and the gcd of its maximal minors equals $F^{\text{deg}(f)}$.

This method can be called Instant Elimination (cf [Eisenbud, Huneke, Ulrich], OWR report 2004])

Remark

In fact, the previous algorithm can be run without checking anything beforehand (more in a while).

SIZE OF THE MATRICES IN THE ALGORITHM

- Assume for example that *P* is the triangle of size *d*. Then, in fact, it is enough to consider syzygies of degree 2d 2. Therefore, to find them, we have a system on $4\binom{2d}{2}$ variables with $\binom{3d}{2}$ equations. That is, both sizes, as well as the vector space dimension of the space of syzygies in this degree, are quadratic in *d*.
- The matrix *M* has then a number of rows quadratic in *d*. The number of its columns equals $\binom{2d}{2}$, again quadratic in *d*.

We can get a representation matrix via syzygies with considerably smaller linear systems that in the naive linear algebra method! (which were of the order of d^6).

SIZE OF THE MATRICES IN THE ALGORITHM

- Assume for example that *P* is the triangle of size *d*. Then, in fact, it is enough to consider syzygies of degree 2d 2. Therefore, to find them, we have a system on $4\binom{2d}{2}$ variables with $\binom{3d}{2}$ equations. That is, both sizes, as well as the vector space dimension of the space of syzygies in this degree, are quadratic in *d*.
- The matrix *M* has then a number of rows quadratic in *d*. The number of its columns equals $\binom{2d}{2}$, again quadratic in *d*.

We can get a representation matrix via syzygies with considerably smaller linear systems that in the naive linear algebra method! (which were of the order of d^6).

SIZE OF THE MATRICES IN THE ALGORITHM

- Assume for example that *P* is the triangle of size *d*. Then, in fact, it is enough to consider syzygies of degree 2d 2. Therefore, to find them, we have a system on $4\binom{2d}{2}$ variables with $\binom{3d}{2}$ equations. That is, both sizes, as well as the vector space dimension of the space of syzygies in this degree, are quadratic in *d*.
- The matrix *M* has then a number of rows quadratic in *d*. The number of its columns equals $\binom{2d}{2}$, again quadratic in *d*.

We can get a representation matrix via syzygies with considerably smaller linear systems that in the naive linear algebra method! (which were of the order of d^6).

- The general algorithm above can be refined (under the same hypotheses of *f*).
- If the lattice polytope *P* can be written as P = dP', with *P'* another lattice polygon without interior lattice points, then we can consider in STEP 1 syzygies (h_0, \ldots, h_3) with $N(h_i)$ contained in (2d 1)P', which it is strictly contained in 2*P*, that is, with smaller support.
- Moreover, in case P' is the unit simplex, it is enough to consider syzygies with support inside (2d 2)P'.
- In general, the presence of base points $(V(f_0, \ldots, f_3) \neq \emptyset)$ allows to take syzygies with smaller supports.
- In the bihomogeneous case (that is, when *P* is a rectangle), a detailed study of regularity allows to get the following improvement in the support of the proposed syzygies in STEP 1.

- The general algorithm above can be refined (under the same hypotheses of *f*).
- If the lattice polytope *P* can be written as P = dP', with *P'* another lattice polygon without interior lattice points, then we can consider in STEP 1 syzygies (h_0, \ldots, h_3) with $N(h_i)$ contained in (2d 1)P', which it is strictly contained in 2*P*, that is, with smaller support.
- Moreover, in case P' is the unit simplex, it is enough to consider syzygies with support inside (2d 2)P'.
- In general, the presence of base points $(V(f_0, \ldots, f_3) \neq \emptyset)$ allows to take syzygies with smaller supports.
- In the bihomogeneous case (that is, when *P* is a rectangle), a detailed study of regularity allows to get the following improvement in the support of the proposed syzygies in STEP 1.

- The general algorithm above can be refined (under the same hypotheses of *f*).
- If the lattice polytope *P* can be written as P = dP', with *P'* another lattice polygon without interior lattice points, then we can consider in STEP 1 syzygies (h_0, \ldots, h_3) with $N(h_i)$ contained in (2d 1)P', which it is strictly contained in 2*P*, that is, with smaller support.
- Moreover, in case P' is the unit simplex, it is enough to consider syzygies with support inside (2d 2)P'.
- In general, the presence of base points $(V(f_0, \ldots, f_3) \neq \emptyset)$ allows to take syzygies with smaller supports.
- In the bihomogeneous case (that is, when *P* is a rectangle), a detailed study of regularity allows to get the following improvement in the support of the proposed syzygies in STEP 1.

- The general algorithm above can be refined (under the same hypotheses of *f*).
- If the lattice polytope *P* can be written as P = dP', with *P'* another lattice polygon without interior lattice points, then we can consider in STEP 1 syzygies (h_0, \ldots, h_3) with $N(h_i)$ contained in (2d 1)P', which it is strictly contained in 2*P*, that is, with smaller support.
- Moreover, in case P' is the unit simplex, it is enough to consider syzygies with support inside (2d 2)P'.
- In general, the presence of base points (V(f₀,...,f₃) ≠ Ø) allows to take syzygies with smaller supports.
- In the bihomogeneous case (that is, when *P* is a rectangle), a detailed study of regularity allows to get the following improvement in the support of the proposed syzygies in STEP 1.

- The general algorithm above can be refined (under the same hypotheses of *f*).
- If the lattice polytope *P* can be written as P = dP', with *P'* another lattice polygon without interior lattice points, then we can consider in STEP 1 syzygies (h_0, \ldots, h_3) with $N(h_i)$ contained in (2d 1)P', which it is strictly contained in 2*P*, that is, with smaller support.
- Moreover, in case P' is the unit simplex, it is enough to consider syzygies with support inside (2d 2)P'.
- In general, the presence of base points (V(f₀,...,f₃) ≠ Ø) allows to take syzygies with smaller supports.
- In the bihomogeneous case (that is, when *P* is a rectangle), a detailed study of regularity allows to get the following improvement in the support of the proposed syzygies in STEP 1.

THEOREM

The output of the following algorithm is a representation matrix for the rational surface parametrized by a rational map which in the conditions stated in the INPUT below.

- **INPUT:** (*f*₀,*f*₁,*f*₂,*f*₃) with Newton polytopes contained in a rectangle *R*, say, with opposite vertices (0,0) and (*a*, *b*), satisfying certain hypotheses.
- **STEP 1:** Consider syzygies $(h_0, ..., h_3)$ with $N(h_i) \subset R'$ the rectangle with opposite vertices (0,0) and (2a,b) (or (0,0) and (a,2b)). Let $(h_0^{(j)}, ..., h_3^{(j)}), j = 1, ..., N$, be a K-basis of such syzygies.
- STEP 2: Represent them as linear forms $L_j = h_0^{(j)} T_0 + \dots + h_3^{(j)} T_3$. Write $h_i^{(j)} = \sum_{\beta \in \mathbb{R}' \cap \mathbb{Z}^2} h_{i,\beta}^{(j)} s^{\beta}$ and switch: $L_j = \sum_i h_i^{(j)} T_i = \sum_{\beta} \left(\sum_i h_{i,\beta}^{(j)} T_i \right) s^{\beta}$.

THEOREM

The output of the following algorithm is a representation matrix for the rational surface parametrized by a rational map which in the conditions stated in the INPUT below.

- **INPUT:** (*f*₀, *f*₁, *f*₂, *f*₃) with Newton polytopes contained in a rectangle *R*, say, with opposite vertices (0,0) and (*a*, *b*), satisfying certain hypotheses.
- **STEP 1:** Consider syzygies $(h_0, ..., h_3)$ with $N(h_i) \subset R'$ the rectangle with opposite vertices (0,0) and (2a,b) (or (0,0) and (a,2b)). Let $(h_0^{(j)}, ..., h_3^{(j)}), j = 1, ..., N$, be a K-basis of such syzygies.
- STEP 2: Represent them as linear forms $L_j = h_0^{(j)} T_0 + \dots + h_3^{(j)} T_3$. Write $h_i^{(j)} = \sum_{\beta \in \mathbb{R}' \cap \mathbb{Z}^2} h_{i,\beta}^{(j)} s^{\beta}$ and switch: $L_j = \sum_i h_i^{(j)} T_i = \sum_{\beta} \left(\sum_i h_{i,\beta}^{(j)} T_i \right) s^{\beta}$.

THEOREM

The output of the following algorithm is a representation matrix for the rational surface parametrized by a rational map which in the conditions stated in the INPUT below.

- **INPUT:** (*f*₀,*f*₁,*f*₂,*f*₃) with Newton polytopes contained in a rectangle *R*, say, with opposite vertices (0,0) and (*a*, *b*), satisfying certain hypotheses.
- **STEP 1:** Consider syzygies $(h_0, ..., h_3)$ with $N(h_i) \subset R'$ the rectangle with opposite vertices (0, 0) and (2a, b) (or (0, 0) and (a, 2b)). Let $(h_0^{(j)}, ..., h_3^{(j)}), j = 1, ..., N$, be a K-basis of such syzygies.
- STEP 2: Represent them as linear forms $L_j = h_0^{(j)} T_0 + \dots + h_3^{(j)} T_3$. Write $h_i^{(j)} = \sum_{\beta \in \mathbb{R}' \cap \mathbb{Z}^2} h_{i,\beta}^{(j)} s^{\beta}$ and switch: $L_j = \sum_i h_i^{(j)} T_i = \sum_{\beta} \left(\sum_i h_{i,\beta}^{(j)} T_i \right) s^{\beta}$.

THEOREM

The output of the following algorithm is a representation matrix for the rational surface parametrized by a rational map which in the conditions stated in the INPUT below.

- **INPUT:** (*f*₀,*f*₁,*f*₂,*f*₃) with Newton polytopes contained in a rectangle *R*, say, with opposite vertices (0,0) and (*a*, *b*), satisfying certain hypotheses.
- **STEP 1:** Consider syzygies $(h_0, ..., h_3)$ with $N(h_i) \subset R'$ the rectangle with opposite vertices (0, 0) and (2a, b) (or (0, 0) and (a, 2b)). Let $(h_0^{(j)}, ..., h_3^{(j)}), j = 1, ..., N$, be a K-basis of such syzygies.
- STEP 2: Represent them as linear forms $L_j = h_0^{(j)} T_0 + \dots + h_3^{(j)} T_3$. Write $h_i^{(j)} = \sum_{\beta \in R' \cap \mathbb{Z}^2} h_{i,\beta}^{(j)} s^{\beta}$ and switch: $L_j = \sum_i h_i^{(j)} T_i = \sum_{\beta} \left(\sum_i h_{i,\beta}^{(j)} T_i \right) s^{\beta}$.

THEOREM

The output of the following algorithm is a representation matrix for the rational surface parametrized by a rational map which in the conditions stated in the INPUT below.

- **INPUT:** (*f*₀,*f*₁,*f*₂,*f*₃) with Newton polytopes contained in a rectangle *R*, say, with opposite vertices (0,0) and (*a*, *b*), satisfying certain hypotheses.
- **STEP 1:** Consider syzygies $(h_0, ..., h_3)$ with $N(h_i) \subset R'$ the rectangle with opposite vertices (0, 0) and (2a, b) (or (0, 0) and (a, 2b)). Let $(h_0^{(j)}, ..., h_3^{(j)}), j = 1, ..., N$, be a K-basis of such syzygies.
- STEP 2: Represent them as linear forms $L_j = h_0^{(j)}T_0 + \dots + h_3^{(j)}T_3$. Write $h_i^{(j)} = \sum_{\beta \in \mathbb{R}' \cap \mathbb{Z}^2} h_{i,\beta}^{(j)} s^{\beta}$ and switch: $L_j = \sum_i h_i^{(j)} T_i = \sum_{\beta} \left(\sum_i h_{i,\beta}^{(j)} T_i \right) s^{\beta}$.
- **OUTPUT:** The matrix **M** of linear forms $\ell_{j,\beta} := \sum_i h_{i,\beta}^{(j)} T_i$.
COMPACTIFYING DOMAIN AND CODOMAIN

• We can instead consider the map $\tilde{f} : \mathbb{A}^2 \dashrightarrow \mathbb{P}^3$ with image inside 3-dimensional projective space given by

$$s \mapsto (f_0(s) : f_1(s) : f_2(s) : f_3(s)).$$

The defining equation of the closure \tilde{S} of the image of \tilde{f} is the homogenization of the polynomial *F* with a new variable T_0 .

- We can consider the rational parametrization from another normal algebraic variety \mathcal{T} which contains the domain of \tilde{f} as a dense subset (a toric variety), so we get $\tilde{f} : \mathcal{T} \dashrightarrow \mathbb{P}^3$.
- The base point locus $V(I) \subset \mathcal{T}$ is the common zero set of the ideal $I = \langle \tilde{f}_0, \dots, \tilde{f}_3 \rangle$, that is, the points at where \tilde{f} is not defined.

COMPACTIFYING DOMAIN AND CODOMAIN

• We can instead consider the map $\tilde{f} : \mathbb{A}^2 \dashrightarrow \mathbb{P}^3$ with image inside 3-dimensional projective space given by

$$s \mapsto (f_0(s) : f_1(s) : f_2(s) : f_3(s)).$$

The defining equation of the closure \tilde{S} of the image of \tilde{f} is the homogenization of the polynomial *F* with a new variable T_0 .

- We can consider the rational parametrization from another normal algebraic variety \mathcal{T} which contains the domain of \tilde{f} as a dense subset (a toric variety), so we get $\tilde{f} : \mathcal{T} \dashrightarrow \mathbb{P}^3$.
- The base point locus $V(I) \subset \mathcal{T}$ is the common zero set of the ideal $I = \langle \tilde{f}_0, \dots, \tilde{f}_3 \rangle$, that is, the points at where \tilde{f} is not defined.

COMPACTIFYING DOMAIN AND CODOMAIN

• We can instead consider the map $\tilde{f} : \mathbb{A}^2 \dashrightarrow \mathbb{P}^3$ with image inside 3-dimensional projective space given by

$$s \mapsto (f_0(s) : f_1(s) : f_2(s) : f_3(s)).$$

The defining equation of the closure \tilde{S} of the image of \tilde{f} is the homogenization of the polynomial *F* with a new variable T_0 .

- We can consider the rational parametrization from another normal algebraic variety \mathcal{T} which contains the domain of \tilde{f} as a dense subset (a toric variety), so we get $\tilde{f} : \mathcal{T} \dashrightarrow \mathbb{P}^3$.
- The base point locus $V(I) \subset \mathcal{T}$ is the common zero set of the ideal $I = \langle \tilde{f}_0, \dots, \tilde{f}_3 \rangle$, that is, the points at where \tilde{f} is not defined.

THE REES ALGEBRA

The equation of the closed image \tilde{S} of $\tilde{f} : \mathcal{T} \to \mathbb{P}^3$ on the variables (T_0, \ldots, T_3) depends on the relation between the polynomials $f_0, \ldots, f_3 \in A$, a ring with another set of variables. The natural ambient for our elimination problem is a variety where both group of variables are involved:

where Γ is the closure of the graph of \tilde{f} . Thus, $\tilde{\mathcal{S}} = \pi_2(\Gamma)$.

- $\Gamma \subset \mathcal{T} \times \mathbb{P}^3$ corresponds to $A[T_0, T_1, T_2, T_3] \rightarrow \operatorname{Rees}_A(I)$, the Rees algebra of *I* over *A*. The projection $\pi_2(\Gamma)$ corresponds to eliminating the variables in *A*.
- But how to eliminate the variables in A from $\text{Rees}_A(I)$?

THE REES ALGEBRA

• The equation of the closed image \tilde{S} of $\tilde{f} : \mathcal{T} \to \mathbb{P}^3$ on the variables (T_0, \ldots, T_3) depends on the relation between the polynomials $f_0, \ldots, f_3 \in A$, a ring with another set of variables. The natural ambient for our elimination problem is a variety where both group of variables are involved:

where Γ is the closure of the graph of \tilde{f} . Thus, $\tilde{\mathcal{S}} = \pi_2(\Gamma)$.

- $\Gamma \subset \mathcal{T} \times \mathbb{P}^3$ corresponds to $A[T_0, T_1, T_2, T_3] \twoheadrightarrow \operatorname{Rees}_A(I)$, the Rees algebra of *I* over *A*. The projection $\pi_2(\Gamma)$ corresponds to eliminating the variables in *A*.
- But how to eliminate the variables in *A* from Rees_{*A*}(*I*)?

THE REES ALGEBRA

• The equation of the closed image \tilde{S} of $\tilde{f} : \mathcal{T} \to \mathbb{P}^3$ on the variables (T_0, \ldots, T_3) depends on the relation between the polynomials $f_0, \ldots, f_3 \in A$, a ring with another set of variables. The natural ambient for our elimination problem is a variety where both group of variables are involved:

where Γ is the closure of the graph of \tilde{f} . Thus, $\tilde{\mathcal{S}} = \pi_2(\Gamma)$.

- $\Gamma \subset \mathcal{T} \times \mathbb{P}^3$ corresponds to $A[T_0, T_1, T_2, T_3] \twoheadrightarrow \operatorname{Rees}_A(I)$, the Rees algebra of *I* over *A*. The projection $\pi_2(\Gamma)$ corresponds to eliminating the variables in *A*.
- But how to eliminate the variables in A from $\text{Rees}_A(I)$?

- There is no "universal" way to compute a free presentation for $\text{Rees}_A(I)$. Thus, in general one approximates $\text{Rees}_A(I)$ by the symmetric algebra $\text{Sym}_A(I)$, that admits a known resolution (under some hypotheses).
- The symmetric algebra can be presented as $A[T_0, T_1, T_2, T_3]/J$, where $J := \langle \sum h_i T_i, h_i \in A \text{ and } \sum h_i f_i = 0 \rangle$. !!!
- But which is the relation between $\operatorname{Rees}_A(I)$ and $\operatorname{Sym}_A(I)$?
- Assume for every $p \in V$, I_p is a complete intersection in A_p (I is lci, generated locally by 2 elements). Then, $\text{Rees}_A(I)$ and $\text{Sym}_A(I)$ define the same scheme in $\mathcal{T} \times \mathbb{P}^3$.
- Thus, since $\operatorname{Rees}_A(I)$ is "torsion" free, both algebras coincide modulo the "torsion" of $\operatorname{Sym}_A(I)$.

- There is no "universal" way to compute a free presentation for $\text{Rees}_A(I)$. Thus, in general one approximates $\text{Rees}_A(I)$ by the symmetric algebra $\text{Sym}_A(I)$, that admits a known resolution (under some hypotheses).
- The symmetric algebra can be presented as $A[T_0, T_1, T_2, T_3]/J$, where $J := \langle \sum h_i T_i, h_i \in A \text{ and } \sum h_i f_i = 0 \rangle$. !!!
- But which is the relation between $\operatorname{Rees}_A(I)$ and $\operatorname{Sym}_A(I)$?
- Assume for every $p \in V$, I_p is a complete intersection in A_p (I is lci, generated locally by 2 elements). Then, $\text{Rees}_A(I)$ and $\text{Sym}_A(I)$ define the same scheme in $\mathcal{T} \times \mathbb{P}^3$.
- Thus, since $\operatorname{Rees}_A(I)$ is "torsion" free, both algebras coincide modulo the "torsion" of $\operatorname{Sym}_A(I)$.

- There is no "universal" way to compute a free presentation for $\text{Rees}_A(I)$. Thus, in general one approximates $\text{Rees}_A(I)$ by the symmetric algebra $\text{Sym}_A(I)$, that admits a known resolution (under some hypotheses).
- The symmetric algebra can be presented as $A[T_0, T_1, T_2, T_3]/J$, where $J := \langle \sum h_i T_i, h_i \in A \text{ and } \sum h_i f_i = 0 \rangle$. !!!
- But which is the relation between $\operatorname{Rees}_A(I)$ and $\operatorname{Sym}_A(I)$?
- Assume for every $p \in V$, I_p is a complete intersection in A_p (I is lci, generated locally by 2 elements). Then, $\text{Rees}_A(I)$ and $\text{Sym}_A(I)$ define the same scheme in $\mathcal{T} \times \mathbb{P}^3$.
- Thus, since $\text{Rees}_A(I)$ is "torsion" free, both algebras coincide modulo the "torsion" of $\text{Sym}_A(I)$.

- There is no "universal" way to compute a free presentation for $\operatorname{Rees}_A(I)$. Thus, in general one approximates $\operatorname{Rees}_A(I)$ by the symmetric algebra $\operatorname{Sym}_A(I)$, that admits a known resolution (under some hypotheses).
- The symmetric algebra can be presented as $A[T_0, T_1, T_2, T_3]/J$, where $J := \langle \sum h_i T_i, h_i \in A \text{ and } \sum h_i f_i = 0 \rangle$. !!!
- But which is the relation between $\operatorname{Rees}_A(I)$ and $\operatorname{Sym}_A(I)$?
- Assume for every $p \in V$, I_p is a complete intersection in A_p (I is lci, generated locally by 2 elements). Then, $\text{Rees}_A(I)$ and $\text{Sym}_A(I)$ define the same scheme in $\mathcal{T} \times \mathbb{P}^3$.
- Thus, since $\operatorname{Rees}_A(I)$ is "torsion" free, both algebras coincide modulo the "torsion" of $\operatorname{Sym}_A(I)$.

- There is no "universal" way to compute a free presentation for $\text{Rees}_A(I)$. Thus, in general one approximates $\text{Rees}_A(I)$ by the symmetric algebra $\text{Sym}_A(I)$, that admits a known resolution (under some hypotheses).
- The symmetric algebra can be presented as $A[T_0, T_1, T_2, T_3]/J$, where $J := \langle \sum h_i T_i, h_i \in A \text{ and } \sum h_i f_i = 0 \rangle$. !!!
- But which is the relation between $\operatorname{Rees}_A(I)$ and $\operatorname{Sym}_A(I)$?
- Assume for every $p \in V$, I_p is a complete intersection in A_p (I is lci, generated locally by 2 elements). Then, $\text{Rees}_A(I)$ and $\text{Sym}_A(I)$ define the same scheme in $\mathcal{T} \times \mathbb{P}^3$.
- Thus, since Rees_A(I) is "torsion" free, both algebras coincide modulo the "torsion" of Sym_A(I).

- The approximation complex Z_{\bullet} is a bi-graded complex of $A[\underline{T}]$ -modules constructed by means of two Koszul complexes (with respect to \tilde{f} and to T), which gives a resolution of $\operatorname{Sym}_{A}(I)$ if I is a lci (or even alci).
- For any given degree v in the source variables, it induces a graded complex (Z_•)_v of K[<u>T</u>]-modules
 - $0 \rightarrow (\mathcal{Z}_3)_{\nu} \stackrel{\overline{e}_3}{\rightarrow} (\mathcal{Z}_2)_{\nu} \stackrel{\overline{e}_2}{\rightarrow} (\mathcal{Z}_1)_{\nu} \stackrel{\overline{e}_1}{\rightarrow} (\mathcal{Z}_0)_{\nu}$ and M_{ν} is the matrix of \overline{e}_1 in the monomial bases.
- What does this imply for us? If the approximation complex gives a presentation of $\text{Sym}_A(I)$, M_ν represents \mathcal{S} for ν beyond the torsion of $\text{Sym}_A(I)$ (because for these degrees the Rees and Symmetric algebra coincide).
- To bound this torsion: either study the embedded toric variety associated to the input lattice polygon *P* (cut out by the corresponding toric ideal) (the associated ring *A* is Cohen Macaulay since *P* is always normal in dimension two), or study multigraded regularity in the Cox ring associated to the normal fan of *P* ([Maclagan-Smith]).

A. DICKENSTEIN (UBA)

- The approximation complex Z_{\bullet} is a bi-graded complex of $A[\underline{T}]$ -modules constructed by means of two Koszul complexes (with respect to \tilde{f} and to T), which gives a resolution of $\operatorname{Sym}_{A}(I)$ if I is a lci (or even alci).
- For any given degree ν in the source variables, it induces a graded complex (Z_•)_ν of K[<u>T</u>]-modules

 $0 \to (\mathcal{Z}_3)_{\nu} \stackrel{\overline{e}_3}{\to} (\mathcal{Z}_2)_{\nu} \stackrel{\overline{e}_2}{\to} (\mathcal{Z}_1)_{\nu} \stackrel{\overline{e}_1}{\to} (\mathcal{Z}_0)_{\nu} \text{ and } M_{\nu} \text{ is the matrix of } \overline{e}_1$ in the monomial bases.

- What does this imply for us? If the approximation complex gives a presentation of $\text{Sym}_A(I)$, M_ν represents \mathcal{S} for ν beyond the torsion of $\text{Sym}_A(I)$ (because for these degrees the Rees and Symmetric algebra coincide).
- To bound this torsion: either study the embedded toric variety associated to the input lattice polygon *P* (cut out by the corresponding toric ideal) (the associated ring *A* is Cohen Macaulay since *P* is always normal in dimension two), or study multigraded regularity in the Cox ring associated to the normal fan of *P* ([Maclagan-Smith]).

A. DICKENSTEIN (UBA)

- The approximation complex Z_{\bullet} is a bi-graded complex of $A[\underline{T}]$ -modules constructed by means of two Koszul complexes (with respect to \tilde{f} and to T), which gives a resolution of $\operatorname{Sym}_{A}(I)$ if I is a lci (or even alci).
- For any given degree ν in the source variables, it induces a graded complex (Z_•)_ν of K[<u>T</u>]-modules

 $0 \rightarrow (\mathcal{Z}_3)_{\nu} \stackrel{\overline{e}_3}{\rightarrow} (\mathcal{Z}_2)_{\nu} \stackrel{\overline{e}_2}{\rightarrow} (\mathcal{Z}_1)_{\nu} \stackrel{\overline{e}_1}{\rightarrow} (\mathcal{Z}_0)_{\nu}$ and M_{ν} is the matrix of \overline{e}_1 in the monomial bases.

- What does this imply for us? If the approximation complex gives a presentation of $\text{Sym}_A(I)$, M_ν represents \mathcal{S} for ν beyond the torsion of $\text{Sym}_A(I)$ (because for these degrees the Rees and Symmetric algebra coincide).
- To bound this torsion: either study the embedded toric variety associated to the input lattice polygon *P* (cut out by the corresponding toric ideal) (the associated ring *A* is Cohen Macaulay since *P* is always normal in dimension two), or study multigraded regularity in the Cox ring associated to the normal fan of *P* ([Maclagan-Smith]).

A. DICKENSTEIN (UBA)

- The approximation complex Z_{\bullet} is a bi-graded complex of $A[\underline{T}]$ -modules constructed by means of two Koszul complexes (with respect to \tilde{f} and to T), which gives a resolution of $\operatorname{Sym}_{A}(I)$ if I is a lci (or even alci).
- For any given degree ν in the source variables, it induces a graded complex (Z_•)_ν of K[<u>T</u>]-modules

 $0 \rightarrow (\mathcal{Z}_3)_{\nu} \stackrel{\overline{e}_3}{\rightarrow} (\mathcal{Z}_2)_{\nu} \stackrel{\overline{e}_2}{\rightarrow} (\mathcal{Z}_1)_{\nu} \stackrel{\overline{e}_1}{\rightarrow} (\mathcal{Z}_0)_{\nu}$ and M_{ν} is the matrix of \overline{e}_1 in the monomial bases.

- What does this imply for us? If the approximation complex gives a presentation of $\text{Sym}_A(I)$, M_ν represents \mathcal{S} for ν beyond the torsion of $\text{Sym}_A(I)$ (because for these degrees the Rees and Symmetric algebra coincide).
- To bound this torsion: either study the embedded toric variety associated to the input lattice polygon P (cut out by the corresponding toric ideal) (the associated ring A is Cohen Macaulay since P is always normal in dimension two), or study multigraded regularity in the Cox ring associated to the normal fan of P ([Maclagan-Smith]).

A. DICKENSTEIN (UBA)

- Dimension can be checked, lci in particular cases.
- But what if we don't check this and run the algorithm? ...nothing bad!
- We just check whether M_{ν} has full rank (by evaluation).
 - # If the rank is not maximal, then there is a base point p which is not an almost local complete intersection. (I₀ cannot be generated by 5 clonents).
 - If the rank is maximal, it may happen that the rank of M₀ drops at some other places besides S due to the existence of an almost local complete intersection base point which is not a complete intersection base point which is not a complete intersection.

- Dimension can be checked, lci in particular cases.
- But what if we don't check this and run the algorithm? ...nothing bad!
- We just check whether M_{ν} has full rank (by evaluation).
 - # If the rank is not maximal, then there is a base point p which is not an almost local complete intersection. (I₀ cannot be generated by 5 clonents).
 - If the rank is maximal, it may happen that the rank of M₀ drops at some other places besides S due to the existence of an almost local complete intersection base point which is not a complete intersection base point which is not a complete intersection.

- Dimension can be checked, lci in particular cases.
- But what if we don't check this and run the algorithm?
- We just check whether M_{ν} has full rank (by evaluation).
 - If the rank is not maximal, then there is a base point p which is not an almost local complete intersection, (l_p cannot be generated by 3 elements).
 - If the rank is maximal, it may happen that the rank of M₀ drops at some other places besides S due to the existence of an almost local complete intersection base point which is not a complete intersection base point which is not a complete intersection. In this case, the approximation complete is still ease!

- Dimension can be checked, lci in particular cases.
- But what if we don't check this and run the algorithm? ...nothing bad!
- We just check whether M_ν has full rank (by evaluation).
 If the rank is not maximal, then there is a base point p which is not an almost local complete intersection. (f_p cannot be generate by 3 elements).
 - a) If the rank is maximal, it may happen that the rank of M₀, drops at some other places besides S due to the existence of an almost local complete intersection base point which is not a complete intersection base point which is not a complete intersection.

- Dimension can be checked, lci in particular cases.
- But what if we don't check this and run the algorithm? ...nothing bad!
- We just check whether M_ν has full rank (by evaluation).
 If the rank is not maximal, then there is a base point p which is not an almost local complete intersection. (f_p cannot be generate by 3 elements).
 - a) If the rank is maximal, it may happen that the rank of M₀, drops at some other places besides S due to the existence of an almost local complete intersection base point which is not a complete intersection base point which is not a complete intersection.

- Dimension can be checked, lci in particular cases.
- But what if we don't check this and run the algorithm? ...nothing bad!
- We just check whether M_{ν} has full rank (by evaluation).
 - If the rank is not maximal, then there is a base point p which is not an almost local complete intersection. (Ip cannot be generated by 3 elements).
 - If the rank is maximal, it may happen that the rank of M_{ν} drops at some other places besides S due to the existence of an almost local complete intersection base point which is not a complete intersection. In this case, the approximation complex is still exact but there might be extra factors in the gcd from these points.

- Dimension can be checked, lci in particular cases.
- But what if we don't check this and run the algorithm? ...nothing bad!
- We just check whether M_{ν} has full rank (by evaluation).
 - If the rank is not maximal, then there is a base point p which is not an almost local complete intersection. (Ip cannot be generated by 3 elements).
 - If the rank is maximal, it may happen that the rank of M_{ν} drops at some other places besides S due to the existence of an almost local complete intersection base point which is not a complete intersection. In this case, the approximation complex is still exact but there might be extra factors in the gcd from these points.

- Dimension can be checked, lci in particular cases.
- But what if we don't check this and run the algorithm? ...nothing bad!
- We just check whether M_{ν} has full rank (by evaluation).
 - If the rank is not maximal, then there is a base point p which is not an almost local complete intersection. (Ip cannot be generated by 3 elements).
 - If the rank is maximal, it may happen that the rank of M_{ν} drops at some other places besides S due to the existence of an almost local complete intersection base point which is not a complete intersection. In this case, the approximation complex is still exact but there might be extra factors in the gcd from these points.

 Consider the parametrization with 6 monomials: (f₀, f₁, f₂, f₃) = (2 + s²t⁶, st⁶ + 2, st⁵ - 3st³, st⁴ + 5s²t⁶)
 N(f) = P =

$$(f_0, f_1, f_2, f_3) = (2 + s^2 t^6, st^6 + 2, st^5 - 3st^3, st^4 + 5s^2 t^6)$$

- Coordinate ring of \mathcal{T} is $\mathbb{K}[X_0, \dots, X_5]/J_P$, where $J_P = (X_3^2 - X_2X_4, X_2X_3 - X_1X_4, X_2^2 - X_1X_3, X_1^2 - X_0X_5)$
- New parametrization over \mathcal{T} given by $(2X_0 + X_5, 2X_0 + X_4, -3X_1 + X_3, X_2 + 5X_5).$
- The matrix M_2 is a matrix representation of size 17×34 .
- The method fails over \mathbb{P}^2 and $\mathbb{P}^1 \times \mathbb{P}^1$ due to non-lci base points!

- $\bullet (f_0, f_1, f_2, f_3) = (2 + s^2 t^6, st^6 + 2, st^5 3st^3, st^4 + 5s^2 t^6)$
- Coordinate ring of \mathcal{T} is $\mathbb{K}[X_0, \dots, X_5]/J_P$, where $J_P = (X_3^2 - X_2X_4, X_2X_3 - X_1X_4, X_2^2 - X_1X_3, X_1^2 - X_0X_5)$
- New parametrization over \mathcal{T} given by $(2X_0 + X_5, 2X_0 + X_4, -3X_1 + X_3, X_2 + 5X_5).$
- The matrix M_2 is a matrix representation of size 17×34 .
- The method fails over \mathbb{P}^2 and $\mathbb{P}^1 \times \mathbb{P}^1$ due to non-lci base points!

$$(f_0, f_1, f_2, f_3) = (2 + s^2 t^6, st^6 + 2, st^5 - 3st^3, st^4 + 5s^2 t^6)$$

- Coordinate ring of \mathcal{T} is $\mathbb{K}[X_0, \dots, X_5]/J_P$, where $J_P = (X_3^2 - X_2X_4, X_2X_3 - X_1X_4, X_2^2 - X_1X_3, X_1^2 - X_0X_5)$
- New parametrization over \mathcal{T} given by $(2X_0 + X_5, 2X_0 + X_4, -3X_1 + X_3, X_2 + 5X_5).$
- The matrix M_2 is a matrix representation of size 17×34 .
- The method fails over \mathbb{P}^2 and $\mathbb{P}^1 \times \mathbb{P}^1$ due to non-lci base points!

- $(f_0, f_1, f_2, f_3) = (2 + s^2 t^6, st^6 + 2, st^5 3st^3, st^4 + 5s^2 t^6)$
- Coordinate ring of \mathcal{T} is $\mathbb{K}[X_0, \dots, X_5]/J_P$, where $J_P = (X_3^2 - X_2X_4, X_2X_3 - X_1X_4, X_2^2 - X_1X_3, X_1^2 - X_0X_5)$
- New parametrization over \mathcal{T} given by $(2X_0 + X_5, 2X_0 + X_4, -3X_1 + X_3, X_2 + 5X_5).$
- The matrix M_2 is a matrix representation of size 17×34 .
- The method fails over \mathbb{P}^2 and $\mathbb{P}^1 \times \mathbb{P}^1$ due to non-lci base points!

- $(f_0, f_1, f_2, f_3) = (2 + s^2 t^6, st^6 + 2, st^5 3st^3, st^4 + 5s^2 t^6)$
- Coordinate ring of \mathcal{T} is $\mathbb{K}[X_0, \dots, X_5]/J_P$, where $J_P = (X_3^2 - X_2X_4, X_2X_3 - X_1X_4, X_2^2 - X_1X_3, X_1^2 - X_0X_5)$
- New parametrization over \mathcal{T} given by $(2X_0 + X_5, 2X_0 + X_4, -3X_1 + X_3, X_2 + 5X_5).$
- The matrix M_2 is a matrix representation of size 17×34 .
- The method fails over \mathbb{P}^2 and $\mathbb{P}^1 \times \mathbb{P}^1$ due to non-lci base points!

AND THE IMPLICIT EQUATION IS ...

$$(f_0, f_1, f_2, f_3) = (2 + s^2 t^6, st^6 + 2, st^5 - 3st^3, st^4 + 5s^2 t^6)$$

The reatest common divisor of the 17-minors of the 17×34 matrix M_2 is the homogeneous implicit equation of the surface:

$$\begin{split} & 2809T_0^2T_1^4 + 124002T_1^6 - 5618T_0^3T_1^2T_2 + 66816T_0T_1^4T_2 + 2809T_0^4T_2^2 \\ & -50580T_0^2T_1^2T_2^2 + 86976T_1^4T_2^2 + 212T_0^3T_2^3 - 14210T_0T_1^2T_2^3 + 3078T_0^2T_2^2 \\ & +13632T_1^2T_2^4 + 116T_0T_2^5 + 841T_2^6 + 14045T_0^3T_1^2T_3 - 169849T_0T_1^4T_3 \\ & -14045T_0^4T_2T_3 + 261327T_0^2T_1^2T_2T_3 - 468288T_1^4T_2T_3 - 7208T_0^3T_2^2T_3 \\ & +157155T_0T_1^2T_2^3T_3 - 31098T_0^2T_2^3T_3 - 129215T_1^2T_2^3T_3 - 4528T_0T_2^4T_3 \\ & -12673T_2^5T_3 - 16695T_0^2T_1^2T_3^2 + 169600T_1^4T_3^2 + 30740T_0^3T_2T_3^2 \\ & -433384T_0T_1^2T_2T_3^2 + 82434T_0^2T_2^2T_3^2 + 269745T_1^2T_2^2T_3^2 + 36696T_0T_2^2T_3^2 \\ & +63946T_2^4T_3^2 + 2775T_0T_1^2T_3^3 - 19470T_0^2T_2T_3^4 + 177675T_1^2T_2T_3^3 \\ & -85360T_0T_2^2T_3^3 - 109490T_2^3T_3^3 - 125T_1^2T_3^4 + 2900T_0T_2T_3^4 \\ & +7325T_7^2T_3^4 - 125T_2T_5^5 \end{split}$$

Or set $T_0 = 1$ to get the affine equation.

A. DICKENSTEIN (UBA)

$$(s_1, s_2) \mapsto (\frac{f_1}{f_0}, \frac{f_2}{f_0}, \frac{f_3}{f_0}),$$

$$f_0 = 1 - s_1 s_2; \quad f_1 = -s_1^{36} s_2 + 1; \quad f_2 = -s_2(-s_1^{38} + s_2); \quad f_3 = s_1^{37} - s_2.$$

- In this case, the syzygy method we studied is fast.
- **Gröbner basis elimination methods do not terminate.**
- Resultant methods also fail, because there is a base point in the torus.

$$(s_1, s_2) \mapsto (\frac{f_1}{f_0}, \frac{f_2}{f_0}, \frac{f_3}{f_0}),$$

$$f_0 = 1 - s_1 s_2;$$
 $f_1 = -s_1^{36} s_2 + 1;$ $f_2 = -s_2(-s_1^{38} + s_2);$ $f_3 = s_1^{37} - s_2.$

- In this case, the syzygy method we studied is fast.
- **Gröbner basis elimination methods do not terminate.**
- Resultant methods also fail, because there is a base point in the torus.

$$(s_1, s_2) \mapsto (\frac{f_1}{f_0}, \frac{f_2}{f_0}, \frac{f_3}{f_0}),$$

$$f_0 = 1 - s_1 s_2;$$
 $f_1 = -s_1^{36} s_2 + 1;$ $f_2 = -s_2(-s_1^{38} + s_2);$ $f_3 = s_1^{37} - s_2.$

- In this case, the syzygy method we studied is fast.
- Gröbner basis elimination methods do not terminate.
- Resultant methods also fail, because there is a base point in the torus.

$$(s_1, s_2) \mapsto (\frac{f_1}{f_0}, \frac{f_2}{f_0}, \frac{f_3}{f_0}),$$

$$f_0 = 1 - s_1 s_2;$$
 $f_1 = -s_1^{36} s_2 + 1;$ $f_2 = -s_2(-s_1^{38} + s_2);$ $f_3 = s_1^{37} - s_2.$

- In this case, the syzygy method we studied is fast.
- Gröbner basis elimination methods do not terminate.
- Resultant methods also fail, because there is a base point in the torus.

IMPLEMENTATIONS

- M2 implementations (via an embedding) available at Nicolás Botbol's webpage in Buenos Aires http://mate.dm.uba.ar/ nbotbol/
- Based on: [Botbol-Dohm-Dubinsky]: A package for computing implicit equations of parametrizations from toric surfaces (available at arXiv.org, not the last version).
- To do: Efficient implementation of the computation of syzygies directly in the affine case.

IMPLEMENTATIONS

- M2 implementations (via an embedding) available at Nicolás Botbol's webpage in Buenos Aires http://mate.dm.uba.ar/ nbotbol/
- Based on: [Botbol-Dohm-Dubinsky]: A package for computing implicit equations of parametrizations from toric surfaces (available at arXiv.org, not the last version).
- To do: Efficient implementation of the computation of syzygies directly in the affine case.
IMPLEMENTATIONS

- M2 implementations (via an embedding) available at Nicolás Botbol's webpage in Buenos Aires http://mate.dm.uba.ar/ nbotbol/
- Based on: [Botbol-Dohm-Dubinsky]: A package for computing implicit equations of parametrizations from toric surfaces (available at arXiv.org, not the last version).
- To do: Efficient implementation of the computation of syzygies directly in the affine case.

Thank you for your attention!