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INTRODUCTION THE PROBLEM WE WANT TO SOLVE

THE PROBLEM WE WANT TO SOLVE

PROBLEM

Let f be a rational parametrization of a (hyper)surface
S = (F = 0) ⊂ A3, F ∈ K[T1,T2,T3].

A2 f
99K A3

s = (s1, s2) 7→
(

f1(s)
f0(s)

,
f2(s)
f0(s)

,
f3(s)
f0(s)

)
fi ∈ K[s1, s2] with gcd(f0, . . . , f3) = 1 and F is irreducible with
F(f (s)) = 0 (whenever defined).

We assume the parametrization f known but the implicit
equation F not known
That, is, we want to switch from parametric to implicit
representations of rational surfaces.
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INTRODUCTION A NAIVE linear algebra ANSWER

PREDICTING THE MONOMIALS THAT COULD OCCUR IN F
The convex hull of the exponents of the monomials ocurring in a non
zero polynomial h is called the Newton polytope N(h) of h.

When h is a polynomial in (s1, s2) of degree (at most) d, its Newton
polytope N(F) is (contained in) the triangle with vertices
(0, 0), (d, 0), (0, d). Its Euclidean area is d2

2 and its lattice area is
2 d2

2 = d2.

THEOREM (CLASSIC, [BUSÉ-JOUANOLOU’03])

For generic polynomials f0, . . . , f3 of degree d, the degree of F is d2 and its
Newton polytope is the triangle with vertices (0, 0, 0), (d2, 0, 0), (0, d2, 0),
(0, 0, d2).

THEOREM ( [STURMFELS-YU’94])

For generic polynomials f0, . . . , f3 with fixed Newton polytope P, the degree
of F is the lattice area v of P and its Newton polytope is the triangle with
vertices (0, 0, 0), (v, 0, 0), (0, v, 0), (0, 0, v).

A. DICKENSTEIN (UBA) RATIONAL SURFACES 24/08/2012 3 / 30



INTRODUCTION A NAIVE linear algebra ANSWER

PREDICTING THE MONOMIALS THAT COULD OCCUR IN F
The convex hull of the exponents of the monomials ocurring in a non
zero polynomial h is called the Newton polytope N(h) of h.

When h is a polynomial in (s1, s2) of degree (at most) d, its Newton
polytope N(F) is (contained in) the triangle with vertices
(0, 0), (d, 0), (0, d). Its Euclidean area is d2

2 and its lattice area is
2 d2

2 = d2.

THEOREM (CLASSIC, [BUSÉ-JOUANOLOU’03])
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INTRODUCTION A NAIVE linear algebra ANSWER

FIRST NAIVE ALGORITHM

Assume the Newton polytope N(F) of F is known (as in the
previous theorems) and number m1, . . . ,mN ∈ ℕ3 the integer
(lattice) points in N(F).

Consider indeterminates c = (c1, . . . , cN) and write
F =

∑N
i=1 ciTmi .

Substitute T = f (s) and equate to 0 the coefficient of each power
of (s1, s2) that occurs.

This sets a system ℒ of linear equations in c, with solution space
of dimension 1. Any nonzero solution c will give a choice of
implicit equation F.

This solves the problem, but . . . which is the size of this linear system
ℒ?
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INTRODUCTION A NAIVE linear algebra ANSWER

WHICH IS THE SIZE OF THE LINEAR SYSTEM

LEMMA

In case fi are generic polynomials of degree d in (s1, s2), the number
of unknowns in ℒ is

(d2+3
3

)
(≈ d6/6) and the number of equations is(d3+2

2

)
(≈ d6/2).

LEMMA

For any lattice polygon P and generic polynomials fi with Newton
polytope P, the linear system ℒ has

(volℤ(P)+3
3

)
(≈ volℤ(P)3

6 ) variables

and volℤ(P)3

2 + volℤ(P)2

2 volℤ(∂P) + 1 equations (≈ volℤ(P)3

2 ).

Uses Pick’s formula (Erharht’s theorem).
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INTRODUCTION GENERAL STRATEGIES FOR THE IMPLICITIZATION PROBLEM

IMPLICITIZE T − f (s) = 0 MEANS ELIMINATING THE

s-VARIABLES

GENERAL STRATEGIES TO ELIMINATE VARIABLES

Reduce the problem to a linear algebra problem

Hide the variables one wants to eliminate in the (monomial)
basis.

Use determinants.
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INTRODUCTION SOLUTION VIA A REPRESENTATION MATRIX

Restating the problem: find a representation matrix
A rational surface S is given as the closed image of a map

A2 f
99K A3

s 7→
(

f1(s)
f0(s)

,
f2(s)
f0(s)

,
f3(s)
f0(s)

)
where the fi are polynomials such that gcd(f0, . . . , f3) = 1.

DEFINITION

A matrix representation M of S is a matrix with entries in
K[T1,T2,T3], generically of full rank, such that the rank of M(P)
drops iff the point P lies on S.
Moreover, the greatest common divisor of all minors of M of maximal
size equals Fdeg(f ).

Having the matrix M is sufficiently good for many purposes (like
checking if a point lies on the surface), well adapted for numerical
computations and cheaper to get!
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INTRODUCTION SOLUTION VIA A REPRESENTATION MATRIX

MAIN TOOLS

LINEAR SYZYGIES

Given polynomials f0, . . . , f3 ∈ K[s1, s2], a syzygy on f0, . . . , f3 is a
4-tuple of polynomials (h0, . . . , h3) such that

∑3
i=0 hifi = 0.

MONOMIAL STRUCTURE OF THE INPUT POLYNOMIALS

Study supports of local cohomology over toric rings (embedded or
not), extending results of Busé, Chardin and Jouanolou for the
homogeneous case.
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USING SYZYGIES A MINIMAL INCOMPLETE HISTORY

A MINIMAL INCOMPLETE HISTORY, STOLEN FROM DAVID COX (AT
OLINDA)

THE USE OF SYZYGIES FOR THE IMPLICITIZATION OF (CONIC)
SURFACES GOES BACK TO STEINER IN 1832.

MEYER IN 1887 DESCRIBED SYZYGIES OF 3 POLYNOMIALS AND
MADE A GENERAL CONJECTURE PROVED BY HILBERT IN 1890.

IN 1995, SEDERBERG AND CHEN REINTRODUCED THE USE OF
SYZYGIES, BY A METHOD TERMED AS MOVING CURVES AND
SURFACES.

COX REALIZED THEY WERE USING SYZYGIES. SEVERAL PAPERS
WITH OTHER COAUTHORS (BUSÉ, CHEN, D’ANDREA, GOLDMAN,
SEDERBERG, ZHANG).

JOUANOLOU AND BUSÉ IN 2002 ABSTRACTED, GENERALIZED ON
A SOUND BASIS THE METHOD OF SEDERBERG-CHEN VIA
APPROXIMATION COMPLEXES, A TOOL IN HOMOLOGICAL
COMMUTATIVE ALGEBRA THAT HAD BEEN DEVELOPED BY
HERZOG, SIMIS AND VASCONCELOS.
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COMMUTATIVE ALGEBRA THAT HAD BEEN DEVELOPED BY
HERZOG, SIMIS AND VASCONCELOS.
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USING SYZYGIES A MINIMAL INCOMPLETE HISTORY

FURTHER WORK ON THE SUBJECT

SUITE

Busé, Chardin and Jouanolou (several papers) in the
homogeneous case.

Generalization to square polytopes Busé and Dohm ’08
(squares), and to any polytope by Botbol, D. and Dohm ’09, and
Botbol (’09,’10,’11)

Khetan and D’Andrea’06 generalized moving quadrics to the
toric case.

Goldman et al., Busé and D’Andrea studied singularities of
parametric curves. Many other articles (like the recent
monograph by Cox, Kustin, Polini, Ulrich).
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USING SYZYGIES CURVES

MOTIVATION: MATRIX REPRESENTATIONS FOR CURVES

A planar rational curve C over a field K is given as the image of a
map

ℙ1 f
99K ℙ2

s 7→ (f0(s) : f1(s) : f2(s)),

fi ∈ K[s] homogeneous polynomials of degree d in s,
gcd(f0, f1, f2) = 1.

A (linear) syzygy can be represented as a linear form
L = h0T0 + h1T1 + h2T2 in the new variables T = (T0,T1,T2)
with hi ∈ K[s] such that ∑

i=0,1,2

hifi = 0.
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USING SYZYGIES CURVES

MOTIVATION: MATRIX REPRESENTATIONS FOR CURVES

Syz(�) = { all linear syzygies}. For � ∈ ℕ, the graded part Syz(�)�
(deg(hi) ≤ �) is a K-vector space with dimension N(�) <∞.

Attention: here comes the main elimination step:
Write for each syzygy (hi

0, . . . , h
i
3), i = 1, . . . ,N(�), in a basis:

Li = Li(s,T) =
∑

j=0,1,2

hi
j(s)Tj =

∑
j=0,1,2

(

�∑
k=0

ci
jksk

1s�−k
2 )Tj

=

�∑
k=0

(
∑

j=0,1,2

ci
jkTj)sk

1s�−k
2 .

Let M� be the N(�)× (� + 1) matrix of coefficients of the Li’s with
respect to a K-basis of K[s]� :

M� =

⎛⎝ ∑
j=0,1,2

ci
jkTj

⎞⎠
i=1,...,N(�),j=0,...,�

.
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USING SYZYGIES CURVES

MOTIVATION: MATRIX REPRESENTATIONS FOR CURVES

If � = d − 1, then M� is a square matrix, such that
det(M�) = Fdeg(f ), where F is an implicit equation of C.

If � ≥ d, then M� is a non-square matrix
with more columns than rows, such that the gcd of its minors of
maximal size equals Fdeg(f ).

For � ≥ d − 1, a point P ∈ ℙ2 lies on C iff the rank of M�(P)
drops.

When working with surfaces, we will in general get non-square
representation matrices (so det of a matrix has to be replaced by
det of a complex).
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USING SYZYGIES SURFACES

LINEAR SYZYGIES, QUADRATIC SYZYGIES, . . . ,
IMPLICIT EQUATION

A COMMON SHAPE

Linear syzygies of degree �: H(s,T) =
∑3

i=0 hi(s)Ti such that∑3
i=0 hi(s)fi(s) = 0. Thus, deg(H) in s variables is �, deg(H) in

T variables is 1.

Quadratic syzygies of degree � ′: H(s,T) =
∑3

i≤j=0 hi,j(s)TiTj

such that
∑3

i,j=0 hi,j(s)fifj(s) = 0. Thus, deg(H) in s variables is
� ′, deg(H) in T variables is 2.

Implicit equation (of degree D): H(s,T) =
∑
∣�∣≤D h�T� such

that
∑

� h�f�(s) = 0. Thus, deg(H) in s variables is 0, deg(H)
in T variables is D.

So to go from linear syzygies to the implicit equation we play the
game of lowering the degree in the s variables to 0 (which
increases the degree in the T varibles up to (at most) D)!
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USING SYZYGIES THE GENERAL METHOD

THE METHOD DISTILLED IN SIMPLEST TERMS
BASIC GENERAL ALGORITHM [BDD] SPARSE, [BCJ] CLASSIC

INPUT: (f0(s), f1(s), f2(s), f3(s)) with Newton polytopes
contained in P (a lattice polygon in the first quadrant), satisfying
suitable hypotheses.

STEP 1: Consider syzygies (h0, . . . , h3) with
N(hi) ⊂ 2P = {p1 + p2, pi ∈ P}. Let
(h(j)0 , , . . . , h

(j)
3 ), j = 1, . . . ,N, be a K-basis of such syzygies.

STEP 2: Represent the syzygies as linear forms
Lj = h(j)0 T0 + ⋅ ⋅ ⋅+ h(j)3 T3. Write h(j)i =

∑
�∈2P∩ℤ2h(j)i,�s� and

switch:

Lj =
∑

i

h(j)i Ti =
∑
�

(∑
i

h(j)i,�Ti

)
s�.

OUTPUT: The matrix M of linear forms ℓj,� :=
∑

i h(j)i,�Ti.

Note that the s variables dissapeared!
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USING SYZYGIES THE GENERAL METHOD

THE METHOD DISTILLED IN SIMPLEST TERMS

THEOREM([BOTBOL-D.-DOHM])

If the “suitable hypotheses” are satisfied, the matrix M is a
representation matrix for the closed image S of f : its rank drops
precisely at the points of S and the gcd of its maximal minors equals
Fdeg(f ).

This method can be called Instant Elimination (cf [Eisenbud, Huneke,
Ulrich], OWR report 2004])

REMARK

In fact, the previous algorithm can be run without checking anything
beforehand (more in a while).
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beforehand (more in a while).
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USING SYZYGIES THE GENERAL METHOD

SIZE OF THE MATRICES IN THE ALGORITHM

Assume for example that P is the triangle of size d. Then, in fact, it is
enough to consider syzygies of degree 2d − 2. Therefore, to find them,
we have a system on 4

(2d
2

)
variables with

(3d
2

)
equations. That is, both

sizes, as well as the vector space dimension of the space of syzygies in
this degree, are quadratic in d.

The matrix M has then a number of rows quadratic in d. The number of
its columns equals

(2d
2

)
, again quadratic in d.

We can get a representation matrix via syzygies with considerably
smaller linear systems that in the naive linear algebra method!
(which were of the order of d6).
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USING SYZYGIES THE GENERAL METHOD

IMPROVEMENTS [BDD],[BOTBOL],[B-CHARDIN]

The general algorithm above can be refined (under the same
hypotheses of f ).

If the lattice polytope P can be written as P = dP′, with P′ another
lattice polygon without interior lattice points, then we can consider in
STEP 1 syzygies (h0, . . . , h3) with N(hi) contained in (2d − 1)P′,
which it is strictly contained in 2P, that is, with smaller support.

Moreover, in case P′ is the unit simplex, it is enough to consider
syzygies with support inside (2d − 2)P′.

In general, the presence of base points (V(f0, . . . , f3) ∕= ∅) allows to
take syzygies with smaller supports.

In the bihomogeneous case (that is, when P is a rectangle), a detailed
study of regularity allows to get the following improvement in the
support of the proposed syzygies in STEP 1.
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USING SYZYGIES THE GENERAL METHOD

IMPROVEMENTS [B],[B-CH]
THEOREM

The output of the following algorithm is a representation matrix for the
rational surface parametrized by a rational map which in the conditions
stated in the INPUT below.

INPUT: (f0, f1, f2, f3) with Newton polytopes contained in a rectangle
R, say, with opposite vertices (0, 0) and (a, b), satisfying certain
hypotheses.

STEP 1: Consider syzygies (h0, . . . , h3) with N(hi) ⊂ R′ the rectangle
with opposite vertices (0, 0) and (2a, b) (or (0, 0) and (a, 2b)). Let
(h(j)

0 , , . . . , h(j)
3 ), j = 1, . . . ,N, be a K-basis of such syzygies.

STEP 2: Represent them as linear forms Lj = h(j)
0 T0 + ⋅ ⋅ ⋅+ h(j)

3 T3.
Write h(j)

i =
∑
�∈R′∩ℤ2 h(j)

i,�s� and switch:

Lj =
∑

i h(j)
i Ti =

∑
�

(∑
i h(j)

i,�Ti

)
s� .

OUTPUT: The matrix M of linear forms ℓj,� :=
∑

i h(j)
i,�Ti.
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THEORETICAL TOOLS SYZYGIES, SYMMETRIC ALGEBRAS AND REES ALGEBRAS

COMPACTIFYING DOMAIN AND CODOMAIN

We can instead consider the map f̃ : A2 99K ℙ3 with image inside
3-dimensional projective space given by

s 7→ (f0(s) : f1(s) : f2(s) : f3(s)).

The defining equation of the closure S̃ of the image of f̃ is the
homogenization of the polynomial F with a new variable T0.

We can consider the rational parametrization from another normal
algebraic variety T which contains the domain of f̃ as a dense subset
(a toric variety), so we get f̃ : T 99K ℙ3.

The base point locus V(I) ⊂ T is the common zero set of the ideal
I = ⟨f̃0, . . . , f̃3⟩, that is, the points at where f̃ is not defined.
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THEORETICAL TOOLS SYZYGIES, SYMMETRIC ALGEBRAS AND REES ALGEBRAS

THE REES ALGEBRA

The equation of the closed image S̃ of f̃ : T 99K ℙ3 on the variables
(T0, . . . ,T3) depends on the relation between the polynomials
f0, . . . , f3 ∈ A, a ring with another set of variables. The natural ambient
for our elimination problem is a variety where both group of variables
are involved:

Γ ⊂ T × ℙ3

�2

&&MMMMMMMMMM

�1

��
T

f̃
//_____ ℙ3 ⊃ S̃

,

where Γ is the closure of the graph of f̃ . Thus, S̃ = �2(Γ).

Γ ⊂ T × ℙ3 corresponds to A[T0,T1,T2,T3]↠ ReesA(I), the Rees
algebra of I over A. The projection �2(Γ) corresponds to eliminating
the variables in A.

But how to eliminate the variables in A from ReesA(I)?
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THEORETICAL TOOLS SYZYGIES, SYMMETRIC ALGEBRAS AND REES ALGEBRAS

FROM ReesA(I) TO SymA(I)

There is no “universal” way to compute a free presentation for
ReesA(I). Thus, in general one approximates ReesA(I) by the
symmetric algebra SymA(I), that admits a known resolution (under
some hypotheses).

The symmetric algebra can be presented as A[T0,T1,T2,T3]/J, where
J := ⟨

∑
hiTi, hi ∈ A and

∑
hifi = 0⟩. !!!

But which is the relation between ReesA(I) and SymA(I)?

Assume for every p ∈ V , Ip is a complete intersection in Ap (I is lci,
generated locally by 2 elements). Then, ReesA(I) and SymA(I) define
the same scheme in T × ℙ3.

Thus, since ReesA(I) is “torsion” free, both algebras coincide modulo
the “torsion” of SymA(I).
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THEORETICAL TOOLS SYZYGIES, SYMMETRIC ALGEBRAS AND REES ALGEBRAS

APPROXIMATION COMPLEXES [HERZOG, SIMIS,
VASCONCELOS]

The approximation complex Z∙ is a bi-graded complex of
A[T]-modules constructed by means of two Koszul complexes (with
respect to f̃ and to T), which gives a resolution of SymA(I) if I is a lci
(or even alci).

For any given degree � in the source variables, it induces a graded
complex (Z∙)� of K[T]-modules

0 // (Z3)�
ē3 // (Z2)�

ē2 // (Z1)�
ē1 // (Z0)� and M� is the matrix of ē1

in the monomial bases.

What does this imply for us? If the approximation complex gives a
presentation of SymA(I), M� represents S for � beyond the torsion of
SymA(I) (because for these degrees the Rees and Symmetric algebra
coincide).

To bound this torsion: either study the embedded toric variety
associated to the input lattice polygon P (cut out by the corresponding
toric ideal) (the associated ring A is Cohen Macaulay since P is always
normal in dimension two), or study multigraded regularity in the Cox
ring associated to the normal fan of P ([Maclagan-Smith]).
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THEORETICAL TOOLS SYZYGIES, SYMMETRIC ALGEBRAS AND REES ALGEBRAS

TESTING THE HYPOTHESES?

We’d need to check that there are finitely many isolated base points of
f̃ which are local complete intersection (I is lci of the right
dimension) . . .

Dimension can be checked, lci in particular cases.
But what if we don’t check this and run the algorithm?
. . . nothing bad!
We just check whether M� has full rank (by evaluation).

If the rank is not maximal, then there is a base point p which is
not an almost local complete intersection. (Ip cannot be generated
by 3 elements).
If the rank is maximal, it may happen that the rank of M� drops at
some other places besides S due to the existence of an almost
local complete intersection base point which is not a complete
intersection. In this case, the approximation complex is still exact
but there might be extra factors in the gcd from these points.
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EXAMPLES A VERY SPARSE PARAMETRIZATION

THE METHOD INTO ACTION

Consider the parametrization with 6 monomials:
(f0, f1, f2, f3) = (2 + s2t6, st6 + 2, st5 − 3st3, st4 + 5s2t6)

N(f ) = P =

b

b b

0 1 2
0

1

2

3

4

5

6
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THE METHOD INTO ACTION

(f0, f1, f2, f3) = (2 + s2t6, st6 + 2, st5 − 3st3, st4 + 5s2t6)

Coordinate ring of T is K[X0, . . . ,X5]/JP, where
JP = (X2

3 − X2X4,X2X3 − X1X4,X2
2 − X1X3,X2

1 − X0X5)

New parametrization over T given by
(2X0 + X5, 2X0 + X4,−3X1 + X3,X2 + 5X5).

The matrix M2 is a matrix representation of size 17× 34.

The method fails over ℙ2 and ℙ1 × ℙ1 due to non-lci base points!
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EXAMPLES A VERY SPARSE PARAMETRIZATION

AND THE IMPLICIT EQUATION IS . . .
(f0, f1, f2, f3) = (2 + s2t6, st6 + 2, st5 − 3st3, st4 + 5s2t6)

The reatest common divisor of the 17-minors of the 17× 34 matrix
M2 is the homogeneous implicit equation of the surface:

2809T2
0 T4

1 + 124002T6
1 − 5618T3

0 T2
1 T2 + 66816T0T4

1 T2 + 2809T4
0 T2

2

−50580T2
0 T2

1 T2
2 + 86976T4

1 T2
2 + 212T3

0 T3
2 − 14210T0T2

1 T3
2 + 3078T2

0 T4
2

+13632T2
1 T4

2 + 116T0T5
2 + 841T6

2 + 14045T3
0 T2

1 T3 − 169849T0T4
1 T3

−14045T4
0 T2T3 + 261327T2

0 T2
1 T2T3 − 468288T4

1 T2T3 − 7208T3
0 T2

2 T3

+157155T0T2
1 T3

2 T3 − 31098T2
0 T3

2 T3 − 129215T2
1 T3

2 T3 − 4528T0T4
2 T3

−12673T5
2 T3 − 16695T2

0 T2
1 T2

3 + 169600T4
1 T2

3 + 30740T3
0 T2T2

3

−433384T0T2
1 T2T2

3 + 82434T2
0 T2

2 T2
3 + 269745T2

1 T2
2 T2

3 + 36696T0T3
2 T2

3

+63946T4
2 T2

3 + 2775T0T2
1 T3

3 − 19470T2
0 T2T4

3 + 177675T2
1 T2T3

3

−85360T0T2
2 T3

3 − 109490T3
2 T3

3 − 125T2
1 T4

3 + 2900T0T2T4
3

+7325T2
2 T4

3 − 125T2T5
3

Or set T0 = 1 to get the affine equation.
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EXAMPLES A VERY SPARSE PARAMETRIZATION

IN PRESENCE OF (GOOD) BASE POINTS

Consider the following example:

(s1, s2) 7→ (
f1
f0
,

f2
f0
,

f3
f0

),

f0 = 1−s1s2; f1 = −s36
1 s2+1; f2 = −s2(−s38

1 +s2); f3 = s37
1 −s2.

In this case, the syzygy method we studied is fast.

Gröbner basis elimination methods do not terminate.

Resultant methods also fail, because there is a base point in the
torus.
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EXAMPLES A VERY SPARSE PARAMETRIZATION

IMPLEMENTATIONS

M2 implementations (via an embedding) available at Nicolás
Botbol’s webpage in Buenos Aires
http://mate.dm.uba.ar/ nbotbol/

Based on: [Botbol-Dohm-Dubinsky]: A package for computing
implicit equations of parametrizations from toric surfaces
(available at arXiv.org, not the last version).

To do: Efficient implementation of the computation of syzygies
directly in the affine case.
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EXAMPLES THE END

Thank you for your attention!
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