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THE PROBLEM WE WANT TO SOLVE

PROBLEM

m Let f be a rational parametrization of a (hyper)surface
S=(F=0)CA’FecK[T, T, T

A2 = AP

fils) fals) fals >
= ) — T N /NN
o= () <f0(s Jo(s)” fo(s)
m f; € K[sy, s2] with ged(fo, - - . ,f3) = 1 and F is irreducible with
F(f(s)) = O (whenever defined).
m We assume the parametrization f known but the implicit
equation F not known

m That, is, we want to switch from parametric to implicit
representations of rational surfaces.
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m When £ is a polynomial in (sy, s5) of degree (at most) d, its Newton
polytope N(F) is (contained in) the triangle with vertices
(0,0),(d,0), (0,d). Its Euclidean area is % and its lattice area is

)
27_d.

THEOREM (CLASSIC, [BUSE-JOUANOLOU’03])

For generic polynomials fy, . . . ,f3 of degree d, the degree of F is d* and its
Newton polytope is the triangle with vertices (0,0,0), (d*,0,0), (0,d?,0),
(0,0,d?).

THEOREM ( [STURMFELS-YU’94])

For generic polynomials fy, . . ., f3 with fixed Newton polytope P, the degree
of F is the lattice area v of P and its Newton polytope is the triangle with
vertices (0,0,0), (v,0,0), (0,v,0), (0,0, v).
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FIRST NAIVE ALGORITHM

m Assume the Newton polytope N(F') of F is known (as in the
previous theorems) and number m,, . .., my € N° the integer
(lattice) points in N(F).

m Consider indeterminates ¢ = (cy, ..., cy) and write

N .
F= Zi:l C,'Tm’.

m Substitute 7 = f(s) and equate to 0 the coefficient of each power

of (s1,s72) that occurs.

m This sets a system L of linear equations in ¢, with solution space
of dimension 1. Any nonzero solution ¢ will give a choice of
implicit equation F.

This solves the problem, but . .. which is the size of this linear system
L?
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WHICH IS THE SIZE OF THE LINEAR SYSTEM

LEMMA

In case f; are generic polynomials of degree d in (s, s ), the number
of unknowns in L is (d23+ 3) (~ d°/6) and the number of equations is
(T52) (= d®/2).

LEMMA

For any lattice polygon P and generic polynomials f; with Newton
volZ(P)+3) volz(P)3
3 6

(~

) variables
VO]Z (P)3
—2 )

polytope P, the linear system L has (

and volZz(P)3 n volzz(P)2 volz(OP) + 1 equations (=

Uses Pick’s formula (Erharht’s theorem).
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IMPLICITIZE T — f(s) = 0 MEANS ELIMINATING THE
s-VARIABLES

GENERAL STRATEGIES TO ELIMINATE VARIABLES

m Reduce the problem to a linear algebra problem

m Hide the variables one wants to eliminate in the (monomial)
basis.

m Use determinants.
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fi(s) f(s) fi(s)
P (fo(S)’fo(S)’fo(S)>

where the f; are polynomials such that ged(fy, . .. ,f3) = 1.

DEFINITION

A matrix representation M of S is a matrix with entries in

K|[T}, T>, T3], generically of full rank, such that the rank of M(P)
drops iff the point P lies on S.

Moreover, the greatest common divisor of all minors of M of maximal
size equals Fdee(f).

Having the matrix M is sufficiently good for many purposes (like
checking if a point lies on the surface), well adapted for numerical
computations and cheaper to get!
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Given polynomials fp, . .. ,f3 € K[s, s2], asyzygy on fo,...,fzisa
4-tuple of polynomials (/q, . .., h3) such that Z?:o hif; = 0.

MONOMIAL STRUCTURE OF THE INPUT POLYNOMIALS

Study supports of local cohomology over toric rings (embedded or
not), extending results of Busé, Chardin and Jouanolou for the
homogeneous case.
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A MINIMAL INCOMPLETE HISTORY, STOLEN FROM DAVID COX (AT
OLINDA)

m THE USE OF SYZYGIES FOR THE IMPLICITIZATION OF (CONIC)
SURFACES GOES BACK TO STEINER IN 1832.

®m MEYER IN 1887 DESCRIBED SYZYGIES OF 3 POLYNOMIALS AND
MADE A GENERAL CONJECTURE PROVED BY HILBERT IN 1890.

m IN 1995, SEDERBERG AND CHEN REINTRODUCED THE USE OF
SYZYGIES, BY A METHOD TERMED AS MOVING CURVES AND
SURFACES.

m COX REALIZED THEY WERE USING SYZYGIES. SEVERAL PAPERS
WITH OTHER COAUTHORS (BUSE, CHEN, D’ ANDREA, GOLDMAN,
SEDERBERG, ZHANG).

m JOUANOLOU AND BUSE IN 2002 ABSTRACTED, GENERALIZED ON
A SOUND BASIS THE METHOD OF SEDERBERG-CHEN VIA
APPROXIMATION COMPLEXES, A TOOL IN HOMOLOGICAL
COMMUTATIVE ALGEBRA THAT HAD BEEN DEVELOPED BY
HERZOG, SIMIS AND VASCONCELOS.
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FURTHER WORK ON THE SUBJECT

SUITE

m Busé, Chardin and Jouanolou (several papers) in the
homogeneous case.

m Generalization to square polytopes Busé and Dohm °08
(squares), and to any polytope by Botbol, D. and Dohm *09, and
Botbol (°09,10,11)

m Khetan and D’ Andrea’06 generalized moving quadrics to the
toric case.

m Goldman et al., Busé and D’ Andrea studied singularities of
parametric curves. Many other articles (like the recent
monograph by Cox, Kustin, Polini, Ulrich).
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MOTIVATION: MATRIX REPRESENTATIONS FOR CURVES

m A planar rational curve C over a field K is given as the image of a
map

p L p

s = (fols) < fils) : fa(s)),
/i € K[s] homogeneous polynomials of degree d in s,
ng(anfbfZ) =1
m A (linear) syzygy can be represented as a linear form

L = hoTo + hi T\ + hyT, in the new variables T = (Ty, T}, T>)
with ; € K[s| such that

> hifi=0.

i=0,1,2
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MOTIVATION: MATRIX REPRESENTATIONS FOR CURVES

m Syz(¢) = { all linear syzygies}. For v € N, the graded part Syz(¢),,
(deg(h;) < v) is a K-vector space with dimension N(v) < occ.

m Attention: here comes the main elimination step:
Write for each syzygy (A, ..., h}),i=1,...,N(v), in a basis:

L=L(sT)= Y HKOT= Y. Z chissy T,

j=0,1.2 j=0,1,2 k=0
v
(> cTsisy™.
j=0,1,2
m Let M, be the N(v) x (v + 1) matrix of coefficients of the L;’s with
respect to a K-basis of K[s],:

M, = ZCT

J=0,1,2

k=0

i=1,. N () j=0,...,v
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MOTIVATION: MATRIX REPRESENTATIONS FOR CURVES

m If v = d — 1, then M,, is a square matrix, such that
det(M,) = Fe\), where F is an implicit equation of C.

m If v > d, then M,, is a non-square matrix
with more columns than rows, such that the gcd of its minors of
maximal size equals Fdee(f),

m Forv >d — 1, apoint P € P? lies on C iff the rank of M, (P)
drops.

m When working with surfaces, we will in general get non-square
representation matrices (so det of a matrix has to be replaced by
det of a complex).
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LINEAR SYZYGIES, QUADRATIC SYZYGIES, ...,

IMPLICIT EOUATION
A COMMON SHAPE
m Linear syzygies of degree v: H(s, T) = Z?:o hi(s)T; such that

Z?:o hi(s)fi(s) = 0. Thus, deg(H) in s variables is v, deg(H) in
T variables is 1.

m Quadratic syzygies of degree v': H(s,T) = Z?szo hij(s)T;T;
such that Z? =0 hij(s)fifi(s) = 0. Thus, deg(H) in s variables is
v/, deg(H) in T variables is 2.

m Implicit equation (of degree D): H(s, T) = E‘ a|<p haT® such
that >~ hof“(s) = 0. Thus, deg(H) in s variables is 0, deg(H )
in 7 variables is D.

m So to go from linear syzygies to the implicit equation we play the
game of lowering the degree in the s variables to 0 (which
increases the degree in the 7" varibles up to (at most) D)!
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THE METHOD DISTILLED IN SIMPLEST TERMS
BASIC GENERAL ALGORITHM [BDD] SPARSE, [BCJ] CLASSIC

m INPUT: (fo(s),fi(s),/f2(s),/f3(s)) with Newton polytopes
contained in P (a lattice polygon in the first quadrant), satisfying
suitable hypotheses.

m STEP 1: Consider syzygies (ho, . . ., h3) with
N(h;) C 2P = {p| + p2,pi € P}. Let
(hg), Ve ,hg)),j =1,...,N, be a K-basis of such syzygies.

m STEP 2: Represent the syzygies as linear forms
Lj=h{To+ - +hTs. Write ) = 5", . .h)sP and

switch:
Lj = th‘l)Tl = Z <Zhl({23T,> SB.
i B i

m OUTPUT: The matrix M of linear forms ¢; g := >, hl(’/)g T;.
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THE METHOD DISTILLED IN SIMPLEST TERMS

THEOREM([BOTBOL-D.-DOHM])

If the “suitable hypotheses” are satisfied, the matrix M is a
representation matrix for the closed image S of f: its rank drops
precisely at the points of S and the ged of its maximal minors equals
Fdee(f)

This method can be called Instant Elimination (cf [Eisenbud, Huneke,
Ulrich], OWR report 2004])

REMARK

In fact, the previous algorithm can be run without checking anything
beforehand (more in a while).
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SIZE OF THE MATRICES IN THE ALGORITHM

m Assume for example that P is the triangle of size d. Then, in fact, it is
enough to consider syzygies of degree 2d — 2. Therefore, to find them,
we have a system on 4 () variables with (') equations. That is, both
sizes, as well as the vector space dimension of the space of syzygies in
this degree, are quadratic in d.

m The matrix M has then a number of rows quadratic in d. The number of
its columns equals (%), again quadratic in d.

I —
We can get a representation matrix via syzygies with considerably
smaller linear systems that in the naive linear algebra method!
(which were of the order of d°).
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IMPROVEMENTS [BDD],[BOTBOL],[B-CHARDIN]

m The general algorithm above can be refined (under the same
hypotheses of f).

m If the lattice polytope P can be written as P = dP’, with P’ another
lattice polygon without interior lattice points, then we can consider in
STEP 1 syzygies (ho, . . ., h3) with N(h;) contained in (2d — 1)P’,
which it is strictly contained in 2P, that is, with smaller support.

m Moreover, in case P’ is the unit simplex, it is enough to consider
syzygies with support inside (2d — 2)P’.

m In general, the presence of base points (V(fo, . .. ,f3) # @) allows to
take syzygies with smaller supports.

= In the bihomogeneous case (that is, when P is a rectangle), a detailed
study of regularity allows to get the following improvement in the
support of the proposed syzygies in STEP 1.
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THEOREM

The output of the following algorithm is a representation matrix for the
rational surface parametrized by a rational map which in the conditions
stated in the INPUT below.

m INPUT: (fo,f1,/2,/3) with Newton polytopes contained in a rectangle
R, say, with opposite vertices (0,0) and (a, b), satisfying ceriain
hypotheses.

m STEP 1: Consider syzygies (ho, . . ., h3) with N(h;) C R’ the rectangle
with opposite vertices (0,0) and (2a,b) (or (0,0) and (a,2b)). Let
(h(()'), ye h(’)) j=1,...,N, be a K-basis of such syzygies.

m STEP 2: Represent them as linear forms L; = hg) To+- -+ hgj) Ts.
Write h) = 3 Ser'nz? h%sﬁ and switch:

Li=3 hz{j)Ti =25 (Z: h%T,) sP.
m OUTPUT: The matrix M of linear forms {; 3 :== Y. h; B
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THEORETICAL TOOLS _

COMPACTIFYING DOMAIN AND CODOMAIN

m We can instead consider the map f : A% ——» P* with image inside
3-dimensional projective space given by

s (fo(s) s fi(s)  fa(s) : f5(s)).
The defining equation of the closure S of the image of fis the
homogenization of the polynomial F' with a new variable T.

m We can consider the rational parametrization from another normal
algebraic variety 7 which contains the domain of f as a dense subset
(a toric variety), so we get f: 7 --» 3.

m The base point locus V(I) C T is the common zero set of the ideal
I = {(fo,...,fs), that is, the points at where f is not defined.
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THE REES ALGEBRA

m The equation of the closed image S of f : T --» P3 on the variables
(To, ..., Ts) depends on the relation between the polynomials
Jfo,-..,f3 €A, aring with another set of variables. The natural ambient
for our elimination problem is a variety where both group of variables
are involved:

FCTX]P)} )

s,

— — — — >13 S
T ; P>S

where I is the closure of the graph of /. Thus, S = m(I).

m [ C T x P corresponds to A[Ty, Ty, T», T3] — Reess (1), the Rees
algebra of I over A. The projection 7, (I") corresponds to eliminating
the variables in A.

m But how to eliminate the variables in A from Rees, (I)?
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FROM Rees, (1) TO Sym, (1)

m There is no “universal” way to compute a free presentation for
Rees, (7). Thus, in general one approximates Rees, (1) by the
symmetric algebra Sym, (7), that admits a known resolution (under
some hypotheses).

m The symmetric algebra can be presented as A[Ty, Ty, T», T3] /J, where
J:= (> hiT;,hi € Aand )_ h;f; = 0). !!!

m But which is the relation between Rees, (I) and Sym, (1)?

m Assume for every p € V, I, is a complete intersection in A, (I is Ici,
generated locally by 2 elements). Then, Reesy (1) and Sym, (1) define
the same scheme in 7~ x P3.

m Thus, since Rees, (1) is “torsion” free, both algebras coincide modulo
the “torsion” of Sym, (7).
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APPROXIMATION COMPLEXES [HERZOG, SIMIS,
VASCONCELOS]

m The approximation complex Z, is a bi-graded complex of
A[T]-modules constructed by means of two Koszul complexes (with
respect to f and to 7'), which gives a resolution of Sym, (1) if I is a lci
(or even alci).

m For any given degree v in the source variables, it induces a graded
complex (Z,), of K[T]-modules

00— (Z), Gl (Z2), 2 (Z1), LY (20), and M,, is the matrix of e
in the monomial bases.

m What does this imply for us? If the approximation complex gives a
presentation of Sym, (/), M,, represents S for v beyond the torsion of
Sym, (1) (because for these degrees the Rees and Symmetric algebra
coincide).

m To bound this torsion: either study the embedded toric variety
associated to the input lattice polygon P (cut out by the corresponding
toric ideal) (the associated ring A is Cohen Macaulay since P is always
normal in dimension two), or study multigraded regularity in the Cox

ring associated to the normal fan of P ([Maclagan-Smith]).
A. DICKENSTEIN (UBA) RATIONAL SURFACES
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TESTING THE HYPOTHESES?

I —
We’d need to check that there are finitely many isolated base points of
f which are local complete intersection (/ is Ici of the right
dimension) . ..

m Dimension can be checked, Ici in particular cases.

m But what if we don’t check this and run the algorithm?
...nothing bad!

m We just check whether M, has full rank (by evaluation).

m If the rank is not maximal, then there is a base point p which is
not an almost local complete intersection. (/, cannot be generated
by 3 elements).

m If the rank is maximal, it may happen that the rank of M, drops at
some other places besides S due to the existence of an almost
local complete intersection base point which is not a complete
intersection. In this case, the approximation complex is still exact
but there might be extra factors in the gcd from these points.
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(forfiofo.f3) = (2 + 210,515 4+ 2,58 — 3583, st* + 5521%)
n N(f)=P=
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THE METHOD INTO ACTION

m (fo,f1,0.f3) = (2 + 528,565 + 2,58 — 353, st* + 55°19)
m Coordinate ring of 7 is K[Xo, . . ., X5]/Jp, where

Jp = (X3 — XoX4, Xo X5 — X1 X4, X5 — X1 X3, X7 — XoXs)
m New parametrization over T given by

(2Xo + X5,2X0 + X4, —3X) + X3, X2 + 5Xs).

m The matrix M, is a matrix representation of size 17 x 34.

m The method fails over P> and P! x P! due to non-Ici base points!
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AND THE IMPLICIT EQUATION IS . ..
(fofi,f0,05) = (2 + 5215, 518 4+ 2,58 — 3583, st* + 55°1°)

The reatest common divisor of the 17-minors of the 17 x 34 matrix
M, is the homogeneous implicit equation of the surface:

2809T2T} + 1240027° — S618T3TT, + 66816T)T} T, + 280973 T2
—50580T3 T2 T2 + 86976T) T2 + 212T3T3 — 142107 T>T; + 30787215
+13632T7T5 + 116T)T; + 841TS + 1404573 T2 T3 — 169849T, T} T3
—14045Tg Ty T3 + 261327TaTE Ty Ty — 468288T) T, Ty — T208T3 T2 T3
+1571S5TTi T3 T3 — 31098T3 T3 T3 — 129215T1T3 T3 — 4528TgT5Ts

— 1267375 T3 — 16695T3TLT3 + 169600, T3 + 307407, T, T2
—433384T)T{ Ty T3 + B23MTLTSTS + 269745T{ T3 T3 + 36696T( T3 T3
+63946T5 T3 + 27T5TyT1T; — 1947073 Ty T3 + 1776751 ToT5
—853607T0 75735 — 1094907373 — 125T1 T4 + 29007)T, T3

+7325T2T; — 125T,T;
Or set Tp = 1 to get the affine equation.
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IN PRESENCE OF (GOOD) BASE POINTS

m Consider the following example:

hhfs
fo'fo' fo
fo=1=s15; fi=—=s°2+1; fr=—s2(=s+%); f3=s5 —5.

m In this case, the syzygy method we studied is fast.

)7

(s1,52) = (

m Grobner basis elimination methods do not terminate.

m Resultant methods also fail, because there is a base point in the
torus.
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EXAMPLES _

IMPLEMENTATIONS

m M2 implementations (via an embedding) available at Nicolds
Botbol’s webpage in Buenos Aires
http://mate.dm.uba.ar/ nbotbol/

m Based on: [Botbol-Dohm-Dubinsky]: A package for computing
implicit equations of parametrizations from toric surfaces
(available at arXiv.org, not the last version).

m To do: Efficient implementation of the computation of syzygies
directly in the affine case.



Thank you for your attention!
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