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Cluster Algebras Portal

〈http://www.math.lsa.umich.edu/˜fomin/cluster.html〉

Links to:

• >400 papers on the arXiv;

• a separate listing for lecture notes and surveys;

• conferences, seminars, courses, thematic programs, etc.
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Plan

1. Basic notions

2. Basic structural results

3. Periodicity and Grassmannians

4. Cluster algebras in full generality

Tutorial session (G. Musiker)
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FAQ

• Who is your target audience?

• Can I avoid the calculations?

• Why don’t you just use a blackboard and chalk?

• Where can I get the slides for your lectures?

• Why do I keep seeing different definitions for the same terms?
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PART 1: BASIC NOTIONS

Motivations and applications

Cluster algebras: a class of commutative rings equipped with a

particular kind of combinatorial structure.

Motivation: algebraic/combinatorial study of total positivity and

dual canonical bases in semisimple algebraic groups (G. Lusztig).

Some contexts where cluster-algebraic structures arise:

• Lie theory and quantum groups;

• quiver representations;

• Poisson geometry and Teichmüller theory;

• discrete integrable systems.
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Total positivity

A real matrix is totally positive (resp., totally nonnegative) if all

its minors are positive (resp., nonnegative).

Total positivity is a remarkably widespread phenomenon:

• 1930s-40s (F. Gantmacher–M. Krein, I. Schoenberg)

classical mechanics, approximation theory

• 1950s-60s (S. Karlin, A. Edrei–E. Thoma)

stochastic processes, asymptotic representation theory

• 1980s-90s (I. Gessel–X. Viennot, Y. Colin de Verdière)

enumerative combinatorics, graph theory

• 1990s-2000s (G. Lusztig, S. F.-A. Zelevinsky)

Lie theory, quantum groups, cluster algebras
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Totally positive varieties

(informal concept)

X complex algebraic variety

∆ collection of “important” regular functions on X

X>0 totally positive variety (all functions in ∆ are > 0)

X≥0 totally nonnegative variety (all functions in ∆ are ≥ 0)

Example: X = GLn(C), ∆ = {all minors}.

Example: the totally positive/nonnegative Grassmannian.
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Why study totally positive/nonnegative varieties?

(1) The structure of X≥0 as a semialgebraic set can reveal

important features of the complex variety X.

Example: unipotent upper-triangular matrices.

X =

















1 x y
0 1 z
0 0 1

















X≥0 =



















x ≥ 0
y ≥ 0
z ≥ 0

xz − y ≥ 0



















x=y=z=0

y=z=0x=y=0

y=0 xz−y=0

X
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Why study totally positive/nonnegative varieties?

(continued)

(2) Some of them can be identified with important spaces.

Examples: decorated Teichmüller spaces (R. Penner, S.F.-D.T.);

“higher Teichmüller theory” (V. Fock–A. Goncharov); Schubert

positivity via Peterson’s map (K. Rietsch, T. Lam).

(3) Potential interplay between the tropicalization of a complex

algebraic variety X and its positive part X>0 .
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From positivity to cluster algebras

Which algebraic varieties X have a “natural” notion of positivity?

Which families ∆ of regular functions should be used for that?

The concept of a cluster algebra can be viewed as an attempt

to answer these questions.
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Prototypical example of a cluster algebra

Consider the algebra

A = C[SLn]
N ⊂ C[x11, . . . , xnn]/〈det(xij)− 1〉

of polynomials in the matrix entries of an n×n matrix (xij) ∈ SLn

which are invariant under the natural action of the subgroup

N =





























1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 ∗
0 0 0 1





























⊂ SLn(C)

(multiplication on the right).

A is the base affine space for G = SLn(C).
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Flag minors and positivity

Invariant theory: A=C[SLn]N is generated by the flag minors

∆I : x 7→ det(xij|i ∈ I, j ≤ |I|),

for I ( {1, . . . , n}, I 6= ∅.

The flag minors ∆I satisfy generalized Plücker relations.

A point in G/N represented by a matrix x ∈ G is totally positive

(resp., totally nonnegative) if all flag minors ∆I take positive

(resp., nonnegative) values at x.

There are 2n − 2 flag minors. How many of them should be

tested to determine whether a given point is totally positive?

Answer: enough to check dim(G/N)= (n−1)(n+2)
2 flag minors.
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Pseudoline arrangements

1

2

3

4

5

6

6

5

4

3

2

1
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Braid moves

Any two pseudoline arrangements are related by braid moves:

←→
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Chamber minors

1

2

3

4

4

3

2

1

∆1 ∆2 ∆3 ∆4

∆12

∆23

∆34

∆123 ∆234
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Cluster jargon

coefficient
variables

coefficient
variables

cluster variables

cluster = {cluster variables}

extended cluster = {coefficient variables, cluster variables}
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Braid moves and cluster exchanges

∆1 ∆2 ∆3 ∆4

∆12

∆23

∆34

∆123 ∆234

∆1

∆13

∆3 ∆4

∆12

∆23

∆34

∆123 ∆234

a

b c

de

←→

a

b c

d

f
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Exchange relations

a

b c

de

←→

a

b c

d

f

The chamber minors a, b, c, d, e, f satisfy the exchange relation

ef = ac+ bd.

(For example, ∆2∆13 = ∆12∆3 +∆1∆23 .)

The rational expression f = ac+bd
e is subtraction-free.

Theorem 1 If the elements of a particular extended cluster

evaluate positively at a given point, then so do all flag minors.
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Main features of a general cluster algebra setup

(illustrated by the prototypical example)

• a family of generators of the algebra (the flag minors);

• a finite subset of “frozen” generators;

• grouping of remaining generators into overlapping “clusters;”

• combinatorial data accompanying each cluster (a pseudoline

arrangement);

• “exchange relations” that can be written using those data;

• a “mutation rule” for producing new combinatorial data from

the given one (braid moves).

20



The missing mutations

?

?

?

?

?

?

?

?
∆2

∆134

∆3

∆124

∆24

∆13

∆23

∆14
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Quivers

A quiver is a finite oriented graph.

Multiple edges are allowed.

Oriented cycles of length 1 or 2 are forbidden.

Two types of vertices: “frozen” and “mutable.”

Ignore edges connecting frozen vertices to each other.
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Quiver mutations

Quiver analogues of braid moves.

Quiver mutation µz : Q 7→ Q′ is computed in three steps.

Step 1. For each instance of x→z→y, introduce an edge x→y.

Step 2. Reverse the direction of all edges incident to z.

Step 3. Remove oriented 2-cycles.

z

Q

µz
←→

z

Q′

Easy: mutation of Q′ at z recovers Q.
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Braid moves as quiver mutations

∆1 ∆2 ∆3 ∆4

∆12

∆23

∆34

∆123 ∆234

∆1

∆13

∆3 ∆4

∆12
∆23

∆34

∆123 ∆234

∆1 ∆2 ∆3 ∆4

∆12 ∆23 ∆34

∆123 ∆234

∆1 ∆13 ∆3 ∆4

∆12 ∆23 ∆34

∆123 ∆234
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Seeds

Let F be a field containing C.

A seed in F is a pair (Q, z) consisting of

• a quiver Q;

• an extended cluster z, a tuple of algebraically independent

(over C) elements of F, labeled by the vertices of Q.

coefficient variables ←→ frozen vertices

cluster variables ←→ mutable vertices

Clusters

cluster = {cluster variables}

extended cluster = {coefficient variables, cluster variables}
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Seed mutations

A seed mutation µz : (Q, z) 7→ (Q′, z′) is defined by

• z′ = z ∪ {z′} \ {z} where

z z′ =
∏

z←y
y +

∏

z→y
y

(the exchange relation);

• Q′ = µz(Q).
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Definition of a cluster algebra A(Q, z)

(restricted generality)

A(Q, z) is generated inside F by the union of all extended clusters

obtained from the initial seed (Q, z) by iterated mutations.

(Q, z)

A(Q, z) is determined (up to isomorphism) by the mutation

equivalence class of the quiver Q.

For now: cluster algebras of geometric type with skew-symmetric

exchange matrices.
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Cluster combinatorics for C[SL4]
N

∆2

∆134

∆3

∆124

∆24

∆13

∆23

∆14

Ω = −∆1∆234 +∆2∆134
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Examples of cluster algebras

Theorem 2 [J. Scott, Proc. London Math. Soc. 92 (2006)]

The homogeneous coordinate ring of any Grassmannian Grk,r(C)

has a natural cluster algebra structure.

Theorem 3 [C. Geiss, B. Leclerc, and J. Schröer, Ann. Inst.

Fourier 58 (2008)] The coordinate ring of any partial flag variety

SLm(C)/P has a natural cluster algebra structure.

This can be used to build a cluster structure in each ring C[SLm]N .

Other examples: coordinate rings of G/P ’s, double Bruhat cells,

Schubert varieties, etc.
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Cluster structures in commutative rings

How can one show that a ring R is a cluster algebra?

R has to be an integral domain, and a C-algebra.

Can use F = QF(R) (quotient field).

Challenge: find a seed (Q, z) in QF(R) such that A(Q, z) = R.
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Proving that a ring is a cluster algebra

star(Q, z)
def
= z ∪ {cluster variables from adjacent seeds}

Proposition 4 Let R be a finitely generated C-algebra and a

normal domain. If all elements of star(Q, z) belong to R and are

pairwise coprime, then R ⊃ A(Q, z).

If, in addition, R has a set of generators each of which appears

in the seeds mutation-equivalent to (Q, z), then R = A(Q, z).
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What do we gain from a cluster structure?

1. A sensible notion of (total) positivity.

2. A “canonical” basis, or a part of it.

3. A uniform perspective and general tools of cluster theory.
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PART 2: BASIC STRUCTURAL RESULTS

The Laurent phenomenon

Theorem 5 All cluster variables are Laurent polynomials in the

elements of the initial extended cluster.

Exercise. Suppose that a sequence x0, x1, x2, . . . satisfies

xnxn+5 = xn+1xn+4 + xn+2xn+3 .

Interpret this recurrence as a special case of cluster mutation.

Conclude that each xn is a Laurent polynomial in x0, . . . , x4.

Setting x0 = · · · = x4 = 1 produces a sequence of integers

1,1,1,1,1,2,3,5,11,37,83,274,1217,6161,22833,165713, . . .
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More on the Laurent phenomenon

Corollary 6 Any element of a cluster algebra, when expressed in

terms of a fixed extended cluster, is a Laurent polynomial.

Theorem 7 Coefficient variables do not appear in the denomi-

nators of these Laurent polynomials.

Conjecture 8 (Laurent Positivity) When expressed in terms of

an arbitrary extended cluster, each cluster variable is given by a

Laurent polynomial with positive coefficients.

Special cases: P. Caldero–M. Reineke, G. Musiker–R. Schiffler-

L. Williams, H. Nakajima, R. Kedem–P. Di Francesco, et al.
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Cluster monomials

A cluster monomial is a product of (powers of) elements of the

same extended cluster.

In A = C[SL4 /N ], the cluster monomials form a linear basis.

This is an example of Lusztig’s dual canonical basis.

Theorem 9 [G. Cerulli Irelli, B. Keller, D. Labardini-Fragoso, and

P.-G. Plamondon, arXiv:1203.1307]. In a cluster algebra defined

by a quiver, the cluster monomials are linearly independent.

Cluster monomials do not form a linear basis unless the number

of clusters is finite.
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Positivity conjectures

Conjecture 10 (Strong Positivity Conjecture) Any cluster algebra

has an additive basis which

• includes the cluster monomials and

• has nonnegative structure constants.

The Strong Positivity Conjecture implies Laurent Positivity.

Conjecture 10 suggests the existence of a monoidal categorification

[B. Leclerc–D. Hernandez, H. Nakajima].

36



Mutation-acyclic quivers

A quiver is called mutation-acyclic if it can be transformed by

iterated mutations into a quiver whose mutable part is acyclic.

Theorem 11 [A. Buan, R. Marsh, and I. Reiten, Comment.

Math. Helv. 83 (2008)] A full subquiver of a mutation-acyclic

quiver is mutation-acyclic.

Theorem 12 [Y. Kimura and F. Qin, arXiv:1205.2066]

The strong positivity conjecture holds for any cluster algebra

defined by a mutation-acyclic quiver.
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Cluster complex and exchange graph

Theorem 13 [M. Gekhtman, M. Shapiro, and A. Vainshtein,

Math. Res. Lett. 15 (2008)] In a given cluster algebra, each seed

is determined by its cluster. Two seeds are adjacent if and only

if their clusters share all elements but one.

The combinatorics of clusters and exchanges is encoded by the

cluster complex. This is a simplicial complex in which:

vertices ←→ cluster variables

maximal simplices ←→ clusters

By Theorem 13, the cluster complex is a pseudomanifold. Its dual

graph is the exchange graph of the cluster algebra:

vertices ←→ seeds/clusters

edges ←→ mutations
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Cluster type

The mutable part of Q determines the (cluster) type of A(Q, z).

Example: SL4 /N and Gr2,6 .

Conjecture 14 The cluster complex depends only on the type

of a cluster algebra.

Theorem 15 [G. Cerulli Irelli, B. Keller, D. Labardini-Fragoso,

and P.-G. Plamondon, arXiv:1203.1307]. The exchange graph

depends only on the type of a cluster algebra.
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Cluster algebras of finite type

A cluster algebra is of finite type if it has finitely many seeds

(equivalently, finitely many cluster variables).

This property turns out to depend only on the cluster type.

Next: classify all cluster algebras of finite type; describe their

underlying combinatorics.
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Example: Grassmannian Gr2,n+3(C)

A point in Gr2,n+3(C) is represented by a 2× (n+3) matrix:

z =

[

z11 z12 · · · z1,n+3

z21 z22 · · · z2,n+3

]

The homogeneous coordinate ring of Gr2,n+3(C) (with respect to

its Plücker embedding) is generated by the Plücker coordinates

Pij = det

[

z1i z1j
z2i z2j

]

.

They satisfy the Grassmann-Plücker relations

Pik Pjl = Pij Pkl + Pil Pjk (i < j < k < l).
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Ptolemy relations

Plücker coordinate ←→ side/diagonal of a convex (n+3)-gon:

Pij
i j

Grassmann-Plücker relation ←→ Ptolemy relation:

a

e
f

b

c

d

ef = ac+ bd
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Cluster structure on a Grassmannian Gr2,n+3(C)

cluster variables ←→ diagonals

frozen variables ←→ sides

clusters/seeds ←→ triangulations

mutations ←→ flips

exchange relations ←→ Grassmann-Plücker relations
43



Cluster structure on a Grassmannian Gr2,n+3(C)

cluster variables ←→ diagonals

frozen variables ←→ sides

clusters/seeds ←→ triangulations

mutations ←→ flips

exchange relations ←→ Grassmann-Plücker relations
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Exchange graph for C[Gr2,n+3]: the associahedron
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Finite type classification

An (n ≥ 1) E6

Dn (n ≥ 4) E7

E8

Theorem 16 A cluster algebra is of finite type if and only if the

mutable part of its quiver at some seed is an orientation of a

(simply-laced) Dynkin diagram.

The type of this Dynkin diagram in the Cartan-Killing nomen-

clature is uniquely determined by the cluster algebra.
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Cluster types of some coordinate rings

C[Gr2,n+3] An

C[Gr3,6] D4

C[Gr3,7] E6

C[Gr3,8] E8

C[SL3]
N A1

C[SL4]
N A3

C[SL5]
N D6

47



Cluster complexes in finite type

Theorem 17 [F. Chapoton, S.F., A. Zelevinsky, Canad. Math.

Bull. 45 (2002)] The cluster complex of a cluster algebra of finite

type is the dual simplicial complex of a simple convex polytope.

These polytopes are called generalized associahedra.

Type An: ordinary associahedron (Stasheff’s polytope).
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Almost positive roots

A cluster algebra of finite type

Φ the corresponding crystallographic root system

Theorem 18 The cluster variables in A are in bijection with the

roots in Φ which are either positive or negative simple.

cluster variable x ←→ root α

denominator of x ←→ simple root expansion of α

The combinatorics of the cluster complex and the geometry of

generalized associahedra can be described in root-theoretic terms.
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Polyhedral realization of the associahedron of type A3

max(−z1 , −z3 , z1 , z3 , z1 + z2 , z2 + z3) ≤ 3/2

max(−z2 , z2 , z1 + z2 + z3) ≤ 2α2

α1 + α2

α2 + α3

α1+α2+α3

α1

α3
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Enumerative results

Theorem 19 The number of clusters in a cluster algebra of

finite type is equal to

N(Φ)=
n
∏

i=1

ei + h+1

ei +1
,

where e1, . . . , en are the exponents, and h is the Coxeter number.

N(Φ) is the Catalan number associated with the root system Φ.

Φ An Dn E6 E7 E8

N(Φ) 1
n+2

(

2n+2
n+1

)

3n−2
n

(

2n−2
n−1

)

833 4160 25080
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Catalan combinatorics of arbitrary type

Besides clusters, the numbers N(Φ) enumerate:

• ad-nilpotent ideals in a Borel subalgebra of a semisimple Lie

algebra;

• antichains in the root poset;

• regions of the Catalan arrangement inside the fundamental

chamber;

• orbits of the Weyl group action on the quotient Q/(h+1)Q

of the root lattice;

• conjugacy classes of elements x of a semisimple Lie group

which satisfy xh+1 = 1;

• non-crossing partitions of the appropriate type.
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PART 3: PERIODICITY AND GRASSMANNIANS

The pentagon recurrence

Let f1 = x, f2 = y, and

fn+1 =
fn +1

fn−1
.

We get:

x, y,
y +1

x
,
x+ y +1

xy
,
x+1

y
.

Next: x and y.

Explanation: iterated cluster mutations in type A2.
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Cluster transformations on bipartite graphs

bipartite graph ←→ quiver with each vertex a source or a sink

Mutations at vertices of the same color commute.

Bipartite mutation dynamics: all black, then all white.

a b c d e f

g
7−→

b+1
a b

bdg+1
c d

df+1
e f

g

The quiver does not change.
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Zamolodchikov periodicity conjecture

Theorem 20 Bipartite mutation dynamics on a simply-laced

Dynkin diagram has period h+2 where h is the Coxeter number.

Theorem 21 Bipartite mutation dynamics is periodic if and only

if the underlying graph is a simply-laced Dynkin diagram.

Recall: exchange graph depends only on the cluster type.
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Cluster transformations for pairs of Dynkin diagrams

The octahedron recurrence (a.k.a. Hirota’s equation).
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Zamolodchikov periodicity for pairs of Dynkin diagrams

Conjecture [F. Ravanini-A. Valleriani-R. Tateo and A. Kuniba-

T. Nakanishi, ≈ 1993]:

Theorem 22 [B. Keller, Ann. Math.. 177 (2013)] Bipartite

mutation dynamics for pairs of Dynkin diagrams is periodic, with

the period dividing the sum of the two Coxeter numbers.

Analogues for non-simply-laced types were obtained by R. Inoue,

O. Iyama, B. Keller, A. Kuniba, T. Nakanishi, and J. Suzuki.
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Volkov’s proof of periodicity for type An−1 ×Am−1

Adaptation of [A. Volkov, Comm. Math. Phys. 276 (2007)].

Idea: interpret cluster transformations on An−1×Am−1 using the

cluster structure on the appropriate “Plücker ring.”
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Plücker coordinates

An,n+m = homogeneous coordinate ring of Grn,n+m

An,n+m = {SLn-invariants of (n+m)-tuples v1, . . . , vn+m ∈ Cn}

I = {i1 < · · · < in} ⊂ {1, . . . , n+m}

Plücker coordinate: [I] = [i1, . . . , in] (formerly denoted by PI)

[I] is an n× n minor of a generic n× (n+m) matrix.

Theorem 23 [First Fundamental Theorem of Invariant Theory,

H. Weyl, 1930s] An,n+m is generated by the Plücker coordinates.
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Special Plücker coordinates

These are Plücker coordinates [I] where I consists of one or two

“contiguous segments” modulo n+m.

12

39

6

1

5

2

4

11

7

10

8

















∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

















Coefficient variables: [I], with I a single segment

Grading by Z/(n+m)Z: ℓ(I) = 4+ 11 (mod12).
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Three-term relations for special Plücker coordinates

a b c d










∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗











J = [a+1, b− 1] ∪ [c+1, d− 1]

[Jac][Jbd] = [Jab][Jcd] + [Jad][Jbc]
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Special seeds in a Grassmannian

cluster = {non-coefficient special [I] with ℓ(I)=k or ℓ(I)=k+1}

n = 3 m = 4 k = 6

coefficients = {[123], [234], [345], [456], [567], [167], [127]}

cluster = {[125], [156], [245], [126], [256], [235]}

exchange relations:

[125][237] = [123][256] + [126][235]

[156][267] = [126][567] + [167][256]

[245][356] = [235][456] + [256][345]

[126][157] = [167][125] + [127][156]

[256][145] = [156][245] + [125][456]

[235][124] = [125][234] + [123][245]
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Quiver for a special seed

156

126

256

125

245

235

167

567

127 123

456

345

234
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Leclerc-Zelevinsky conjectures

I and J are called weakly separated

m

I \ J and J \ I are non-crossing

Theorem 24

[V. Danilov, A. Karzanov, and G. Koshevoy, J. Algebraic Combin.

32 (2010), S. Oh, A. Postnikov, and D. Speyer, arXiv:1109.4434]

All maximal collections of pairwise weakly separated n-element

subsets of the set {1,2, . . . , n + m} have the same cardinality.

These maximal collections correspond precisely to the clusters

in An,n+m which consist entirely of Plücker coordinates.
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Cluster structures in Grassmannians: further directions

• Explicit description of cluster variables

• Compatibility criteria

• Cluster structures in classical rings of invariants

• Additive bases (dual canonical, etc.)

• Totally nonnegative Grassmannians

• Positroid varieties

• SLn local systems on Riemann surfaces

• Other partial flag varieties

• Other Lie types

• Connections with Poisson geometry, integrable systems, etc.
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PART 4: CLUSTER ALGEBRAS IN FULL GENERALITY

Three levels of mutation dynamics

mutable part of a quiver skew-symmetrizable matrix

edges to/from frozen vertices Y -variables

cluster variables cluster variables
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Skew-symmetrizable matrices

An n× n integer matrix B = (bij) is skew-symmetrizable if

di bij = −dj bji

for some positive integers d1, . . . , dn.

Skew-symmetric matrices ←→ quivers.

Matrix mutation: µk(B) = B′ = (b′ij) where

b′ij =







−bij if i = k or j = k;

bij + sgn(bik)max(bikbkj,0) otherwise.
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Y -seeds

Y -seed: pair (B,y) where

• B=(bij) is an n× n skew-symmetrizable matrix;

• y=(y1, . . . , yn) is an n-tuple of elements of a semifield (P,⊕, ·).

Y -seed mutation:

B 7→ B′ = µk(B)

y 7→ y′ = (y′1, . . . , y
′
n)

y′j =







y−1k if j = k;

yj y
max(bkj,0)

k (yk ⊕ 1)−bkj if j 6= k.

Tropical semifield: multiplicative generators u1, u2, . . . , with

∏

j

u
aj
j ⊕

∏

j

u
bj
j =

∏

j

u
min(aj,bj)
j .
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Y -patterns

(B,y)

• Discrete integrable systems (Y -systems) in theoretical physics

• Transformations of shear coordinates under flips

• Fock-Goncharov varieties (“cluster X-varieties”)

• Wall-crossing formulas in Donaldson-Thomas/string theory

[M. Kontsevich-Y. Soibelman, D. Gaiotto-G. Moore-A. Neitzke]

• The pentagram map and its generalizations
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The pentagram map

[R. Schwartz 1992, M. Glick 2010]
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Seeds

Use an ambient field F containing CP.

Seed: triple (B,y,x) where

• B = (bij) is an n× n skew-symmetrizable matrix;

• y = (y1, . . . , yn) ∈ P
n.

• x = (x1, . . . , xn) ∈ F
n.

Seed mutations: use the exchange relation

xk x
′
k =

yk
yk ⊕ 1

∏

bik>0

x
bik
i +

1

yk ⊕ 1

∏

bik<0

x
−bik
i .

71



Cluster algebras over an arbitrary semifield

The (normalized) cluster algebra A(B,y,x) is generated (over

some ring containing ZP) by all cluster variables in all seeds

obtained from (B,y,x) by iterated mutations.

(B,y,x)
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Extending cluster theory into full generality

• The Laurent phenomenon

• Skew-symmetrizable cluster algebras of geometric type

• Examples from Lie theory

• Notion of cluster type. Finite type classification

• Generalized associahedra

• Folding

• Zamolodchikov periodicity
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Exchange graphs

Conjecture 25 The exchange graph for a Y -pattern (resp.,

a cluster algebra) depends solely on the exchange matrix B.

Moreover these two exchange graphs coincide with each other.

“Smallest” exchange graph: trivial coefficients.

“Largest” exchange graph: principal coefficients.
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Separation of additions

y1

y3

y2

y4

x1 x2

x3 x4

Each cluster variable in Aprincipal(B) is a subtraction-free rational

expression (and a Laurent polynomial) in x1, x2, . . . , y1, y2, . . . .

Theorem 26 Let x be a cluster variable in a cluster algebra A over

a semifield P, with ambient field F and initial exchange matrix B.

Let X be the subtraction-free rational expression for the corre-

sponding cluster variable in Aprincipal(B). Then

x =
X|F(x1, . . . , xn; y1, . . . , yn)

X|P(1, . . . ,1; y1, . . . , yn)
.
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Y -patterns via cluster dynamics

Theorem 27 Let y′j be a variable in a Y -pattern with initial data

(B,y), y = (y1, . . . , yn). Then

y′j = Y ′j

n
∏

i=1

Xi(1, . . . ,1; y1, . . . , yn)
b′ij

where

• X1, . . . , Xn are the subtraction-free rational expressions for

cluster variables in the corresponding seed for Aprincipal(B),

• Y ′j be the counterpart of yj in that seed;

• B′ = (b′ij) is the exchange matrix at that seed.
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Post scriptum

Conjecture 28 Any cluster algebra (say defined by a quiver) is a

free module over its subring generated by the coefficient variables.

Example: the Plücker ring and its subring generated by the

“cyclically contiguous” Plücker coordinates.
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