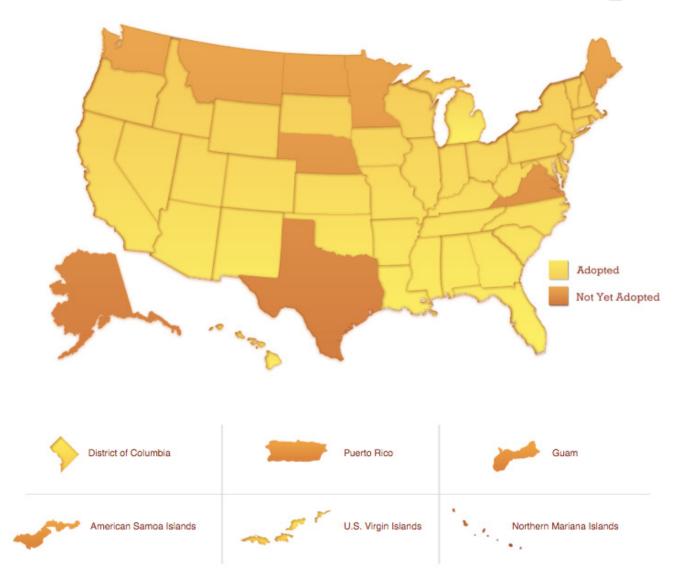
Teachers' Knowledge for Using Drawn Models of Fraction Arithmetic


Andrew Izsák University of Georgia

Presented at the Mathematical Sciences Research Institute Berkeley, CA May 13, 2011

Why Emphasize Drawn Models?

- Drawn models: Inscriptions conveying relationships among numbers or quantities (e.g., number lines, rectangular areas)
- Theories of learning (e.g., Piaget) emphasize experiences in the material world as the basis for students developing mathematical concepts
- Theories of teacher knowledge (e.g., Ball, Shulman) emphasize representations
- Curricular standards (e.g., NCTM, CCSS) assign a central role to representations

Common Core Standards Adoption

Why Emphasize Fractions?

- Essential for the study of algebra (e.g., NMAP, Kilpatrick & Izsák, Wu)
 - Understanding proportional relationships among quantities (e.g., rate of change)
 - Manipulating algebraic notation (e.g., like terms)
 - Working with formal properties of number systems (e.g., deducing general numeric methods)

Why Emphasize Fractions?

 Fraction Division (e.g., Ball, 1990; Borko et al. 1992; Ma, 1999)

- Give a situation that illustrates $1\frac{3}{4} \div \frac{1}{2}$

- Generate drawn models for fraction arithmetic

- Decimal Multiplication (e.g., Graeber et al., 1989)
 - 1 kg of detergent makes 15 kg of soap. How much soap does .75 kg of detergent make?

Organization

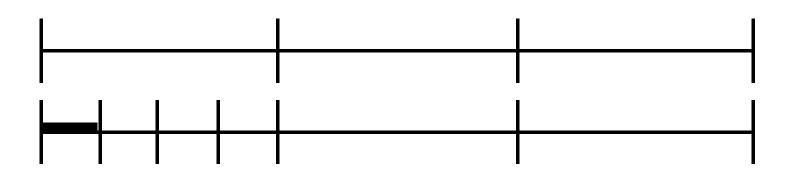
- Three projects studying teachers' reasoning with drawn models for fraction arithmetic
- Each new project builds on previous project
- Moving from intensive case studies of individual teachers in their classrooms, to groups of teachers in professional development, to national samples
- Harnessing psychometric models as a research tool
- Implications for *Common Core State Standards*

Project 1: Coordinating Students' and Teachers' Algebraic Reasoning

- How do teachers use and build upon their existing knowledge when understanding and responding to mathematical problems that arise during classroom interactions?
- Pierce Middle School
- Connected Mathematics Project (CMP)
- Enactment of entire instructional units in Grades 6–8
- Videotaped lessons, student interviews, and teacher interviews

National Science Foundation Grant No. REC-0231879

Case Studies of Two 6th-Grade Teachers: Drawn Models for Fraction Multiplication


- Izsák (2008)
- Examined moments during instruction when each teacher was more/less flexible when responding to students' thinking
- Generated accounts of each teacher's knowledge
- Explained sequences of lessons spanning several weeks

Knowledge for Teaching Fraction Multiplication–Part 1

Multiplication and Unit Structures

- The algorithm
- Multiplication is repeated addition
- A fraction *of* a number means a fraction *times* the number
- Products of rectangular dimensions give areas
- Unit structures (2- vs. 3-levels of units)
- Drawn instantiations of the distributive property

Levels of Units: What is 1/4 of 1/3?

Solving with 2-levels of units:

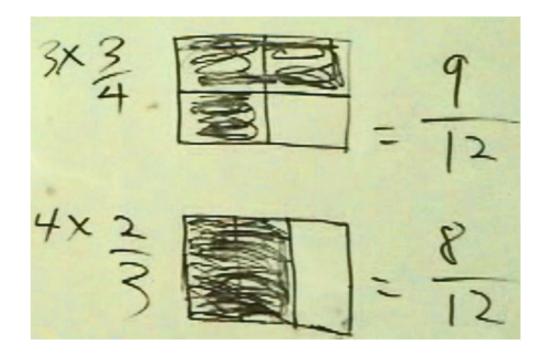
Solving with 3-levels of units:

Knowledge for Teaching Fraction Multiplication–Part 2

Pedagogical Uses for Drawings

- *Illustrate* computed solutions
- *Infer* a numeric method from patterns
- *Deduce* a general numeric method from represented structure of quantities
- *Adapt* to students' strategies to generate a general numeric method

Ms. Archer


• Used 2-level structures and understandings associated with multiplication to reason about parts of parts and to *illustrate particular solutions*

Ms. Reese

• Used 3-level structures and understandings associated with multiplication to reason about parts of parts and to *infer a general method*

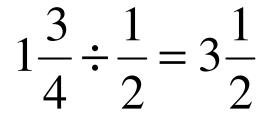
Example of Constraints

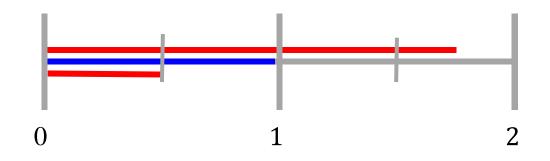
- Ms. Archer used areas to compare 3/4 and 2/3
- Reported afterwards she did not think of 12ths

Project 2: Does it Work?

- What do teachers learn from *InterMath* professional development experiences?
- Professional development emphasized fractions and proportions, drawn models, and referent units
- Developed a pretest/posttest aligned to content of professional development

Fraction Division: Referent Units


• The units to which numbers refer - One referent unit for all numbers:

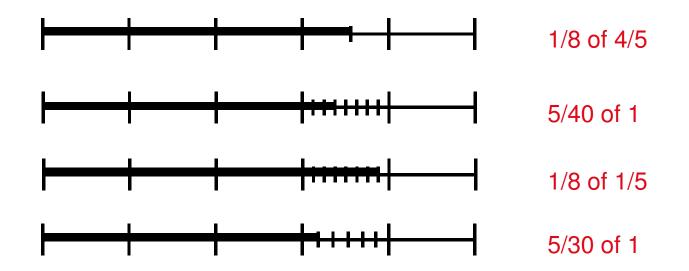

$$\frac{1}{2} + \frac{1}{3} = \frac{5}{6}$$

– Different referent units for each number:

$$1\frac{3}{4} \div \frac{1}{2} = 3\frac{1}{2}$$

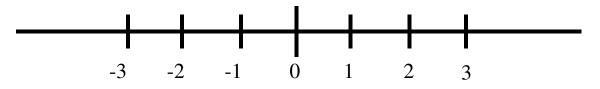
Fraction Division: Nested Units

The Does it Work? Instrument

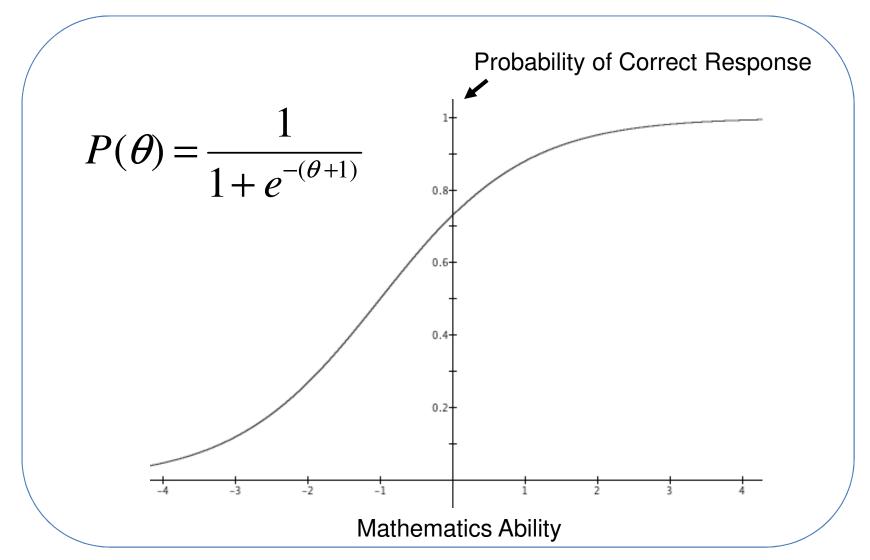

- Adapted the Learning Mathematics for Teaching (LMT) middle grades measure of MKT (Hill, 2007)
- Three types of multiple-choice questions
 - Numeric: Justify standard numeric procedures, evaluate students' proposed numeric methods
 - Verbal: Identify referent units presented verbally (word problems)
 - Drawing: Identify referent units presented through drawings

Rational Number Content Matrix

			Numeric	Verbal	Drawing	
	Fractions	Compare	2	7	1	
		Add/Sub	1	4	(2)	
		Multiplication	2	2	2 (5)	
		Division	1	4	(3)	
		Ratio/Proport ion	1	1 (4)	(4)	
	Decimals	Compare	1 (1)	-	_	
		Add/Sub	1	-	_	
		Multiplication	1	-	4	
		Division	1	4	_	
\backslash				•	•	-

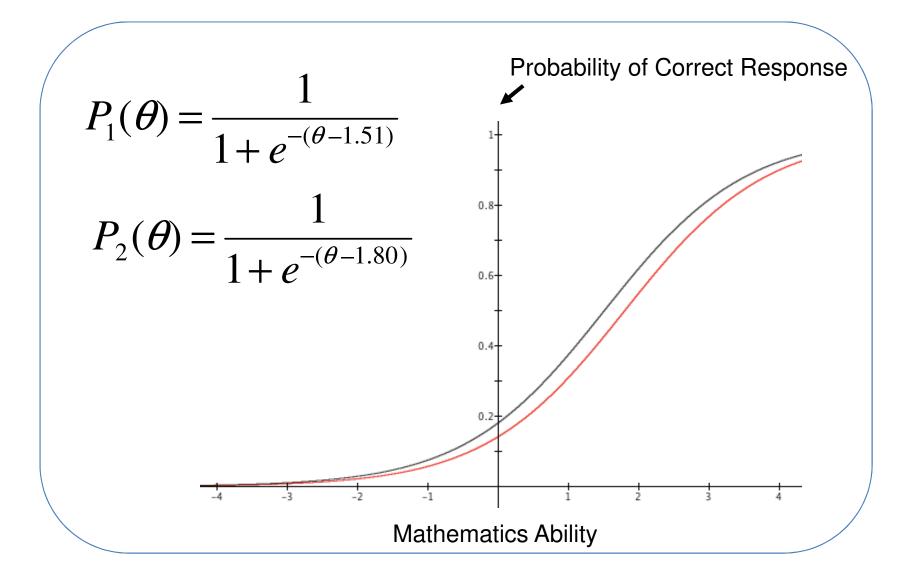

Sample Item

Ms. Roland gave her students the following problem to solve: *Candice has 4/5 of a meter of cloth. She uses 1/8 of a meter for a project. How much cloth does she have left after the project?* Which of the following diagrams shows the solution?

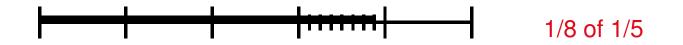


What is IRT?

- Family of psychometric models used to construct tests and analyze test data (e.g., SAT, GRE, NAEP)
- Theory based on individual questions (items) that make up a test
- Responses to items used to estimate latent variables (e.g., a person's ability in a given domain)
- Unidimensional scaling:


One-Parameter IRT Model (Rasch Model)

Study 1: Applying the Mixture-Rasch Model


- Izsák, Orrill, Cohen, & Brown (2010)
- Administered test to 201 middle school teachers in 4 states (convenience sample)
- Combined scaling with classification
 - Latent groups correspond to homogeneities in response patterns
 - Does best Rasch (IRT) model fit occur when all teachers are treated as one group, as two groups, etc.
- Conducted interviews with 16 teachers

Separate Item Locations for Each Group

Two Group Solution

- 2 groups (102 in Group 1, 99 in Group 2)
- Group 1 contains higher proportion of teachers whose responses are consistent with reasoning about referent units appropriately
- About 1/2 of Group 1 and 1/5 of Group 2 responded with correct choice for subtraction on number line
- Most common incorrect response for both groups:

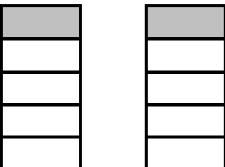
Study 2: Studying Teachers in Professional Development

- Izsák, Jacobson, de Araujo, & Orrill (2011)
- 40-hour course (3 hours per week)
- Urban district in the Southeast
- 13 teachers (Grades 5, 6, and 7) and one district person (separate sample)
- Facilitated by member of the research team
- Whole-class discussion/group work
- Emphasis on referent units and drawn models

Data

- Pre-test/post-test constructed from item pool
- Videotaped each class and pre/post interviews with 7 teachers
- Written work
 - Problem write-ups
 - Reflections

	Pretest			Posttest		
	Ability	Group	Prob.	Ability	Group	Prob.
Keith	2.73	1	0.98	2.22	1	0.95
Will	0.36	1	0.92	0.76	2	0.67
Linda	Ğ 0.40	2	0.77	0.18	2	0.79
Walt	1.48	1	0.84	1.60	1	0.98
Rose	Ğ 0.31	2	1.00	0.16	2	0.91
Pascal	Ğ 0.21	2	1.00	0.89	1	0.93
Donna	0.22	2	0.70	1.60	1	0.99
Carrie	Ğ 0.52	2	0.87	0.29	2	0.99
Claire	1.77	1	0.98	2.02	1	0.98
Salihah	Ğ 0.86	2	1.00	Ğ 0.09	2	1.00
Mike	1.33	1	0.50	2.23	1	0.97
Sharlene	1.18	2	0.91	0.55	1	0.84
Joyce	Ğ 0.40	2	1.00	0.29	2	0.98
Diane	1.24	1	0.79	1.53	2	0.86


Pre-Test to Post-Test: Ability

Pre-Test to Post-Test:	Group
------------------------	-------

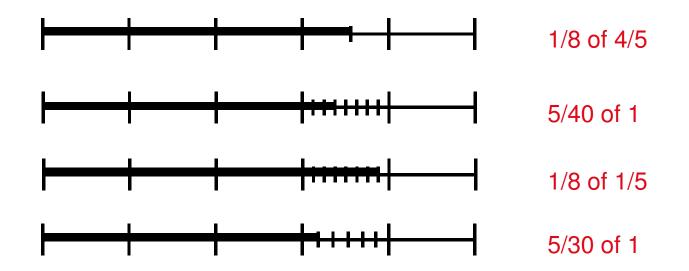
	Pretest				Posttest		
	Ability	Group	Prob.	Ability	Group	Prob.	
Keith	2.73	1	0.98	2.22	1	0.95	
Will	0.36	1	0.92	0.76	2	0.67	
Linda	Ğ 0.40	2	0.77	0.18	2	0.79	
Walt	1.48	1	0.84	1.60	1	0.98	
Rose	Ğ 0.31	2	1.00	0.16	2	0.91	
Pascal	Ğ 0.21	2	1.00	0.89	1	0.93	
Donna	0.22	2	0.70	1.60	1	0.99	
Carrie	Ğ 0.52	2	0.87	0.29	2	0.99	
Claire	1.77	1	0.98	2.02	1	0.98	
Salihah	Ğ 0.86	2	1.00	Ğ 0.09	2	1.00	
Mike	1.33	1	0.50	2.23	1	0.97	
Sharlene	1.18	2	0.91	0.55	1	0.84	
Joyce	Ğ 0.40	2	1.00	0.29	2	0.98	
Diane	1.24	1	0.79	1.53	2	0.86	

What is Behind Class Stability?

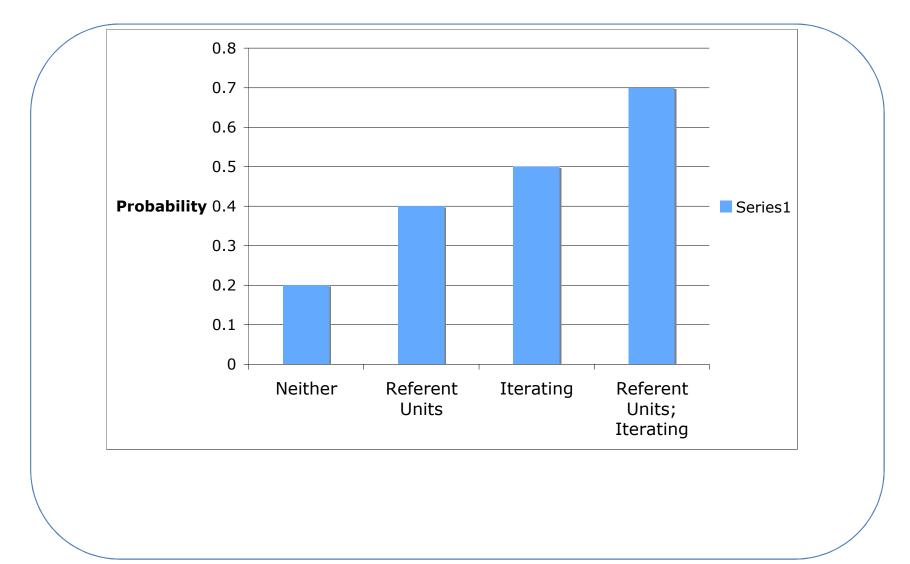
- Teachers in Class 1 evidenced 3 levels of units
- Teachers in Class 2 seemed constrained to 2 levels of units
- Example:
 - Share two candy bars equally among five people. How much of one candy bar does one person get?

Project 3: Diagnosing Teachers' Multiplicative Reasoning

- Fractions, Ratios, and Drawn Models
- Diagnostic Classification Models
- Select attributes identified as important in the research on students' and teachers' thinking
- Use attributes for multi-dimensional classification
- Confirmatory analysis

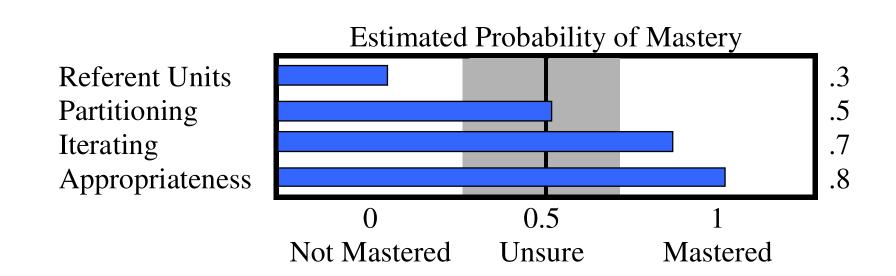

National Science Foundation Grant No. DRL-0903411

Fractions Attributes


- **Referent Units**: Identifying units to which numbers refer
- **Partitioning**: Subdividing quantities into equalsized parts
- Iterating: Interpreting A/B to mean A copies of 1/B
- Appropriateness: Recognizing situations that can be modeled by multiplication or division

Sample Item

Ms. Roland gave her students the following problem to solve: *Candice has 4/5 of a meter of cloth. She uses 1/8 of a meter for a project. How much cloth does she have left after the project?* Which of the following diagrams shows the solution?


Probability of Item Response

Q Matrix

ltem	Ref.	Part.	lter.	Appr.
	Units			
ltem 1	1	1	0	0
ltem 2	0	1	1	0
ltem 3	1	0	0	0
ltem 4	0	0	0	1
ltem j	q _{j1}	q _{j2}	q _{j3}	q_{j4}

Mastery Profile

Learning About Teacher Knowledge Through Item Development

- Initial set of attributes
- Write items that measure one or more attributes
- Interview teachers to see if their reasoning is consistent with intended attributes
- Teachers have difficulty
 - Identifying appropriate referent units
 - Using knowledge of whole number multiplication as a resource for partitioning
 - Using iterating as a fundamental meaning for fractions

Conclusions

- Two vs. three levels of units helps explain why there are two groups of middle school teachers.
- Two vs. three levels of units could be an important focus for mathematics teacher education and professional development.
- There are many opportunities for innovative combinations of psychometric models and mathematics (and STEM) education research.