


Nakajima Quiver Varieties and Derived Categories

B. Keller October 29, 2012

Joint with Sarah Scherotzke. Builds on previous work with Hernandez-Leclerc (3-preprints [HL1], [HL2],
[HL3]) and by Leclerc-Plamondon (preprint [LP]).

Motivation

Hope expressed by Nakajima (2009 preprint) that by using perverse sheaves on quiver varieties it should be
possible to obtain monoidal categorifications (in the sense of [HL1]) of the cluster algebras associated with
the T -system quivers TQ,l. Here Q is an acyclic quiver, and l ≥ 1 (the level).

Example 0.1. The quiver TA3,4:
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The existence of a monoidal categorification is very strong and in particular implies strong positivity of
the corresponding cluster algebra.

Realized for l = 1 by Nakajima for Q bipartite (i.e. each vertex is either a source or a sink) to a certain
extent. Generalized to the acyclic case by Kimura-Qin (to a certain extent). Using algebraic and combina-
torial methods, realized by [HL1,HL3] for Q of type A,D fully.

Aim of the Talk: Get a better understanding of the quiver varieties associated with a Dynkin quiver
Q and an arbitrary level l ≥ 1. (Inspired by the work of [HL2,LP] using derived categories.)

1 Reminder on Repetitive Quivers and Happel’s Theorem

Fix Q a Dynkin quiver, e.g. Q : 1 → 2 → 3. Denote by Q0 its set of vertices and ZQ its repetitive quiver,
e.g. for above Q the repetitive quiver ZQ is
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which up to isomorphism is independent of the orientation of Q. In general, ZQ has vertices the pairs
(i, p) ∈ Q0 × Z and and arrows given as follows: For each α : i→ j in Q we have two families of arrows:

1. (α, p) : (i, p)→ (j, p)
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2. σ(α, p) : (j, p− 1)→ (i, p)

Note σ2(α, p) = (α, p − 1). We also have the translation automorphism τ : (i, p) 7→ (i, p − 1), (α, p) 7→
(α, p− 1). Fix a field k.

Definition 1.1. Define k(ZQ) to be the mesh category of ZQ. The objects are the vertices of ZQ. The
morphisms are given by linear combinations of paths modulo the subspace generated by all urxv where u, v
are paths and rx is the mesh relation associated with the vertex x ∈ Q0. Here

rx =
∑
β:y→x

σ(β) · β.

Example 1.2. For the quiver A2 we have k(ZQ) is
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where compositions of two consecutive arrows vanish in k(ZQ).

Definition 1.3. If kQ is the path algebra of Q, mod-kQ the finite dimensional right kQ-modules, we can
form its bounded derived category DQ := Db(mod-kQ) of kQ-modules.

Theorem 1.4 (Happel ’86). We have a canonical equivalence of categories

H : k(ZQ)→ ind (DQ) = {indecomposable objects in DQ}

determined by (0, i) 7→ Pi = eikQ.

2 Graded Affine Quiver Varieties

The framed quiver Qfr as the quiver obtained from Q by adding certain frozen vertices. Namely, for each
vertex i, add a new frozen vertex i′ (usually drawn in boxes) and a new arrow i→ i′

Example 2.1. Let Q : 1→ 2. Then Qfr is
2 // [2′]

1

OO

// [1′]

where the brackets [ ] indicate the vertex is frozen.

Define ZQfr as the repetitive quiver of Qfr where all the new frozen vertices give rise to families of frozen
vertices. That is, each (i′, p) is frozen.

Example 2.2. For Q as in the previous example, ZQfr is
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@@��������� // [•] // •

??��������� // [•] // •

??��������� // [•] // • . . .

Definition 2.3. Define k(ZQfr) to be the mesh category of ZQfr with only the mesh relations associated to
non-frozen vertices. The regular (smooth) Nakajima category R is this mesh category. The singular Nakajima
category S is the full subcategory of R whose objects are the frozen vertices. Let S0 = {u = σ(x) : x ∈ ZQ}
denote the set of objects in S (i.e. the set of frozen vertices).
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An S-module is a k-linear functor M : Sop → Mod kQ. Let w : S0 → N be a dimension vector, i.e.
a function with finite support. Associated to w we have a graded quiver variety M0(w) consisting of the
S -modules M such that M(u) = kw(u) for all u ∈ S0. Note it is a closed subvariety of∏

u1,u2∈S0

(
kw(u1)×w(u2)

)dim HomS(u1,u2)

Theorem 2.4 (LP). This definition is equivalent to Nakajima’s original definition. (Main ingredient of
proof is an old theorem of Lustig.)

Remark 2.5. In order to make M0(w) more explicit, we need a “minimal presentation” of S. That is, a
presentation of S by a quiver with relations (not just a subquiver of such). To do this, we need to compute
Ext1 and Ext2 between the simple S-modules Sσ(x), for x ∈ (ZQ)0.

Theorem 2.6 (Theorem 1). For any p > 0, we have

Extp(Sσ(x), Sσ(y)) = HomDQ
(H(x), H(y)[p])

where H is Happel’s equivalence and [p] is shift of complexes.

We can compute the right-hand side above explicitly in terms of the root system corresponding to Q.

3 Stratifications

Definition 3.1. Let v : R0 − S0 → N and w : S0 → N be dimension vectors, and set

Gv =
∏

x non-
frozen

GL(kv(x)).

Define M(v, w) to be the smooth graded quiver variety

{R-modules M : M(x) = kv(x),M(σ(x)) = kw(x),Hom(Sx,M) = 0 for each x ∈ ZQ0}/Gv.

Remark 3.2. Nakajima has shown

1. M(v, w) is quasi-projective

2. π :M(v, w)→M0(w) by M 7→M |S is proper

3. M0(w) is stratified by π(Mreg(v, w))

where Mreg(v, w) is the regular Gv-orbits which is an open subvariety of M(v, w).

Theorem 3.3 (Theorem 2). There is a canonical functor

Φ : mod-Σ→ DQ

such that Sσ(x) 7→ H(x). Moreover if M1,M2 ∈ M0(w), then M1 and M2 lie in the same stratum iff
ΦM1

∼= ΦM2 in DQ.

Remark 3.4. This is inspired by [HL2] and [LP] who obtain analogous results for certain w.

Theorem 3.5 (Theorem 3). Consdier π :
∐
M(v, w)→M0(w) and M ∈ M0(w). Then the fibre under π

of M is the Grassmannian of DQ-submodules of Hom(−,ΦM) : Dop
Q → mod-k.

Remark 3.6. This result is classical for M semisimple.
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4 Gorenstein Homological Algebra

Let gpr(S) be the category of finitely presented Gorenstein-projective S-modules. That is, S-modules (in gen-
eral infinite dimensional) which have finite presentations P1 → P0 → M → 0 with P0, P1 finite dimensional
projective, and Ext1S(M,P ) = 0 for every finite dimensional projective module P .

One proves that this is a Frobenius category and so has an associated stable category gpr(S) which
is canonically isomorphism to DQ. Moreover, gpr(S) is isomorphic to the category of finite dimensional
projective R-modules. There is a functor Ω : mod-Σ→ gpr(S), and the composition gives the functor Φ.
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