


Combinatorics of KP solitons from the real
Grassmannian

Lauren K. Williams, UC Berkeley
joint with Yuji Kodama

Lauren K. Williams (UC Berkeley) KP solitons from the real Grassmannian October 31st 2012 1 / 28



Plan of the talk

Background on the real Grassmannian and the KP equation

Soliton solutions: a tropical approximation

Asymptotics of solitons and the positroid stratification of the
Grassmannian

Asymptotics of solitons and the Deodhar decomposition of the
Grassmannian

Total positivity, cluster algebras, and soliton solutions

Connection with triangulations

Lauren K. Williams (UC Berkeley) KP solitons from the real Grassmannian October 31st 2012 2 / 28



Plan of the talk

Background on the real Grassmannian and the KP equation

Soliton solutions: a tropical approximation

Asymptotics of solitons and the positroid stratification of the
Grassmannian

Asymptotics of solitons and the Deodhar decomposition of the
Grassmannian

Total positivity, cluster algebras, and soliton solutions

Connection with triangulations

Lauren K. Williams (UC Berkeley) KP solitons from the real Grassmannian October 31st 2012 2 / 28



Plan of the talk

Background on the real Grassmannian and the KP equation

Soliton solutions: a tropical approximation

Asymptotics of solitons and the positroid stratification of the
Grassmannian

Asymptotics of solitons and the Deodhar decomposition of the
Grassmannian

Total positivity, cluster algebras, and soliton solutions

Connection with triangulations

Lauren K. Williams (UC Berkeley) KP solitons from the real Grassmannian October 31st 2012 2 / 28



Plan of the talk

Background on the real Grassmannian and the KP equation

Soliton solutions: a tropical approximation

Asymptotics of solitons and the positroid stratification of the
Grassmannian

Asymptotics of solitons and the Deodhar decomposition of the
Grassmannian

Total positivity, cluster algebras, and soliton solutions

Connection with triangulations

Lauren K. Williams (UC Berkeley) KP solitons from the real Grassmannian October 31st 2012 2 / 28



Plan of the talk

Background on the real Grassmannian and the KP equation

Soliton solutions: a tropical approximation

Asymptotics of solitons and the positroid stratification of the
Grassmannian

Asymptotics of solitons and the Deodhar decomposition of the
Grassmannian

Total positivity, cluster algebras, and soliton solutions

Connection with triangulations

Lauren K. Williams (UC Berkeley) KP solitons from the real Grassmannian October 31st 2012 2 / 28



Plan of the talk

Background on the real Grassmannian and the KP equation

Soliton solutions: a tropical approximation

Asymptotics of solitons and the positroid stratification of the
Grassmannian

Asymptotics of solitons and the Deodhar decomposition of the
Grassmannian

Total positivity, cluster algebras, and soliton solutions

Connection with triangulations

Lauren K. Williams (UC Berkeley) KP solitons from the real Grassmannian October 31st 2012 2 / 28



Plan of the talk

Background on the real Grassmannian and the KP equation

Soliton solutions: a tropical approximation

Asymptotics of solitons and the positroid stratification of the
Grassmannian

Asymptotics of solitons and the Deodhar decomposition of the
Grassmannian

Total positivity, cluster algebras, and soliton solutions

Connection with triangulations

Lauren K. Williams (UC Berkeley) KP solitons from the real Grassmannian October 31st 2012 2 / 28



References

KP solitons, total positivity, and cluster algebras (Kodama +
Williams), PNAS, May 2011.

KP solitons and total positivity on the Grassmannian (K. + W.),
http://front.math.ucdavis.edu/1106.0023.

The Deodhar decomposition of the Grassmannian and the regularity
of KP solitons
(K. + W.), http://front.math.ucdavis.edu/1204.6446.

Network parameterizations of the Grassmannian (Talaska + W.),
http://front.math.ucdavis.edu/1210.5433.

Lauren K. Williams (UC Berkeley) KP solitons from the real Grassmannian October 31st 2012 3 / 28



Background on the Grassmannian

The real Grassmannian

The Grassmannian Grkn = Grkn(R) = {V | V ⊂ Rn, dimV = k}.
Represent an element of Grkn(R) by a full-rank k × n matrix A.

Given I ∈
([n]

k

)
, the Plücker coordinate ∆I (A) is the minor of the k × k

submatrix of A in column set I .

The Plücker embedding of Grkn(R) is the map Grkn(R) → P(n
k)−1

which sends A 7→ (∆I (A))I∈(n
k)

.

Example

Let A =

(
1 0 a b
0 1 c d

)
.

Then A 7→ (1 : c : d : −a : −b : ad − bc) ∈ P5.
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The Kadomtsev-Petviashvili equation

The KP equation

∂

∂x

(
−4

∂u

∂t
+ 6u

∂u

∂x
+

∂3u

∂x3

)
+ 3

∂2u

∂y2
= 0

Proposed by Kadomtsev and Petviashvili in 1970, in order to study
the stability of the one-soliton solution of the Korteweg-de Vries
(KdV) equation under the influence of weak transverse perturbations.

Studied by Sato, Hirota, Freeman-Nimmo, many many others ...
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Soliton solutions to the KP eqn and shallow water waves

In 1834, John Scott Russell (a Scottish naval engineer) described:

”I was observing the motion of a boat . . . when the boat suddenly stopped
– but not so the mass of water in the channel which it had put in motion;
it accumulated round the prow of the vessel in a state of violent agitation,
then suddenly leaving it behind, rolled forward with great velocity,
assuming the form of a large solitary elevation, a rounded, smooth and
well-defined heap of water, which continued its course along the channel
apparently without change of form or diminution of speed. I followed it on
horseback, and overtook it still rolling on at a rate of some eight or nine
miles an hour, preserving its original figure some thirty feet long and a foot
to a foot and a half in height. Its height gradually diminished, and after a
chase of one or two miles I lost it in the windings of the channel. Such, in
the month of August 1834, was my first chance interview with that singular
and beautiful phenomenon which I have called the Wave of Translation.”
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Soliton solutions to the KP equation

The real Grassmannian

The Grassmannian Grkn(R) = {V | V ⊂ Rn, dimV = k}
Represent an element of Grkn(R) by a full-rank k × n matrix A.

Given I ∈
([n]

k

)
, ∆I (A) is the minor of the I -submatrix of A.

From A ∈ Grkn(R), can construct τA, and then a solution uA of the KP equation.

(cf Sato, Hirota, Satsuma, Freeman-Nimmo, Kodama, Chakravarty . . . )

The τ -function τA

Fix real parameters κj such that κ1 < κ2 < · · · < κn.
Define Ej (x , y , t) := exp(κjx + κ2

j y + κ3
j t).

For J = {j1, . . . , jk} ⊂ [n], define EJ := Ej1 . . . Ejk

∏
ℓ<m(κjm − κjℓ).

The τ -function is

τA(x , y , t) :=
∑

J∈([n]
k )

∆J(A)EJ (x , y , t).

Lauren K. Williams (UC Berkeley) KP solitons from the real Grassmannian October 31st 2012 7 / 28



Soliton solutions to the KP equation

The real Grassmannian

The Grassmannian Grkn(R) = {V | V ⊂ Rn, dimV = k}
Represent an element of Grkn(R) by a full-rank k × n matrix A.

Given I ∈
([n]

k

)
, ∆I (A) is the minor of the I -submatrix of A.

From A ∈ Grkn(R), can construct τA, and then a solution uA of the KP equation.

(cf Sato, Hirota, Satsuma, Freeman-Nimmo, Kodama, Chakravarty . . . )

The τ -function τA

Fix real parameters κj such that κ1 < κ2 < · · · < κn.
Define Ej (x , y , t) := exp(κjx + κ2

j y + κ3
j t).

For J = {j1, . . . , jk} ⊂ [n], define EJ := Ej1 . . . Ejk

∏
ℓ<m(κjm − κjℓ).

The τ -function is

τA(x , y , t) :=
∑

J∈([n]
k )

∆J(A)EJ (x , y , t).

Lauren K. Williams (UC Berkeley) KP solitons from the real Grassmannian October 31st 2012 7 / 28



Soliton solutions to the KP equation

The real Grassmannian

The Grassmannian Grkn(R) = {V | V ⊂ Rn, dimV = k}
Represent an element of Grkn(R) by a full-rank k × n matrix A.

Given I ∈
([n]

k

)
, ∆I (A) is the minor of the I -submatrix of A.

From A ∈ Grkn(R), can construct τA, and then a solution uA of the KP equation.

(cf Sato, Hirota, Satsuma, Freeman-Nimmo, Kodama, Chakravarty . . . )

The τ -function τA

Fix real parameters κj such that κ1 < κ2 < · · · < κn.
Define Ej (x , y , t) := exp(κjx + κ2

j y + κ3
j t).

For J = {j1, . . . , jk} ⊂ [n], define EJ := Ej1 . . . Ejk

∏
ℓ<m(κjm − κjℓ).

The τ -function is

τA(x , y , t) :=
∑

J∈([n]
k )

∆J(A)EJ (x , y , t).

Lauren K. Williams (UC Berkeley) KP solitons from the real Grassmannian October 31st 2012 7 / 28



Soliton solutions to the KP equation

The real Grassmannian

The Grassmannian Grkn(R) = {V | V ⊂ Rn, dimV = k}
Represent an element of Grkn(R) by a full-rank k × n matrix A.

Given I ∈
([n]

k

)
, ∆I (A) is the minor of the I -submatrix of A.

From A ∈ Grkn(R), can construct τA, and then a solution uA of the KP equation.

(cf Sato, Hirota, Satsuma, Freeman-Nimmo, Kodama, Chakravarty . . . )

The τ -function τA

Fix real parameters κj such that κ1 < κ2 < · · · < κn.
Define Ej (x , y , t) := exp(κjx + κ2

j y + κ3
j t).

For J = {j1, . . . , jk} ⊂ [n], define EJ := Ej1 . . . Ejk

∏
ℓ<m(κjm − κjℓ).

The τ -function is

τA(x , y , t) :=
∑

J∈([n]
k )

∆J(A)EJ (x , y , t).

Lauren K. Williams (UC Berkeley) KP solitons from the real Grassmannian October 31st 2012 7 / 28



Soliton solutions to the KP equation

The real Grassmannian

The Grassmannian Grkn(R) = {V | V ⊂ Rn, dimV = k}
Represent an element of Grkn(R) by a full-rank k × n matrix A.

Given I ∈
([n]

k

)
, ∆I (A) is the minor of the I -submatrix of A.

From A ∈ Grkn(R), can construct τA, and then a solution uA of the KP equation.

(cf Sato, Hirota, Satsuma, Freeman-Nimmo, Kodama, Chakravarty . . . )

The τ -function τA

Fix real parameters κj such that κ1 < κ2 < · · · < κn.
Define Ej (x , y , t) := exp(κjx + κ2

j y + κ3
j t).

For J = {j1, . . . , jk} ⊂ [n], define EJ := Ej1 . . . Ejk

∏
ℓ<m(κjm − κjℓ).

The τ -function is

τA(x , y , t) :=
∑

J∈([n]
k )

∆J(A)EJ (x , y , t).

Lauren K. Williams (UC Berkeley) KP solitons from the real Grassmannian October 31st 2012 7 / 28



Soliton solutions to the KP equation

The real Grassmannian

The Grassmannian Grkn(R) = {V | V ⊂ Rn, dimV = k}
Represent an element of Grkn(R) by a full-rank k × n matrix A.

Given I ∈
([n]

k

)
, ∆I (A) is the minor of the I -submatrix of A.

From A ∈ Grkn(R), can construct τA, and then a solution uA of the KP equation.

(cf Sato, Hirota, Satsuma, Freeman-Nimmo, Kodama, Chakravarty . . . )

The τ -function τA

Fix real parameters κj such that κ1 < κ2 < · · · < κn.
Define Ej (x , y , t) := exp(κjx + κ2

j y + κ3
j t).

For J = {j1, . . . , jk} ⊂ [n], define EJ := Ej1 . . . Ejk

∏
ℓ<m(κjm − κjℓ).

The τ -function is

τA(x , y , t) :=
∑

J∈([n]
k )

∆J(A)EJ (x , y , t).

Lauren K. Williams (UC Berkeley) KP solitons from the real Grassmannian October 31st 2012 7 / 28



Soliton solutions to the KP equation

The τ function τA

Choose A ∈ Grkn(R), and fix κj ’s such that κ1 < κ2 < · · · < κn.
Define Ej (x , y , t) := exp(κjx + κ2

j y + κ3
j t).

For J = {j1, . . . , jk} ⊂ [n], define EJ := Ej1 . . . Ejk

∏
ℓ<m(κjm − κjℓ).

τA(x , y , t) :=
∑

J∈([n]
k ) ∆J(A)EJ (x , y , t).

A solution uA(x , y , t) of the KP equation (Freeman-Nimmo)

Choose A ∈ Grkn(R), choose κ1 < · · · < κn, define τA(x , y , t) as above.

Then uA(x , y , t) = 2
∂2

∂x2
ln τA(x , y , t) is a solution to KP.

Note: Whenever τA(x , y , t) = 0, uA(x , y , t) will have a singularity.
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Visualing soliton solutions to the KP equation

The contour plot of uA(x , y , t)

We analyze uA(x , y , t) by fixing t, and drawing its contour plot Ct(uA) for
fixed times t – this will approximate the subset of the xy plane where
|uA(x , y , t)| takes on its maximum values or is singular.
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Definition of the contour plot at fixed time t

uA(x , y , t) is defined in terms of τA(x , y , t) :=
∑

I∈([n]
k ) ∆I (A)EI (x , y , t).

At most points (x , y , t), τA(x , y , t) will be dominated by one term –
– at such points, uA(x , y , t) ∼ 0.

The contour plot Ct(uA) is the subset of the xy plane where two or more
terms dominate τA(x , y , t).
Approximates locus where |uA(x , y , t)| takes on max values or is singular.
We assume that x ,y ,t are on a large scale; then approximation is good.
When the κi ’s are integers, Ct(uA) is a tropical curve.

1 3

2

E E

E

Labeling regions of the contour plot by dominant exponentials

One term EI dominates uA in each region of the complement of Ct(uA).
Label each region by the dominant exponential.
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The contour plot Ct(uA) is the subset of the xy plane where two or more
terms dominate τA(x , y , t).
Approximates locus where |uA(x , y , t)| takes on max values or is singular.
We assume that x ,y ,t are on a large scale; then approximation is good.
When the κi ’s are integers, Ct(uA) is a tropical curve.
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E

Labeling regions of the contour plot by dominant exponentials

One term EI dominates uA in each region of the complement of Ct(uA).
Label each region by the dominant exponential.
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Visualizing soliton solutions to the KP equation

Generically, interactions of line-solitons are trivalent or are X-crossings.
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If two adjacent regions are labeled EI and EJ , then J = (I \ {i}) ∪ {j}.
The line-soliton between the regions has slope κi + κj ; label it [i , j].
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Extract combinatorial structure: Soliton graphs

We associate a soliton graph Gt(uA) to a contour plot Ct(uA) by:
forgetting lengths and slopes of edges, and marking a trivalent vertex
black or white based on whether it has a unique edge down or up.
Embed graph in disk.
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Soliton graph → bicolored graph

E

E

1246

4589

[6,9]
[4,8]

[2,4]

[1,5]

[1,3]

[2,5]
[3,7]

[6,8]

[7,9]

[6,7]

[8,9]

[1,7]

[1,5]
[2,3]

[2,5]

[4,5]

[4,7]

[4,8]

Associate a bicolored graph to each soliton graph by:

For each unbounded line-soliton [i , j] (with i < j) heading to y >> 0,
label the incident boundary vertex by j.

For each unbounded line-soliton [i , j] (with i < j) heading to y << 0,
label the incident boundary vertex by i.

Forget the labels of line-solitons and regions.
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Theorem. Passing from the soliton graph to the bicolored graph does
not lose any information!

We can reconstruct the labels by following the “rules of the road” (zig-zag
paths). From the bdry vertex i , turn right at black and left at white.

Label each edge along trip with i , and each region to the left of trip by i .
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Consequence: can IDENTIFY the soliton graph with its bicolored graph.
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Asymptotics of soliton solutions

Recall

Fix A ∈ Grkn(R) and κ1 < · · · < κn. This gives rise to a soliton solution
uA(x , y , t) of the KP equation.

How does uA(x , y , t) behave as y tends to ±∞?

This depends precisely on which positroid stratum A lies in.

How does uA(x , y , t) behave as t tends to ±∞?

This depends precisely on which Deodhar component A lies in.

Some decompositions of the Grassmannian

Matroid strat. ≺ Deodhar dec. ≺ Positroid strat. ≺ Schubert dec.
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Asymptotics of soliton solutions when y → ±∞

Given any A ∈ Grkn(R), we can completely determine the asymptotics
(as y → ±∞) of the contour plot Ct(uA), using Postnikov’s positroid
stratification of the real Grassmannian.

A Grassmann necklace of type (k, n) is a sequence I = (I1, . . . , In) of
k-element subsets of [n] = {1, 2, . . . , n} such that:

For i ∈ [n], if i ∈ Ii , then Ii+1 = (Ii \ {i}) ∪ {j} for some j ∈ [n].

If i /∈ Ii , then Ii+1 = Ii .

Example: (134, 345, 345, 456, 356, 346).

A decorated permutation is a permutation of {1, 2, . . . , n} such that fixed
points are colored in one of two colors. In bijection with Grass. necklaces!
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The positroid stratification of Grkn (Postnikov)

Consider A ∈ Grkn. For each 1 ≤ i ≤ n, let <i be the total order defined by

i <i i + 1 <i i + 2 <i · · · <i n <i 1 <i · · · <i i − 1.

Using <i , let Ii be the lex min subset of
([n]

k

)
so that ∆Ii (A) 6= 0.

This defines a Grassmann necklace (I1, I2, . . . , In) associated to A.

Example: A =

(
1 0 0 1
0 1 3 0

)
7→ (12, 24, 34, 42).

Given a Grassmann necklace I = (I1, . . . , In) of type (k, n), the positroid
stratum SI is the set of elements of Grkn whose Grassmann necklace is I.

Grkn =
⊔

I
SI is the positroid stratification.

Remark: is the refinement of n permuted Schubert decompositions.
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stratum SI is the set of elements of Grkn whose Grassmann necklace is I.

Grkn =
⊔

I
SI is the positroid stratification.

Remark: is the refinement of n permuted Schubert decompositions.
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Asymptotics of soliton solutions at y → ±∞
Grassmann necklaces I ↔ dec. perms π ↔ Positroid strata SI = Sπ.

An excedance of a permutation π is a position i such that π(i) > i .
A nonexcedance of π is a position i such that π(i) < i .

Theorem (Kodama-W., generalizes Chakravarty-Kodama)

Let A ∈ Sπ. Consider the contour plot Ct(uA) at any time t:

its line-solitons at y >> 0 ↔ the excedances [i , π(i)] of π

its line-solitons at y << 0 ↔ the nonexcedances [i , π(i)] of π.

[1,3]

[2,5]
[3,7]

[2,4]

[1,5]

[6,8]

[7,9]

[6,9]

[4,8]

E1246

E4589

Ct(uA) where A ∈ Sπ for π = (5, 4, 1, 8, 2, 9, 3, 6, 7).
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Asymptotics of soliton solutions at y → ±∞

(Photos due to Mark Ablowitz.)
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Asymptotics of soliton solutions when t → ±∞

Put each A ∈ Grkn in row-echelon form, i.e. A =




1 0 ∗ 0 ∗
0 1 ∗ 0 ∗
0 0 0 1 ∗


 .

Let πi(A) ∈ Gri ,n be the projection of A to the bottom i rows, 1 ≤ i ≤ k.
Each πi(A) lies in some positroid stratum SI i ⊂ Gri ,n.

By considering the collection SI1,SI2, . . . ,SIk , and using our results on
the soliton asymptotics at y → ±∞, we can inductively determine the
contour plot Ct(uA) for t << 0.

A refinement of the positroid stratification

The Deodhar component SI1,...,Ik ⊂ Grkn is the set of A ∈ Grkn such that
πi(A) ∈ SI i for each 1 ≤ i ≤ k.
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Combinatorics of the Deodhar decomposition of Grkn

Deodhar components are in bijection with tableaux we call Go-diagrams.
They represent factorizations (not necessarily reduced) of permutations.

A filling of a Young diagram with empty boxes, and black and white
stones, is a Go-diagram if the corresponding wiring diagram satisfies:

When one follows the wires from southeast to northwest, each time
two wires have the opportunity to cross so as to decrease the length
of the permutation, they must cross.

White (resp. black) stones represent crossings which increase (resp.
decrease) the length of the permutation.
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The Deodhar component determines t << 0 asymptotics

Theorem

Let D be a Go-diagram. The following procedure realizes the soliton graph
Gt(uA) for any A in the Deodhar component SD when t << 0.
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The regularity problem for KP solitons

Given A ∈ Grkn, when will uA(x , y , t) be regular for all x , y , t?

Recall: τA(x , y , t) :=
∑

J∈([n]
k ) ∆J(A)EJ(x , y , t).

Then uA(x , y , t) = 2
∂2

∂x2
ln τA(x , y , t) is a solution to KP.

Theorem

Given A ∈ Grkn, uA(x , y , t) is regular ∀x , y , t iff each ∆J(A) ≥ 0.
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Total positivity for the Grassmannian

The previous regularity theorem motivates the following definition.

The totally non-negative part of the Grassmannian (Grkn)≥0 is the subset
of Grkn(R) where all Plücker coordinates ∆I (A) ≥ 0.

Similarly define (Grkn)>0 using ∆I (A) > 0.

Theorem (rephrased)

Given A ∈ Grkn, uA(x , y , t) is regular ∀x , y , t if and only if A ∈ (Grkn)≥0.

Brief history of total positivity

1930’s: Study of totally positive matrices, matrices with all minors > 0.

1990’s: Lusztig developed total positivity in Lie theory.

1996-2000: Fomin and Zelevinsky studied total positivity; it provided
motivation for introduction of cluster algebras.

2001-2006: Postnikov initiated combinatorial study of (Grkn)≥0.
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KP solitons are especially nice for (Grkn)>0

Connection with cluster algebras

We can solve the inverse problem

We can classify soliton graphs coming from (Gr2n)>0.

Theorem

Let A ∈ (Grkn)>0. If Gt(uA) is generic (no vertices of degree > 3), then
the set of dominant exponentials labeling Gt(uA) is a cluster for the cluster
algebra associated to the Grassmannian.

To prove this, the main step is to show that Gt(uA) is a reduced plabic
graph.a Then the result follows from Scott’s work on the cluster algebra
structure of C[Grkn].

ain the process we give a new characterization of reduced plabic graphs
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To prove this, the main step is to show that Gt(uA) is a reduced plabic
graph.a Then the result follows from Scott’s work on the cluster algebra
structure of C[Grkn].

ain the process we give a new characterization of reduced plabic graphs
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KP solitons are especially nice for (Grkn)>0

The inverse problem

Let A ∈ (Grkn)≥0 and consider uA(x , y , t). Given t together with the
contour plot of uA(x , y , t), can one reconstruct the point of (Grkn)≥0

which gave rise to the solution?

Theorem

1. For t << 0, we can always solve the inverse problem.
2. If the contour plot is generic and came from a point of (Grkn)>0, we
can solve the inverse problem, for any time t.

Proof of 1: uses our description of soliton graphs at t << 0, and work of
Kelli Talaska.

Proof of 2: uses our result that the set of dominant exponentials labeling
such a contour plot forms a cluster for C[Grkn].
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KP solitons are especially nice for (Grkn)>0

Theorem (Classification of soliton graphs for (Gr2,n)>0)

Up to graph-isomorphism,a the generic soliton graphs for (Gr2,n)>0 for all
t are in bijection with triangulations of an n-gon. Therefore the number of
different soliton graphs is the Catalan number Cn = 1

n+1

(2n
n

)
.

aand the operation of merging two vertices of the same color

1

2

3

4

5

6

16 56

12

23 34

45

26

36

46

E12

E16 E56

E26

E23 E34

E45
E36

E46

[2,6]

[1,3]

[1,5]

[2,4]

[4,6]

[3,5]
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Conclusion

Haiku summary of my talk

とき超えて
碁石が証す
波文様　　　

Arrangements of stones
reveal patterns in the waves
as space-time expands K.W.  
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