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® Background on the real Grassmannian and the KP equation

® Soliton solutions: a tropical approximation

® Asymptotics of solitons and the positroid stratification of the
Grassmannian

® Asymptotics of solitons and the Deodhar decomposition of the
Grassmannian

@ Total positivity, cluster algebras, and soliton solutions

® Connection with triangulations
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@ Background on the real Grassmannian and the KP equation
@ Soliton solutions: a tropical approximation

@ Asymptotics of solitons and the positroid stratification of the
Grassmannian
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The Grassmannian Gry, = Grip(R) ={V | V C R",dim V = k}.
Represent an element of Gry,(R) by a full-rank k x n matrix A.

Given | € ([Z]), the Pliicker coordinate A;(A) is the minor of the k x k
submatrix of A in column set /.

The Pliicker embedding of Gry,(R) is the map Gry,(R) — Plk) -1
which sends A (A(A))
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Example

1 0 a b
LetA_<O | . d).

Then A (1:c:d:—a:—b:ad— bc) € P°.
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The Kadomtsev-Petviashvili equation

The KP equation

3 au_|_6 @—I—@ _|_3@—0
Ox ot Yox T ax3 oy?

@ Proposed by Kadomtsev and Petviashvili in 1970, in order to study
the stability of the one-soliton solution of the Korteweg-de Vries
(KdV) equation under the influence of weak transverse perturbations.
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Soliton solutions to the KP egn and shallow water waves

In 1834, John Scott Russell (a Scottish naval engineer) described:

"1 was observing the motion of a boat ...when the boat suddenly stopped
— but not so the mass of water in the channel which it had put in motion;
it accumulated round the prow of the vessel in a state of violent agitation,
then suddenly leaving it behind, rolled forward with great velocity,
assuming the form of a large solitary elevation, a rounded, smooth and
well-defined heap of water, which continued its course along the channel
apparently without change of form or diminution of speed. | followed it on
horseback, and overtook it still rolling on at a rate of some eight or nine
miles an hour, preserving its original figure some thirty feet long and a foot
to a foot and a half in height. Its height gradually diminished, and after a
chase of one or two miles | lost it in the windings of the channel. Such, in
the month of August 1834, was my first chance interview with that singular
and beautiful phenomenon which | have called the Wave of Translation.”
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Soliton solutions to the KP equation

The real Grassmannian

The Grassmannian Grg,(R) ={V | V C R",dim V = k}
Represent an element of Gry,(R) by a full-rank k x n matrix A.
Given | € ([Z]), Aj(A) is the minor of the /-submatrix of A.

From A € Gry,(R), can construct 74, and then a solution ua of the KP equation.
(cf Sato, Hirota, Satsuma, Freeman-Nimmo, Kodama, Chakravarty ... )
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The 7-function 74

Fix real parameters k; such that k1 < Ko <--- < Kp.
Define Ej(x,y,t) = exp(rjx + /fjgy + /ift).
For J = {jl, e ,jk} C [n], define E; := Ejl . Ejk H€<m(ﬁ3jm — /ije).
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The Grassmannian Grg,(R) ={V | V C R",dim V = k}
Represent an element of Gry,(R) by a full-rank k x n matrix A.
Given | € ([ ]) Aj(A) is the minor of the /-submatrix of A.

From A € Gry,(R), can construct 74, and then a solution ua of the KP equation.
(cf Sato, Hirota, Satsuma, Freeman-Nimmo, Kodama, Chakravarty ... )
The 7-function 74

Fix real parameters k; such that k1 < Ko <--- < Kp.
Define Ej(x,y,t) = exp(rjx + /fjgy + /ift).

For J = {jl, e ,jk} C [n], define E; := Ejl . Ejk H€<m(l{jm — /ije).
The 7-function is

TA(y ) = Y AS(A)EN(x,y, ).
Je(%)
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Soliton solutions to the KP equation

The 7 function 74

Choose A € Grin(R), and fix x;'s such that k1 < kg < -+ < Rp.
Define Ej(x, y, t) := exp(rjx + Iijgy + K)J:-)’t).

For J = {j1,...,jk} C [n], define E; :=E; ... Ej |],c (K, — Kj,)-
TAG Y. £) = 5 e DAAVES(x, v, )
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For J = {j1,...,jk} C [n], define E; :=E; ... Ej |],c (K, — Kj,)-
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A solution ux(x, y, t) of the KP equation (Freeman-Nimmo)

Choose A € Gris(R), choose k1 < --- < Ky, define T4(x, y, t) as above.

82
Then up(x,y,t) = 2W InTa(x,y,t) is a solution to KP.
X
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TA(vav t) ‘= ZJE([Z]) AJ(A)EJ(vav t)'

A solution ux(x, y, t) of the KP equation (Freeman-Nimmo)

Choose A € Gris(R), choose k1 < --- < Ky, define T4(x, y, t) as above.

82
Then up(x,y,t) = 2W InTa(x,y,t) is a solution to KP.
X

Note: Whenever 74(x,y,t) =0, ua(x,y, t) will have a singularity.
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Visualing soliton solutions to the KP equation

The contour plot of ua(x,y,t)

We analyze ua(x, y, t) by fixing t, and drawing its contour plot C¢(ua) for
fixed times t — this will approximate the subset of the xy plane where
lua(x, vy, t)| takes on its maximum values or is singular.

~50 0 50
T T T T T T T T

j = 50

" -50
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Definition of the contour plot at fixed time t

ua(x,y,t) is defined in terms of 74(x, y, t) := Zle([',j]) A(A)E/(x,y, t).
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The contour plot C¢(up) is the subset of the xy plane where two or more
terms dominate 7a(x, y, t).
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Definition of the contour plot at fixed time t
ua(x,y,t) is defined in terms of 74(x,y,t) := ZIE([n]) A(AE (x,y,t).
k
At most points (x, y,t), Ta(x,y,t) will be dominated by one term —
— at such points, ua(x,y,t) ~ 0.
The contour plot C¢(up) is the subset of the xy plane where two or more

terms dominate 7a(x, y, t).
Approximates locus where |ua(x, y, t)| takes on max values or is singular.
We assume that x,y,t are on a large scale; then approximation is good.

When the k;'s are integers, C:(ua) is a tropical curve.

Labeling regions of the contour plot by dominant exponentials

One term E; dominates up in each region of the complement of Ci(ua).
Label each region by the dominant exponential.
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Generically, interactions of line-solitons are trivalent or are X-crossings. '
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Visualizing soliton solutions to the KP equation

Generically, interactions of /ine-solitons are trivalent or are X-crossings. )

(6,9] [4,8] [2,4]

1,3
[ ]/7[2,5] 3,7] [6,8]

If two adjacent regions are labeled E; and E, then J = (/\ {i}) U{j}.
The line-soliton between the regions has slope x; + x;; label it [/, j]. J
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Extract combinatorial structure: Soliton graphs

We associate a soliton graph G¢(ua) to a contour plot C:(ua) by:
forgetting lengths and slopes of edges, and marking a trivalent vertex

black or white based on whether it has a unique edge down or up.
Embed graph in disk.

[4,8] [2,4]

[7,9]

[1,5]

13
[ ]/7[2,5] 3,7] [6,8]
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We associate a soliton graph G¢(ua) to a contour plot C:(ua) by:
forgetting lengths and slopes of edges, and marking a trivalent vertex
black or white based on whether it has a unique edge down or up.
Embed graph in disk.

[4,8]

23]
/5]
]

[1 ,3]/ 7
[2,5

Lauren K. Williams (UC Berkeley)

[3,7] [6,8]
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Soliton graph — bicolored graph

Associate a bicolored graph to each soliton graph by:

@ For each unbounded line-soliton [/, j] (with i < j) heading to y >> 0,
label the incident boundary vertex by j.

@ For each unbounded line-soliton [/, j] (with i < j) heading to y << 0,

label the incident boundary vertex by i.

@ Forget the labels of line-solitons and regions.

Lauren K. Williams (UC Berkeley) KP solitons from the real Grassmannian
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Theorem. Passing from the soliton graph to the bicolored graph does
not lose any information!
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Theorem. Passing from the soliton graph to the bicolored graph does
not lose any information!

We can reconstruct the labels by following the “rules of the road” (zig-zag
paths). From the bdry vertex i, turn right at black and left at white.

Label each edge along trip with /, and each region to the left of trip by 1.
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Theorem. Passing from the soliton graph to the bicolored graph does
not lose any information!

We can reconstruct the labels by following the “rules of the road” (zig-zag
paths). From the bdry vertex i, turn right at black and left at white.

Label each edge along trip with /, and each region to the left of trip by 1.

Consequence: can IDENTIFY the soliton graph with its bicolored graph.

Lauren K. Williams (UC Berkeley) KP solitons from the real Grassmannian October 31st 2012 14 / 28



ua(x, y,t) of the KP equation.

Fix A € Grip(R) and k1 < --- < K,. This gives rise to a soliton solution
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ua(x, y,t) of the KP equation.
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Asymptotics of soliton solutions

Recall

Fix A € Grgp(R) and k1 < -+ < k. This gives rise to a soliton solution
ua(x,y,t) of the KP equation.

How does ua(x, y, t) behave as y tends to +00?

This depends precisely on which positroid stratum A lies in.

How does ua(x, y, t) behave as t tends to 007
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Asymptotics of soliton solutions

Recall

Fix A € Grgp(R) and k1 < -+ < k. This gives rise to a soliton solution
ua(x,y,t) of the KP equation.

How does ua(x, y, t) behave as y tends to +00?

This depends precisely on which positroid stratum A lies in.

How does ua(x, y, t) behave as t tends to 007

This depends precisely on which Deodhar component A lies in.

Some decompositions of the Grassmannian
Matroid strat. < Deodhar dec. < Positroid strat. < Schubert dec.
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Asymptotics of soliton solutions when y — +o00

Given any A € Gri,(R), we can completely determine the asymptotics
(as y — +0o0) of the contour plot C¢(up), using Postnikov's positroid
stratification of the real Grassmannian.
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Given any A € Gri,(R), we can completely determine the asymptotics
(as y — +0o0) of the contour plot C¢(up), using Postnikov's positroid
stratification of the real Grassmannian.

A Grassmann necklace of type (k, n) is a sequence Z = (Iy,...,1,) of
k-element subsets of [n] = {1,2,...,n} such that:
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)
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(as y — +0o0) of the contour plot C¢(up), using Postnikov's positroid
stratification of the real Grassmannian.

A Grassmann necklace of type (k, n) is a sequence Z = (Iy,...,1,) of
k-element subsets of [n] = {1,2,...,n} such that:

@ Fori e [n],ifi el then ;11 =(l;\{i})U{j} for some j € [n].
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Asymptotics of soliton solutions when y — +o00

Given any A € Gri,(R), we can completely determine the asymptotics
(as y — +0o0) of the contour plot C¢(up), using Postnikov's positroid
stratification of the real Grassmannian.

A Grassmann necklace of type (k, n) is a sequence Z = (Iy,...,1,) of
k-element subsets of [n] = {1,2,...,n} such that:

@ Fori e [n],ifi el then ;11 =(l;\{i})U{j} for some j € [n].
@ If ¢ I;, then /,'_|_1 = ;.

Example: (134, 345, 345, 456, 356, 346).
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Asymptotics of soliton solutions when y — +o00

Given any A € Gri,(R), we can completely determine the asymptotics
(as y — +0o0) of the contour plot C¢(up), using Postnikov's positroid
stratification of the real Grassmannian.

A Grassmann necklace of type (k, n) is a sequence Z = (Iy,...,1,) of
k-element subsets of [n] = {1,2,...,n} such that:

@ Fori e [n],ifi el then ;11 =(l;\{i})U{j} for some j € [n].
@ If ¢ I;, then /,'_|_1 = ;.

Example: (134, 345, 345, 456, 356, 346).

A decorated permutation is a permutation of {1,2,...,n} such that fixed
points are colored in one of two colors. In bijection with Grass. necklaces!
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The positroid stratification of Gry, (Postnikov)

Consider A € Gry,. For each 1 < i < n, let <; be the total order defined by

< 1+1<;1+2<;j---<;n<;1<---<;1—1.
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Consider A € Gry,. For each 1 < i < n, let <; be the total order defined by
I <;1+1<;714+2<;---<;n<;1<;---<;1—1.

Using <, let I; be the lex min subset of ([Z]) so that A, (A) # 0.
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Using <, let I; be the lex min subset of ([Z]) so that A, (A) # 0.
This defines a Grassmann necklace (1, b, ..., I,) associated to A.
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Consider A € Gry,. For each 1 < i < n, let <; be the total order defined by
I <;1+1<;714+2<;---<;n<;1<;---<;1—1.

Using <, let I; be the lex min subset of ([Z]) so that A, (A) # 0.

This defines a Grassmann necklace (1, b, ..., I,) associated to A.
1 0 0 1
Example: A = (O | 3 O) — (12,24,34,42).
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Consider A € Gry,. For each 1 < i < n, let <; be the total order defined by
I <;1+1<;714+2<;---<;n<;1<;---<;1—1.

Using <, let I; be the lex min subset of ([Z]) so that A, (A) # 0.

This defines a Grassmann necklace (1, b, ..., I,) associated to A.
1 0 0 1
Example: A = (O | 3 O) — (12,24,34,42).

Given a Grassmann necklace Z = (h, ..., I,) of type (k, n), the positroid
stratum St is the set of elements of Gry, whose Grassmann necklace is 7.
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Using <, let I; be the lex min subset of ([Z]) so that A, (A) # 0.

This defines a Grassmann necklace (1, b, ..., I,) associated to A.
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The positroid stratification of Gry, (Postnikov)

Consider A € Gry,. For each 1 < i < n, let <; be the total order defined by
I <;1+1<;714+2<;---<;n<;1<;---<;1—1.

Using <, let I; be the lex min subset of ([Z]) so that A, (A) # 0.

This defines a Grassmann necklace (1, b, ..., I,) associated to A.
1 0 0 1
Example: A = (O | 3 O) — (12,24,34,42).

Given a Grassmann necklace Z = (h, ..., I,) of type (k, n), the positroid
stratum St is the set of elements of Gry, whose Grassmann necklace is 7.

Gri, = LI S7 is the positroid stratification.
7

Remark: is the refinement of n permuted Schubert decompositions.
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Grassmann necklaces 7 <+ dec. perms m <> Positroid strata St = S,..




Asymptotics of soliton solutions at y — £o0

Grassmann necklaces 7 < dec. perms m « Positroid strata 57 = S5;.

An excedance of a permutation 7 is a position i such that w(i) > i.
A nonexcedance of m is a position i such that w(i) < i.
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Asymptotics of soliton solutions at y — £o0

Grassmann necklaces 7 < dec. perms m « Positroid strata 57 = S5;.

An excedance of a permutation 7 is a position i such that 7(i/) > i.
A nonexcedance of 7 is a position i such that (/) < i.

Theorem (Kodama-W., generalizes Chakravarty-Kodama)
Let A € S,.. Consider the contour plot Ci(ua) at any time t:
@ its line-solitons at y >> 0 « the excedances [i,m(i)] of 7

@ its line-solitons at y << 0 <> the nonexcedances [i, (/)] of x.
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Asymptotics of soliton solutions at y — £o0

Grassmann necklaces 7 < dec. perms m « Positroid strata 57 = S5;.

An excedance of a permutation 7 is a position i such that 7(i/) > i.
A nonexcedance of 7 is a position i such that (/) < i.

Theorem (Kodama-W., generalizes Chakravarty-Kodama)

Let A € S,.. Consider the contour plot Ci(ua) at any time t:
@ its line-solitons at y >> 0 « the excedances [i,m(i)] of 7

@ its line-solitons at y << 0 <> the nonexcedances [i, (/)] of x.

Ci(ua) where Ac S, form=(5,4,1,8,2,9,3,6,7).
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Asymptotics of soliton solutions at y — -

(Photos due to Mark Ablowitz.)
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Put each A € Gry, in row-echelon form, i.e. A =

1 0
0 1
0 0

= O O

O X ¥




Asymptotics of soliton solutions when t — 400

1 0 * 0 =«
Put each A € Gry, in row-echelon form, ie. A= |0 1 x 0 =
0 0 0 1 =

Let 7;(A) € Gr; , be the projection of A to the bottom i rows, 1 </ < k.
Each m;(A) lies in some positroid stratum Sz C Gr; .
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Asymptotics of soliton solutions when t — 400

1 0 * 0 =«
Put each A € Gry, in row-echelon form, ie. A= |0 1 x 0 =
0 0 0 1 =

Let 7;(A) € Gr; , be the projection of A to the bottom i rows, 1 </ < k.
Each m;(A) lies in some positroid stratum Sz C Gr; .

By considering the collection 571,572, ..., 57«, and using our results on
the soliton asymptotics at y — +00, we can inductively determine the

contour plot C¢(up) for t << 0.
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Asymptotics of soliton solutions when t — 400

1 0 * 0 =«
Put each A € Gry, in row-echelon form, ie. A= |0 1 x 0 =
0 0 0 1 =

Let 7;(A) € Gr; , be the projection of A to the bottom i rows, 1 </ < k.
Each m;(A) lies in some positroid stratum Sz C Gr; .

By considering the collection 571,572, ..., 57«, and using our results on
the soliton asymptotics at y — +00, we can inductively determine the

contour plot C¢(up) for t << 0.

A refinement of the positroid stratification

The Deodhar component 511 7« C Gryy, is the set of A € Gry, such that
mi(A) € S;i for each 1 </ < k.
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Deodhar components are in bijection with tableaux we call Go-diagrams.

They represent factorizations (not necessarily reduced) of permutations.
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Combinatorics of the Deodhar decomposition of Gry,

Deodhar components are in bijection with tableaux we call Go-diagrams.
They represent factorizations (not necessarily reduced) of permutations.
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Combinatorics of the Deodhar decomposition of Gry,

Deodhar components are in bijection with tableaux we call Go-diagrams.
They represent factorizations (not necessarily reduced) of permutations.

OO ] s=UdRls
® AP -2 123456738
Mo i>-<RERER 14235768
OO0 e
8 7 ©
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Combinatorics of the Deodhar decomposition of Gry,

Deodhar components are in bijection with tableaux we call Go-diagrams.
They represent factorizations (not necessarily reduced) of permutations.

OO ] s=UdRls
® AP -2 123456738
OO e
8 7 ©

A filling of a Young diagram with empty boxes, and black and white
stones, is a Go-diagram if the corresponding wiring diagram satisfies:

"
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Combinatorics of the Deodhar decomposition of Gry,

Deodhar components are in bijection with tableaux we call Go-diagrams.
They represent factorizations (not necessarily reduced) of permutations.

OO ] s=UdRls
® AP -2 123456738
OO e
8 7 ©

A filling of a Young diagram with empty boxes, and black and white
stones, is a Go-diagram if the corresponding wiring diagram satisfies:

@ When one follows the wires from southeast to northwest, each time
two wires have the opportunity to cross so as to decrease the length
of the permutation, they must cross.

o
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Combinatorics of the Deodhar decomposition of Gry,

Deodhar components are in bijection with tableaux we call Go-diagrams.
They represent factorizations (not necessarily reduced) of permutations.

O

O

@
L 1@

O

O

NS

&L Ll. (12345678
Cfds

8 7 6

A filling of a Young diagram with empty boxes, and black and white
stones, is a Go-diagram if the corresponding wiring diagram satisfies:

@ When one follows the wires from southeast to northwest, each time
two wires have the opportunity to cross so as to decrease the length
of the permutation, they must cross.

@ White (resp. black) stones represent crossings which increase (resp.
decrease) the length of the permutation.

Lauren K. Williams (UC Berkeley)
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Let D be a Go-diagram. The following procedure realizes the soliton graph
G¢(ua) for any A in the Deodhar component Sp when t << 0.
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Let D be a Go-diagram. The following procedure realizes the soliton graph
G¢(ua) for any A in the Deodhar component Sp when t << 0.




The Deodhar component determines t << 0 asymptotics

Theorem

Let D be a Go-diagram. The following procedure realizes the soliton graph
G¢(up) for any A in the Deodhar component Sp when t << Q.

v

2 4 3 1
OlO IS SF: SRy
o 7_+ijLjL2
® O 6 T@TPT T4
OO0 8 TP 5
8 7 6
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The Deodhar component determines t << 0 asymptotics

Theorem

Let D be a Go-diagram. The following procedure realizes the soliton graph
G¢(up) for any A in the Deodhar component Sp when t << Q.

v

R 2 4 3 ll
OO S PP ! 5 ]
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The Deodhar component determines t << 0 asymptotics

Theorem

Let D be a Go-diagram. The following procedure realizes the soliton graph
G¢(up) for any A in the Deodhar component Sp when t << Q.

4
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O|O s-jL B ()WLI 5 | *—
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Given A € Gry,, when will ua(x,y,t) be regular for all x, y, t? '

=50 0 50 -50 0 50 5 50
50 T T T T T T T T T T T T T T T T T T T T T 50 ) f
F
-0
0F =0
P S L ' ' 1 . 1 . . L =30
=0T o =50 -50 0 50




The regularity problem for KP solitons

Given A € Gry,, when will ua(x, y,t) be regular for all x,y, t7? J

~50 0 50 ~50 0 50 a5

e L L 1 1 | L L L L 1 L
~50 A 2 42 i -50 -50 0 50

Recall: 7a(x,y,t) := ZJE([Z]) AS(A)ES(x,y,t).

82
Then up(x,y, t) = 2ﬁ InTa(x,y,t) is a solution to KP.
X
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The regularity problem for KP solitons

Given A € Gry,, when will ua(x, y,t) be regular for all x,y, t7?

-50 0 50 ~50 0 50 a5

;;;;;

{/\ |
~50 | t24 42 | 50 T ': =
Recall: 7a(x,y,t) := ZJE([Z]) AS(A)ES(x,y,t).
82
Then up(x,y, t) = 2ﬁ InTa(x,y,t) is a solution to KP.
X
Theorem
Given A € Gry,, ua(x,y,t) is regular Vx, y, t iff each A (A) > 0. J
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Total positivity for the Grassmannian

The previous regularity theorem motivates the following definition.

The totally non-negative part of the Grassmannian (Gri,)>o is the subset
of Grin(R) where all Pliicker coordinates A;(A) > 0.
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Total positivity for the Grassmannian

The previous regularity theorem motivates the following definition.

The totally non-negative part of the Grassmannian (Gri,)>o is the subset
of Grin(R) where all Pliicker coordinates A;(A) > 0.

Similarly define (Grk,)so using A;(A) > 0.

Theorem (rephrased)
Given A € Gryp, ua(x,y,t) is regular Vx,y,t if and only if A € (Grin)>o0.
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Total positivity for the Grassmannian

The previous regularity theorem motivates the following definition.

The totally non-negative part of the Grassmannian (Gri,)>o is the subset
of Grin(R) where all Pliicker coordinates A;(A) > 0.

Similarly define (Grk,)so using A;(A) > 0.

Theorem (rephrased)
Given A € Gryp, ua(x,y,t) is regular Vx,y,t if and only if A € (Grin)>o0.

Brief history of total positivity

1930's: Study of totally positive matrices, matrices with all minors > 0.
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Theorem (rephrased)
Given A € Gryp, ua(x,y,t) is regular Vx,y,t if and only if A € (Grin)>o0.

Brief history of total positivity
1930's: Study of totally positive matrices, matrices with all minors > 0.

1990's: Lusztig developed total positivity in Lie theory.
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Total positivity for the Grassmannian

The previous regularity theorem motivates the following definition.

The totally non-negative part of the Grassmannian (Gri,)>o is the subset
of Grin(R) where all Pliicker coordinates A;(A) > 0.

Similarly define (Grk,)so using A;(A) > 0.

Theorem (rephrased)
Given A € Gryp, ua(x,y,t) is regular Vx,y,t if and only if A € (Grin)>o0.

Brief history of total positivity
1930's: Study of totally positive matrices, matrices with all minors > 0.
1990's: Lusztig developed total positivity in Lie theory.

1996-2000: Fomin and Zelevinsky studied total positivity; it provided
motivation for introduction of cluster algebras.
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Total positivity for the Grassmannian

The previous regularity theorem motivates the following definition.

The totally non-negative part of the Grassmannian (Gri,)>o is the subset
of Grin(R) where all Pliicker coordinates A;(A) > 0.

Similarly define (Grk,)so using A;(A) > 0.

Theorem (rephrased)
Given A € Gryp, ua(x,y,t) is regular Vx,y,t if and only if A € (Grin)>o0.

Brief history of total positivity
1930's: Study of totally positive matrices, matrices with all minors > 0.
1990's: Lusztig developed total positivity in Lie theory.

1996-2000: Fomin and Zelevinsky studied total positivity; it provided
motivation for introduction of cluster algebras.

2001-2006: Postnikov initiated combinatorial study of (Grg,)>0-
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® Connection with cluster algebras

® \We can solve the inverse problem

® We can classify soliton graphs coming from (Grz,)>o.

Theorem

Let A € (Gryn)so. If Ge(up) is generic (no vertices of degree > 3), then

the set of dominant exponentials labeling G:(ua) is a cluster for the cluster
algebra associated to the Grassmannian.

To prove this, the main step is to show that G;(upn) is a reduced plabic
graph.? Then the result follows from Scott's work on the cluster algebra
structure of C[Gry,].

’in the process we give a new characterization of reduced plabic graphs

«O)>» «F)>» «E» « 2> = Q>
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KP solitons are especially nice for ( Gri,)~o

@ Connection with cluster algebras
@ We can solve the inverse problem

@ We can classify soliton graphs coming from (Grap)<o.
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@ Connection with cluster algebras

@ We can solve the inverse problem

@ We can classify soliton graphs coming from (Grap)<o.

Theorem

Let A € (Grin)so. If Ge(ua) is generic (no vertices of degree > 3), then
the set of dominant exponentials labeling G¢(ua) is a cluster for the cluster
algebra associated to the Grassmannian.

To prove this, the main step is to show that G;(uga) is a reduced plabic

graph.? Then the result follows from Scott’s work on the cluster algebra
structure of C[Gry,].

?in the process we give a new characterization of reduced plabic graphs
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Let A € (Gryn)>0 and consider ua(x,y,t). Given t together with the
which gave rise to the solution?

contour plot of ua(x,y,t), can one reconstruct the point of (Gri,)>0

1. For t << 0, we can always solve the inverse problem.

2. If the contour plot is generic and came from a point of (Gryp)=o, we
can solve the inverse problem, for any time t.

«O)>» «F»r « =Z)» « =) = P N&S




KP solitons are especially nice for ( Gri,)~o

The inverse problem

Let A € (Gryn)>0 and consider ua(x,y,t). Given t together with the

contour plot of ua(x,y, t), can one reconstruct the point of (Gri,)>0
which gave rise to the solution?

Theorem

1. For t << 0, we can always solve the inverse problem.

Proof of 1: uses our description of soliton graphs at t << 0, and work of
Kelli Talaska.
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KP solitons are especially nice for ( Gri,)~o

The inverse problem

Let A € (Gryn)>0 and consider ua(x,y,t). Given t together with the
contour plot of ua(x,y, t), can one reconstruct the point of (Gri,)>0
which gave rise to the solution?

Theorem

1. For t << 0, we can always solve the inverse problem.
2. If the contour plot is generic and came from a point of (Gryp)=o, we
can solve the inverse problem, for any time t.

Proof of 1: uses our description of soliton graphs at t << 0, and work of
Kelli Talaska.

Proof of 2: uses our result that the set of dominant exponentials labeling
such a contour plot forms a cluster for C[Gryy,).
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KP solitons are especially nice for ( Gri,)~o

Theorem (Classification of soliton graphs for (Gr2.n)>0)

Up to graph-isomorphism,? the generic soliton graphs for (Gra )0 for all
t are in bijection with triangulations of an n-gon.

?and the operation of merging two vertices of the same color
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KP solitons are especially nice for ( Gri,)~o

Theorem (Classification of soliton graphs for (Grz n)>0)

Up to graph-isomorphism,? the generic soliton graphs for (Gra )0 for all
t are in bijection with triangulations of an n-gon. Therefore the number of

different soliton graphs is the Catalan number C, = % (2n”).

?and the operation of merging two vertices of the same color

[2,6]
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Arrangements of stones
reveal patterns in the waves
as space-time expands
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