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On Generic Bases for Cluster Algebras

C. Geiss

November 1, 2012

Plan:
1. Generic CC-functions (Caldero-Chapoton) and dual semicanonical basis (w/ Leclerc, Schréer [GLS])
2. Generic bases and bangle for surface algebras (w/ Lambardini, Schroer [GLaS])

Notation: Let @ be an ice quiver and @ the full mutable subquiver. Qo{1,...,r} and @0 =QoU{r+
1,...,s}. The cluster algebra A(Q,x) C Z[z{,...,2F] (Laurent polynomials).

Aim: Geometric construction of a basis for A(Q,x) which includes the cluster monomial. Geometric
here means in the sense of [DWZ].

Find a non-degenerate (polynomial) potential W for . Assume A = CQ/(0W) = @/(BW) (true in
the case considered today but not true in general).

Example 0.1. For the quiver

= 1

8
/N
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the potential W = a7 is such a non-degenerate potential.

1 Generic CC-Functions

For d € Nj a dimension vector let modq(A) be the variety of d-dimensional representations of A. The group
GLg4 acts on modqg(A) by conjugation so that the orbits are the isomorphism classes of representations. Let

Irr(A) = J] Irra(moda(A))
d

be the irreducible components.

Definition 1.1. A representation Z € Irr(A) is strongly reduced iff codimz GLg X = dim Homy (77X, X)
(where z means X as a point in the variety).
Denote by Irr® (A) the open subset of Irr(A) of strongly reduced representations.

Example 1.2. If W = 0 (e.g. @ acyclic) then every modg(A) is irreducible. For the quiver in the first
example there are no strongly irreducible modules with dimension vector 111.

Definition 1.3. The g-vector of X is defined to be gx = (dim Ext} (S, X) — dim Homu (S;, X))/, .
Define

R ° QGi,k)—Q(k,i
yk:Hl‘iQ( )—Q(k,7)
=1

where Q(k, i) is the number or arrows k to i,
G =Xy x (G (M),
k

and define ¢z to be the generic value of ¢ of Z € Irr(A).



Definition 1.4. We define

gCC ={x"- ¢z :me N, Z € lrr(A), and m - dim(Z) = 0}
the set of generic CC-functions.
Remark 1.5. 1. The cluster monomials are contained in gC'C'.

2. The map G : gCC — Z" given by X" ¢, — m + gz is an isomorphism (requires our set up; in general
just injective) (Plamondon).

3. The set gCC is independent of initial seed (Plamondon).

Theorem 1.6 (GLS). For unipotent cells N* := N N B_wB_ (where B is a maximal unipotent group, B_
is Borel, and w is an element of the Weyl group) in a Kac-Moody group with symmetric Cartan matrix, we

have C[N¥] = A(@i,x) ®z C for some ice quiver @ and reduced expression i of w. Moreover, gCC' is the
dual semi-canonical basis (in particular it is a basis).

Example 1.7. For G = SL,,41(C) (type 4,), N*° is the upper triangular matrices with 1’s on the main
diagonal. Then Q@ is
[11]

[12] <——7
\8/ \4
\9/ \5/ \2
NN NN
10 6 3 1

[13]

[14]

[15]
and i = 123451234123121.

2 Generic Bases for Surfaces

Study surfaces S with 9S # @ and without punctures (in the interior). From a triangulation 7 by [FST] we
get a quiver () and by [Lambardini] we get a potential W. In this setup A = CQ/(OW) is a gentle algebra
(Butler-Ringel).

Definition 2.1. A basis algebra CQ/I is gentle if:

1. No more than two arrows leave any given vertex and no more than two arrows enter any vertex (2 in
and 2 out is ok).

2. I is generated by paths of length 2.

3. If a vertex has two arrows exiting and one entering, then at most one of the two compositions is in I
(and dually).

A gentle algebra is a surface algebra if also we have that if a sequence of two arrows is in I then they lie
on a 3-cycle so that all of the compositions of two arrows are in I.

For such algebras, the indecomposable modules are classified by string and band modules.



Example 2.2. The quiver @ below (modulo relations) is a surface algebra (given by a triangulation of a
torus with one boundary component and one marked point on the boundary):

A string module: M, : 3 %451 %291 % 9.2 1 with dimM,, = 3211.
A band module: N, 5, : C" czid, on S5 on 9=8,(%) Ccn.

With this description, homomorphisms between string modules become easy to compute: The evident
morphism

Moo l ~
D N

gives a basis for Homp (M, N).

2.1 Linear Independence of ¢gC'C

Lemma 2.3. For each surface S with 0S5 # @, there is a triangulation 7 such that the exchange matrix
B = B(7) has the following property: If B has rank ¢, then there are ¢ linearly independent columns such
that all other columns are non-negative combinations of them.

2.2 Algebraic Skein Relations

Homomorphisms M — 7M (not radical) induce skein relations:

W/I ~
e U
3
o .



Using these skein relations and the previous lemma we can show that gC'C' spans the cluster algebra and
contains the cluster algebra.
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