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1 Monoidal Categorifications

Consider a cluster algebra A(E ) with B skew-symmetric. Let @) be the associated quiver and M a monoidal
category.

Definition 1.1. M is a monoidal categorification of A(B) is there is a ring isomorphism between A(B) and
Ky(M) (the Grothendeick ring) such that through this isomorphism, cluster monomials are the classes of
real simple objects of M (S in M is real if S ® S is simple).

Remark 1.2. There is a bijection between cluster variables and the classes of real prime objects (S is prime
if there is no isomorphism S 2 S; ® Sy with S; non-trivial).

Consegences:
1. For the cluster algebra A(B):

(a) Every cluster variable of A(B) has a Laurent expansion with positive coefficients with respect to
any seed.

(b) Cluster monomials of A(B) are linearly independent (though there is a general proof of this
through additive categorification).

2. For the category M:

(a) Can compute factorization of simple (real) objects in terms of prime objects.
(b) Can compute Clebsch-Gordon coefficients of M.

Known Examples:

1. (H., Leclerc ’09) Constructed monoidal categorifications by using categories of representations of quan-
tum affine algebras. Got monoidal categorifications of type A, D4 (bipartite).

2. (Nakajima ’09): For all A, D, E types (bipartite).

3. General acyclic (bipartite) case: (almost) obtained monoidal categorification by using perverse sheaves
on quiver varieties.

4. (HL ’12) By using U,(Lg) for types A, D (with linear orientation)
5. (Kimura-Qin '12) Generalization of Nakajima’s approach to acyclic with general orientation.

Conjecture 1.3 (Still open HL ’09). The categories Cy for £ > 2 are monoidal categorifications (the above
constructions are Cy).

What about non-simply laced quantum affine algebras? At this point, there is no quiver variety theory
for these cases.



2 Quantum Affine Algebras

Let g be a finite dimensional simple Lie algebra over C. Let I = {1,...,n} be the vertices of the corresponding
Dynkin diagram and 7y, ..., 7, the corresponding root lengths. Define a Lie algebra Lg := g®Cle*] (Laurent
polynomials in €) the loop algebra of g. The quantized enveloping algebra U, (Lg) is the quantum loop algebra
(a quotient of a quantum affine algebra: a Drinfel’d-Jimbo quantum group). It known to be a Hopf algebra.
Let C be the category of finite dimensional representations of U,(Lg). Simple objects in C are given by
the objects L(m) where
m = H Y;L,a

1<i<n
a€eC”

(Drinfel’d polynomials). The representation ring is

Rep(Uy(Lg)) = D ZIL(m))-

m

Theorem 2.1 (Frenkel-Reshetikhin '98). Rep(U,(Lg)) is a commutative polynomial ring generated by the
representation [L(Y; 4)].

T-systems can be realized in this ring. This suggests it should have something to do with monoidal
categorification. To do this we need Kirillov-Reshetikhin modules. For & > 0,a € C*,1 < i < n define

W) = L(Yia Yiageris - s Yiagte-r)
Theorem 2.2 (N04, H06). The [W,EL()Z] satisfy T-systems

W o] = WS WY, ]+ [TV
i#£j
Example 2.3. For g = By, ry = 2,75 = 1.

WNW ] = W W, L + W)

k,aq* —1,aq*
2 2 2 2 1 1
W2 2] = W& W2, o] + V) 200 W o)

For the non simply-laced case T-systems were studied in relation to cluster algebras in [Inoue-Iyama-
Keller-Kuniba-Nakanishi].

3 Monoidal Subcategories of C
Let r = max{r; : ¢ € I} be the lacing number of g.
Definition 3.1. An upper height ¢ is a collection ¢1,...,¢, : {1,...,n} — Z such that:
1. r; =1 implies ¢y (i) = --- = ¢, (i) =: ¢(i)
2. ¢;jej; = 1 implies |¢p (i) — ¢x(j)| = r; for each k
8 {610i)s-- 6, ()} = {61(0) + €. 60() + e+ 2= 21)
Similarly, we define ¥ to be a lower height if —1) is upper.
Example 3.2. For B, ¢1(1) = 2,¢2(1) = 4, ¢(2) = 3 is lower and 11(1) = 6,¢2(1) = 8,1(2) = 7 is upper.



Definition 3.3. Let ¢ be lower and % be upper. Define Cff to be the subcategory of C of objects whose

Jordan-Hoélder series involves simple objects of the form L(m) where m € Z[Y; ,¢] and

te | {ow(@), or (i) +2ri, .. (i)}

1<k<t
(Assume ¥y (1) = drpk(i) + 2r;).
Proposition 3.4. Cff is a monoidal category.

Theorem 3.5. For each non-simply laced type, there is a non-trivial category C;f’ which is a monoidal
categorification of a finite type cluster algebra. For g of type B, we get a cluster algebra of type As,, for
Cy get Ani1, Fy get Dg, for Go get Ay.

4 The Proof

1. Consider a family of prime objects. Label by cluster variables in an initial seed.
2. F-polynomials are identities in therms of g-characters in C;f’.

3. Use [H '10] to get for S1,...,8,inC, S1®---® S, is simple iff S; ® S; is simple for all ¢ # j.
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