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Total Positivity, Loop Groups, and Electrical Networks

P. Pylyavskyy November 1, 2012

Joint with Thomas Lam.

1 Total Non-Negativity

Definition 1.1. A matrix is totally non-negative if all minors are non-negative.
In N C GL,, (upper triangular matrices), the totally non-negative part N> is a semigroup.

Theorem 1.2 (Lowner-Whitney). Any element of N>g factors into exponents of Chevalley generators e;(a)
with non-negative parameters (e.g. the Chevalley generator es(a) is the matrix with 1’s on the main diagonal,
and everything else 0 except for the 2nd entry in the diagonal one above the main one).

Theorem 1.3 (Lustig). Let s;, ---s;, = w be a reduced expression of w. Then the map R{; — Nxo N
B_wB_ given by (ai,...,a¢) — €;,(a1)---e;,(ag) is a bijection.

What if we choose a different reduced expression? Then e;(a)e;(b) = e;(b)e;(a) for | — j| > 1 and

ext@eses(e) = s (1 ) estat e (5 )

a—+c a—+c

for [i — j| = 1.
In R((t)), consider power series of the form a(t) = 1 + ait + ast? +.... We want to unfold this into a(n
infinite) matrix:

1 a1 aso
1 al
1

Definition 1.4. We say that a(t) is totally non-negative if this matrix is totally non-negative. Such power
series form a semi-group as before.

Examples 1.5. 1. a(t) =1+ at for « > 0 is totally non-negative.
2. A product of such a(t) will again be totally non-negative.

3. 1/(1 — pt) for g > 0 is totally non-negative:
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4. A product of such is again totally non-negative.

5. The function €7t for v > 0 is totally non-negative:

Loy 4%/20 4%/3
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Theorem 1.6 (Edrei-Thomas). Any totally non-negative function a(t) as above has form

sy L+t
a(t) =¢e” };[1 e
where a1 > az >+ >0, 61 > B2 >--->0,7>0and v+ > (o + ;) < oc.
Theorem 1.7 (Thomas, Vershik-Kerov). The following sets are in canonical bijection:
1. Normalized (i.e. ag = a; = 1) totally non-negative functions
2. Extremal characters of the infinite symmetric group Se,
3. Normalized functions Sym — R (the symmetric algebra) taking non-negative values on Schur functions

4. extremal Markov chains on Young’s lattice.

Theorem 1.8 (Vershik-Kerov). Recall Sy, = (51 C S3 C S5 C --+). Chose a sequence of Young diagrams
A1 C Ay C -+ -. Then the following are equivalent:

1. The limit lim X2e(®)

A= exists for all w

(i-th row (column) of A,)

2. The limit lim exists.
n—oo n
So the sequence Ay C Ay C --- limits to a character of S iff the two limits exist. Such a character is called

an extremal character.

2 Loop Groups

Definition 2.1. The formal loop group GL,(R((t))) consists of invertible n x n matrices whose entries are
formal Laurent series in ¢.

Example 2.2.

1 0 5 1 0

-1 1 -1 0 0 -4

14+t 245t - 1 2 0 5
—1—t —4¢2 -1 1 -1 0
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-1 0




(the 2 x 2 blocks repeat along the diagonals; the first set of blocks is the constant terms, the second the ¢
therms, the third the ¢? terms, etc.).

Generators: Analogues of the generators from before:

1. Whirls M (z1,...,2zp):

2. Curls N(21,...,25):

1 r1 X1T2
1 xT9
1
1 r1 T1X9
1 T2
1
3. Chevalley generators e;(a):
1 a
1 0
1
0
1 a
1 0
1

Theorem 2.3. Any X € N> = upper triangular part of GL,(R((¢))) can be written uniquely as

o () (1)



where M;, N; have non-negative parameters, and Y is doubly entire and totally non-negative.
Why Interesting:
1. Relation to canonical bases
2. Relation with discrete solitonic systems (box ball systems)
3. Infinite reduced words

Example 2.4. n = 3 take e2( )ei( )ea( )es( )er( ) ... which corresponds to 2123123123.... After applying
some braid moves get 123123123 ...
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