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1 Tilting Theory

Let Λ be a finite dimensional algebra over a algebraically closed field k. If T = T1 ⊕ · · · ⊕ Tn is a tilting
module, sometimes we can replace a summand Ti with a new one to get a new tilting module. We can’t
always do this in general. We can ‘fix’ this problem by extending in a few different ways:

1. Cluster tilting objects in the cluster category, but this only works for special algebras Λ.

2. Silting theory (roughly replace tilting modules with complexes) but this makes the category too big.

3. τ -tilting theory (c.f. Reiten’s lecture ‘Tau-Tilting Theory I’).

There is the Nakayama functor ν : projΛ→ injΛ (categories of finite dimensional projective and injective
modules respectively) which is an equivalence of categories. We can use ν to construct the Auslander-Reiten
translate. Let M be a Λ-module. Take a (minimal) projective presentation

P1
f−→ P0 →M → 0

(the minimality is to make this unique up to isomorphism). This induces ν(f) : νP1 → νP0. Define
the Auslander-Reiten translate to be τM = ker ν(f). This gives a bijection between the indecomposable
non-projective Λ-modules and the indecomposable non-injective Λ-modules.

Definition 1.1. A module M is τ -rigid if HomΛ(M, τM) = 0. M is τ -tilting if it is τ -rigid and |M | = |Λ|
(the number of indecomposable summands equal).

Definition 1.2. M is support τ -tilting if there is an idempotent e ∈ Λ such that M is a τ -tau Λ/ΛeΛ-module

Example 1.3. Let Q be the quiver
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and Λ = kQ/(a2). Then
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module are support τ -tilting.

2 Results

Theorem 2.1 (AIR, cf. Smalø). Let sτ−tiltΛ be the set of isoclasses of basic support τ -tilting Λ-modules
(basic means multiplicity of each indecomposable summand is 1). Then sτ−tiltΛ is in bijection with the set
of torsion classes T ⊂ modΛ (i.e. T is a full subcategory, closed under factor modules and extensions) which
are functorially finite.

One direction is given by sending a support τ -tiling module M to its factor category FacM , and the
reverse direction is given by sending T to the direct sum of all relative projectives in T .

In this way, we can regard sτ−tiltΛ as a poset. Specifically, M ≥ N iff Fac(N) ⊂ Fac(M).
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Theorem 2.2 (AIR, cf. Bongartz). Any τ -rigid tilting module is a summand of some τ -tilting module.

The construction is given as follows: A τ -rigid module N is a summand of the projective cogenerator of
the kernel of the functor HomΛ(−, τN).

Theorem 2.3 (AIR, cf. Reidtmann-Schofield). For every basic τ -rigid Λ/ΛeΛ-module N such that |N | =
|Λ/ΛeΛ| − 1 (i.e. M is almost support τ -tilting), there are precisely 2 support τ -tilting modules (Mi, Pi)
i = 1, 2 (c.f. Reiten for this notation) such that N is a summand of Mi (i = 1, 2) and Λe is a summand of
Pi (i = 1, 2).

Definition 2.4. Call (M1, P1) and (M2, P2) mutations of each other. From this we can construct an exchange
graph in the usual way.

Example 2.5. For the algebra in the first example,
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are mutations of each other

(here we use the (M,P ) notation). The full exchange graph is the hexagon:((
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Theorem 2.6 (AIR, cf. Happel-Unger, Aihara-I). The exchange graph is the same as the Hasse graph with
respect to the partial ordering above.

Corollary 2.7. If there are only finitely many support τ -tilting modules, the exchange graph is connected.
The proof proceeds by taking the maximal module and mutating to the minimal module.

Example 2.8 (Adachi). Take Q to be a cycle with n vertices, and an arbitrary r > 0. Let

Λ = kQ/(ar : a ∈ Q1).

Then the number of support τ -tilting modules is
(

2n
n

)
if r ≥ n and 3n−1

n

(
2n−2
n−1

)
for r = n− 1.

Example 2.9 (Mizuno). Take Λ a preprojective algebra of Dynkin type (i.e. add reverse arrows and mod
out by mesh relations). Then elements of the Weyl group W are in bijection with sτ−tiltΛ. The bijection
is given as follows: Take a reduced expression w = si1 · · · si`

. Let Ii = Λ(1 − ei)Λ. Then Ii1 · · · Ii`
is the

corresponding module.
The partial ordering corresponds to the weak Bruhat ordering.

Remark 2.10. There is a natural one-to-one correspondence between sτ−tiltΛ and sτ−tiltΛop. One way
to interpret this is via silting theory.

Theorem 2.11. There are bijections between the following:

1. sτ−tiltΛ

2. basic two-term silting objects (a bounded projective complex T in the homotopy category is silting if
Hom(T, T [i]) = 0 for every i > 0 and it generates Kb(projΛ)).
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If Λ = EndC(T ) is a cluster-tilted algebra (for some 2-CY category C) then we also get a bijection with basic
cluster-tilting objects.

Remark 2.12. 1. Derksen-Fei give some of [AIR] results in terms of two-term tilting complexes.

2. Using the bijection above, we can show many results in cluster-tilting theory.

Definition 2.13. The g-vector of (M,P ) is g(M,P ) = [PM
0 ]− [PM

1 ]− [P ] ∈ K0(projΛ) where

PM
1 → PM

0 →M → 0

of M is a minimal projective presentation.

Proposition 2.14. 1. τ -rigid pairs are determined by their g-vectors.

2. g-vectors of indecomposable summands of (M,P ) (support τ -tilting) form a basis of K0(projΛ).
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