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Cremmer-Gervais Cluster Algebras

M. Gekhtman November 2, 2012

Joint with M. Shaprio, and A. Vainshtein.

Motivation:

1. Want to describe non-isomorphic cluster structures that are supported in a coordinate ring of a given
variety.

2. Investigate “Poisson-Lie” features of cluster algebras.

Main Tool: Compatible Poisson structure in cluster algebras: Let (x, B) be an initial seed of some

cluster algebra of geometric type, where x = {x1,...,Zm,Tm+1 .., 2Zn}. Define a Poisson bracket { , } on
cluster frozen
the rational functions in z1,...,x, by {z;,z;} = wijz;z; for some w;; € Z. The matrix Q = (w;;) is skew-

symmetric. (Many names for this Poisson structure: log-canonical, diagonal quadratic, etc.) We require

that in any cluster (x', B') that {x}, 2’} = w;z;z’. Such a Poisson bracket is called compatible with A(B).

Condition for Compatibility: If B is non-degenerate, then compatibility is equivalent to the condition
D
OB = (0)

Remark 0.1. € is not unique, but given one such €2 one can describe all others using the global toric action
on A(B). The torus (C*)"~™ acts on x by

where D is the skew-symmetriser.

n—m

T X, | I t:Jm+s,1:.

s=1
Strategy: Given a Poisson variety (V,{, })
1. Find log-canonical coordinate system made of regular functions.
2. Construct the matrix B.
3. Check that O(V) contains Ac(B).

4. Show that O(V) is contained in eitherAc(B) or the upper cluster algebra Ac(B).

1 Poisson-Lie Groups and Belavin-Drinfel’d Classification

Definition 1.1. A Lie group G equipped with a Poisson bracket { , } is a Poisson-Lie group if the multi-
plication map (z,y) — axy is Poisson. (Studied by Sklyanin, Drinfel’d.)

a b

Example 1.2. B = {(0 a1

) :{a,b} = ab} is a Poisson-Lie group.



From now on, assume G is a simple Lie group, g its Lie algebra, and IT = {ay, ..., ay} its simple positive
roots. We deal with factorizable quasi-triangular Poisson-Lie groups (which can be described through the
Belavin-Drinfel’d classification).

The structure constants of the Poisson-Lie bracket { , } can be “packed” into r € g ® g (equivalently
R € End(g)). The element r must satisfy the classical Yang-Bazter equation. Belavin-Drinfel’d showed how
to construct r using Belavin-Drinfel’d data:

(T 5 Ty, 7o)

where I'1, T2 C II, v is an isometry satisfying the nilpotency condition Va € 'y, Im > 0 s.t. v™(«) ¢ 'y,
and 7o € h A h (Cartan) satisfies some linear equation determined by v : 'y — I's.

Example 1.3. The standard Poisson-Lie structure corresponds to I'y = I's = @ and r( is arbitrary.

Indication:

1. Regular Poisson submanifolds of G are double Bruhat cells (Rogan-Zelevinsky).

2. Standard { , } is compatible with cluster structure defined by [BFZ] on double Bruhat cells.

Theorem 1.4 (GSV). There is a cluster structure on O(G) such that:
1. the number of frozen variables is 2¢ and the exchange matrix is non-degenerate (i.e. of full rank),
2. the upper cluster algebra A(B) = O(G),

3. there is a global toric action of (C*)2* on A(B) induced by the natural action of H x H (Cartan) on
G,

4. any Poisson-Lie bracket in a trivial B.-D. class is compatible,
5. any Poisson-Lie bracket compatible with A(B) is in the trivial B.-D. class.
Conjecture 1.5 (GSV). There is a cluster structure on O(G) such that:

1. the number of frozen variables is 2(¢ — |T';|) and the exchange matrix is non-degenerate (i.e. of full
rank),

2. the upper cluster algebra A(B) = O(G),

3. there is a global toric action of (C*)2~I"1D) on A(B) induced by the natural action of H., x H., (Cartan)
on G,

4. any Poisson-Lie bracket in a trivial B.-D. class is compatible,
5. any Poisson-Lie bracket compatible with A(B) is in this trivial B.-D. class.

Initial Evidence: True for SL3 and SL,.

2 Cremmer-Gervais Cluster Algebras and Exotic Cluster Struc-
ture in SL, and GL,
C.-G.-B.-D. Data (for G = SL,): v:T1 ={ag,...,an-1} > To ={a1,...,an_2}

Typically gives more complicated Poisson brackets than the standard B.-D. data.
Strategy:



. Initial Cluster: Drinfel’d double D = G x G. r goes to maps r+ : G — G4 (subgroups of GG) which
gives (almost) factorization D = G, x d(G) where

G, ={(r+(z),r—(z)) ;2 € G} and d(GQ)={(z,z):2 € G}.
Regular Poisson submanifolds: intersection of right/left orbits of G, in D with d(G).
. Induction GL,, — GL,_1

. Poisson anti-involution: X — woXwq
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