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Algebraic background and history

The story begins with a question of Ratliff who in the 70’'th
asked:

What happens to Ass(R/I") as n gets large?

It is a general phenomenon that algebraic and homological
properties of I" stabilize for large n.
(Ratliff, 76,84) Let J denote the integral closure of an ideal J.
Then

» Ass(I") C Ass(I"+1) for all n. (Persistence)

» Ass(IM) stabilizes, i.e., there exists an integer ko such that

Ass(Iko+?) = Ass(Iko) for all £ > 0.

We set Ass™(1) = Ass(I%o).



(Brodmann, 79)  Ass(I") stabilizes.

The smallest integer for which Ass(I") stabilizes is called the
index of stability of I. We denote this number by

astab(l),
and set
Ass™ (1) = Ass(I") where n > astab(l).
(McAdam, 83)

Ass™¥(1) = {P| I C P, heightP = /(Ip)} C Ass™(l).

Here, if J C (R, m), then ¢(J) denotes the analytic spread of J,
i.e., dimR(J)/mR(J).



What can be said about Ass™(l) and astab(l) when | is a
monomial ideal?

The following simple remarks are useful:

(1) Associated prime ideals of a monomial ideal are monomial
prime ideals, i.e., generated by variables.

(2) Letl ¢ S =K]|Xg,...,Xn] be a monomial ideal, P a
monomial prime ideal.

We set S(P) = K[{xj| x; € P}] and let I(P) C S(P) be the
monomial ideal which is obtained from | by the substitution

Xj — Lforx & P.

[(P) is called the monomial localization of | with respect to P.

One has I¥(P) = I(P)¥ for all k, and
P € Ass(l) <= mp € Ass(I(P)), where mp is the graded
maximal ideal of S(P).



In this lecture we want to address the following questions:

(1) Given any setP = {P1,P5,...,P;} of non-zero monomial
prime ideals. Does there exist a monomial ideal such that

Ass™(l) =P7?

(2) Does there exists a global upper bound for astab(l), not
depending on | but only on S?



Problem (1) is completely open for squarefree monomial ideals.
In that case the minimal prime ideals in P determine already
the monomial ideal.

For example, let P = {(x1), (X2), (X1,X2)}. Suppose there exists
a squarefree monomial ideal with Ass>(1) = P. Then

| = (x1) N (X2) = (X1X2), and so (X1, X2) & Ass(I*) for all k. Thus
P ={(X1), (x2), (X1,X2)} is not Ass*(1) for a squarefree
monomial ideal.

(-, Bandari, Rinaldo, 2011) For any P there exists a monomial
ideal with Ass™(I) = P.



Construction: Let P = {Py,...,P:}, |G(Pi)| < |G(P;)| fori <.

Fors =1,...,r we choose an integer ks which is bigger than
the minimal degree of

Js 1 =PlnpPkn... PSS

Then for any integert > 1, tks is bigger than the minimal degree

of PYnp¥e ... ape t since 3t , c PR npP¥en... APk 1,

It follows that
Ass(PY* NPy n...nPk) =P

for all t.



There exists (!) an integer d such that
(PH A pde ... npdye — plik o pike .. podk

for all c > 1. This is a consequence of the fact, that the
symbolic power algebra of a monomial ideal id finitely
generated, as shown by Lyubeznik.

Therefore,

Ass®(P{ NP N...n Pk ) =P,

The following yields an algorithm to compute Ass™ (1) for a
monomial ideal: There are only finitely many monomial prime
ideals. We test all. Let P = (X;,,...,X; ). Then

P € Ass™(l) <= Krulldim H_1(x;,, ..., % ;R(I(P))) > 0.

An implementation can be found under

http://ww2.unime.it/algebra/rinaldo/stableset/



Examples (-, Vladoiu, Rauf, 2011)
(1) Letl = Pplppz s PFr where PFi = (XJ NS F|)

The presentation of | as a product of monomial prime ideals is
unique.

(-, Conca, 2002) | =N, P, where P = 37, PE..
We define the intersection graph G, on [r] for which {i,j} is an

edge of G, if and only if Fi N Fj # (. Then

Ass™(1) = Ass(I¥)  for all k

and

Ass(l) ={PaA| A=V (T),where T C G, is a tree}.



For example, consider | = (X1,X2)(X1, X2, X3, Xa)(X3, X5)(Xa, X5).
Notice that for any ideal | of this type the graph G« is just the
k-th expansion of G;.

4/




The trees of G, have one, two, three, or four vertices. The
one-vertex trees, that is, the vertices, correspond to the
associated primes Pg,, ..., Pg,.

The two—vertex trees correspond to the associated primes

Pe, + Pry, Pr, + PRy, Pr, + P Pey + Pe,.

All trees with three and four vertices generate the maximal
ideal. Consequently we obtain that

ASS(I) — {(X17 X2)7 (X17 X2, X3, X4)7 (X37 X5)7 (X47 X5)7 (X37 X4, X5)7
(X1,X2,X3,X4,Xs5) .



(2) Letlg.q,, .. a, be the ideal generated by all monomials
C1,,C n
XM X% e X

of degree d with ¢; < a;. Then

ASSOO(ld;al 77777 an) = {P . Id;al 77777 an C P}

In particular, if | =1Iq.1 1, then
Ass(l)={Pg: F C[n], [F|=n—-d +1},

while
Ass™(l)={Pg: FC[n], [F| >n—d +1}.



Both examples before are examples of polymatroidal ideals.

A polymatroid is a (special) convex polytope P in R". It is called
discrete, if all vertices of P are integer vectors.

A polymatroidal ideal is a monomial ideal whose exponent
vectors correspond to the bases of a polymatroid.



Nice properties of polymatroidal ideals:

(1) A monomial ideal | is polymatroidal, if it satisfies the
following exchange property: for any

u,v € G(I) with z;(u) > (v),
there exists j such that

yi(u) < vi(v) and xj(u/x;) € G(I).

(2) Polymatroidal ideals have linear resolutions.

(3) If I and J are polymatroidal, then 1J is polymatroidal. In
particular, I¥ is polymatroidal for all k.

(4) Monomial localizations of polymatroidal ideals, are
polymatroidal.

(5) R(l) is normal for any polymatroidal ideal.



What can we say about astab(l)?

McAdam in his Lecture Notes "Asymptotic prime divisors”
guotes an example of Sathaye:
| € K[X,21,...,220]/(X25 "3 —z%,',zjlz)

| =(z1,...,220n) CP =(X,21,...,2Z2n).

Then for 1 <k < 2n,

PeAss(¥) <« kiseven

Is such a behaviour also possible in a regular ring?



(Bandari,—, Hibi, 2012) Let n > 0 be an integer and

| S =K]Ja,b,c,d,x1,y1,...,Xn,Yn]
be the monomial ideal in the polynomial ring S with generators
a® a°b,ab® b® a’b*c,a*b?d,a’x;y?, bix?yy, ..., atxny2, b*x2yn.
Then

0, ifkisoddandk < 2n+1;
depth(S/1¥) ={ 1, ifkisevenandk < 2n;
2, ifk>2n+1.

In particular, the depth function of this ideal has precisely n
strict local maxima.



In both examples one needs sufficiently many variables to
produce such examples.

This is not the case for the regularity of powers of ideals. Conca
constructed a family of monomial ideal in 4 variables whose
regularities stabilize for arbitrarily high powers.

On the other hand, in all known cases astab(l) < n for all
monomial ideals | C K[Xg,...,Xn].



(Martinez-Bernal, Morey, Villarreal, 2005) If G is a finite graph,
and I(G) its edge ideal. Then astab(1(G)) = 1, if G is bipartite,
and

astab(1(G)) < n—k —s if G is not bipartite,

where the smallest odd cycle of G has length 2k + 1 and where
s is the number of leaves of G.

Actually we expect the following inequality:

astab(l) < £(1) (< n).

(=, Qureshi, 2012) The inequality is true for any polymatroidal
ideal.



Let | be a monomial ideal with G(I) = {uy,...,um}.

The linear relation graph ' = I'(I) of | is the graph with egdes
(i,j) for which there exist uy, u, € G(I) such that x;u, = X;u,.

(—, Qureshi, 2012) If T has r vertices and s connected
components, then

(@) depthS/I'<n-t—-1fort=1,...,r —s.
(b) ¢(1) > r —s + 1. Equality holds if | is polymatroidal.



Proof of the fact that astab(l) < ¢(I) for polymatroidal ideals:
(a) and (b) imply that
depthS(P)/I(P)P)=1 < dimS(P) — ¢(I(P))

for any polymatroidal ideal | and any monomial prime ideal P
with | C P.

(Eisenbud-Huneke, 83) If R(J) is Cohen—Macaulay, then

mtin{depthS/Jt} =n—/(J).

Since R(I(P)) is a normal toric ring it follows by a theorem of
Hochster that R(I(P)) is Cohen—Macaulay. Hence

depthS(P)/I(P)(!P)=1 — dimS(P) — ¢(I(P)).



Now let P € Ass™(l), then ¢(I(P)) = dim S(P) by McAdam.

Therefore,
depthS(P)/I(P)X(P)-1 — g,
and hence
P ¢ Ass(1/0(P)-1),
By Ratliff,

P cAss(I¥) forall k >¢(1)—1.

This shows that
astab(l) < £(1).
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