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1. Combinatorial geometries
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Hassler Whitney (1935).

A matroid on a finite set E is a collection of subsets of E , called independent
sets, with the following properties:

Every subset of an independent set is independent.

If an independent set A has more elements than independent set B ,
then there is an element in A, when added to B , gives a larger
independent set.
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Let G be a finite graph, and E the set of edges.

Call a subset of E independent if it does not contain a circuit.

This defines a graphic matroid M .

Example

�
1

4

�
2

�
3
�

Independent sets of M : All subsets of E = f1; 2; 3; 4g except f1; 2; 3; 4g.
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Let V be a vector space over a field k , and E a finite set of vectors.

Call a subset of E independent if it is linearly independent.

This defines a matroid M representable over k .

Example

-

6

�
��	

�
�3

3

1

2

4

Independent sets of M : All subsets of E = f1; 2; 3; 4g except f1; 2; 3; 4g.

Graphic matroids are representable over every field.
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Without loss of generality, we may assume that every set

with � 2 elements are independent.

These matroids are called combinatorial geometry.

In the representable case, a combinatorial geometry is defined from

a finite set of points in P(V ), or equivalently,

a finite set of hyperplanes in P(V _).
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2. Concavity
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A sequnce a0; : : : ; ar is log-concave if for all i

ai�1ai+1 � a
2
i :

If there are no internal zeroes, log-concavity implies unimodality:

a0 � � � � � ai�1 � ai � ai+1 � � � � � ar for some i :
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George Birkhoff (1912).

The chromatic polynomial of G is the function

�G(q) = (number of proper colorings of G with q colors):

�G(q) is a polynomial in q with integer coefficients.

�G(4) > 0 for planar G?

Example

� �

� �

�G(q) = 1q4 � 4q3 + 6q2 � 3q
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Conjecture (Read and Hoggar 1968)

The coefficients of �G(q) form a log-concave sequence for any graph G.
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Let E be a finite set of points in P(V ).

Define the f -vector by

fi = (number of independent subsets of E with size i):

Example (Fano plane)

For E = F32 n f0g, we have

f0 = 1; f1 = 7; f2 = 21; f3 = 28:
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Conjecture (Welsh and Mason 1969)

The sequence f0; f1; : : : ; fr is log-concave for any finite subset of P(V ).
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The analogous conjectures on the f -vector of simplicial polytopes,

another representative class of shellable simplicial complexes,

were disproved by Björner (1981).

The conjecture on �G(q) was computer verified for all graphs

with � 13 vertices by Lundow and Markström (2006).
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Björner’s example
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Results

Theorem (-)
The conjecture on the chromatic polynomial is true for all graphs.

Theorem (Lenz, H-Katz)
The conjecture on the f -vector is true for any set of vectors.
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Rota (1964).

Rota noted the significance of the characteristic polynomial �M (q)

of a combinatorial geometry M .

“One of the most useful principles of enumeration in discrete probability and

combinatorial theory is the celebrated principle of inclusion-exclusion.”

Rota, The first line of On the Foundations of Combinatorial Theory I.
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Conjecture (Rota 1970)

The coefficients of �M (q) form a log-concave sequence for any graph G.
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Example

� �

� �

�G(q) = 1q4 � 4q3 + 6q2 � 3q

We may write
� �

� �
=

� �

� �
-

�

� �

and compute

�G0(q) = q(q � 1)3

�G00(q) = q(q � 1)(q � 2):

Therefore
�G(q) = �G0(q)� �G00(q) = 1q4 � 4q3 + 6q2 � 3q :
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If M 0, and M 00 are deletion and contraction of M respectively, then

�M (q) = �M 0(q)� �M 00(q):

In fact, the characteristic polynomial is the finest ‘additive’ invariant of

combinatorial geometries.

�M (q) is really the � of M .
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�G(q) = �M (q) if M is the matroid of G, and

fM (q) = �My(q) if M y is the coextension M (Brylawski ’77, Lenz ’12).

There are many other interesting specializations of �M (q).
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Theorem (-)

If M is representable over a field of characteristic zero, then

the coefficients of �M (q) form a log-concave sequence.

Our proof is algebro-geometric in nature and cannot be

generalized to non-representable combinatorial geometries.

However, all except one argument ‘tropicalize’, and this

allows us to drop the characteristic zero assumption (H-Katz).
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3. Milnor numbers of projective hypersurfaces
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Milnor (1968).

If f : (Cn ;0)! (C;0) is a germ of an isolated singularity at 0,

then the Milnor fiber of f is homotopic to the bouquet of spheres.

The number of spheres in the Milnor fiber is the degree of the gradient map

of f restricted to a small sphere.
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If h is a homogeneous polynomial, consider the complement

D(h) = fh , 0g � Pr :

The complement D(h) is d-fold covered by the Milnor fiber fh = 1g of

h : Cr+1 ! C:

In this projective setting, the theory of Milnor can be carried out

without any assumption on h .
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Let � be the graph of the gradient map Pr d Pr

� � Pr � Pr

�1

yy

�2

%%
Pr �

@h

@z0
: @h
@z1

:���: @h
@zr

� // Pr

Define �i (h) by

[�] =

rX
i=0

�
i (h)

�
Pr�i � Pi

�
2 H2r

�
Pr � Pr ;Z

�
:
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Theorem (-)

For any homogeneous polynomial h 2 C[z0; : : : ; zn ],

1. �i (h) is the number of i -cells in a CW-model of D(h).

More precisely, D(h) \ Pi is obtained from D(h) \ Pi�1 by

attaching �i (h) cells of dimension i .

2. If h is a product of linear forms, then the attaching maps are trivial:

�
i (h) = bi

�
D(h)

�

Writing A for the hyperplane arrangement defined by h ,

�A(q) =

rX
i=0

(�1)i�i (h)q r�i :
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In other words, � = �.

This provides new intuition on the coefficients of �M (q), because

homology classes of subvarieties are very special.
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4. Representable algebraic cycles
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Let X be a complex algebraic variety. It is interesting to ask

“Which even dimensional homology classes of X come from a subvariety?”

(Hartshorne 1974)

Let’s say that such homology classes are representable by a subvariety.

This is an extremely difficult problem, even for very simple X . . .
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Example (Pn )

Let
� = d [Pk ] 2 H2k (P

n ;Z):

1. If k is 0 or n , then � is representable iff d = 1.

2. If otherwise, then � is representable iff d � 1.
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Example (P1 � P1)

Let
� = d0[P

1 � P0] + d1[P
0 � P1] 2 H2(P

1 � P1;Z):

Then � is representable iff

1. d0; d1 are nonnegative, and

2. if one of the di is 0, the other di is 1.
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Theorem (in preparation)

Let
� = d0[P

2 � P0] + d1[P
1 � P1] + d2[P

0 � P2] 2 H4(P
2 � P2;Z):

1. If d1 = 0, then � is representable iff (d0; d1; d2) is (1; 0; 0) or (0; 0; 1).

2. If otherwise, then � is representable iff d0; d1; d2 � 0 and d21 � d0d2.

This is really the question on the shape of bigraded Hilbert polynomials

of standard bigraded domains.
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I don’t think this statement has a very short proof.

The current argument is

(delicate argument on representing a collection of integers as sums of squares)

+

(delicate argument on free divisors on a blowup of P2 at many points):
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Theorem (-)

Let
� =

X
i

di [P
k�i � Pi ] 2 H2k (P

m � Pn ;Z):

1. If � is of the form

d [P0 � P0]; d [Pm � P0]; d [P0 � Pn ]; d [Pm � Pn ];

then � is representable iff d = 1.

2. If otherwise, some positive multiple of � is representable iff fdig form

a log-concave sequence of nonnegative integers with no internal zeros.

June Huh Positivity of algebraic cycles and convexity of combinatorial geometries 34 / 50



In particular, the sequence �i (h) is log-concave for any h .
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Surprisingly, the homology class in H10(P
5 � P5;Z)

� = 1[P5 � P0] + 2[P4 � P1] + 3[P3 � P2] + 4[P2 � P3] + 2[P1 � P4] + 1[P0 � P5]

is not representable.

This can be deduced from Pirio and Russo’s recent result (2012),

which asserts that there is a bijective correspondence between

rank 3 Jordan algebras and quadro-quadric Cremona transformations.
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Perhaps this is part of a general phenomenon:

Representability questions tend to have ‘answers’ if we allow multiples.

We have similar experiences when we studied very ample divisors,

graded free resolutions over a polynomial ring, stable homotopy theory,

Hodge conjecture, etc.
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Tension between axioms of field theory and axioms of combinatorial

geometry goes back at least to Whitney (1935) and even Hilbert (1899).

Vamos (1978),

The missing axiom of matroid theory is lost forever.

Mayhew, Newman, and Whittle (2012),

Is the missing axiom of matroid theory lost forever?
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5. Is the missing axiom of matroid theory lost forever??

(A nonrepresentable combinatorial geometry violating the Pappus theorem)
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The gradient map is the blowup of the singular locus of

fL0L1 � � �Ln = 0g � Pr :

Over a field of any characteristic, we consider the diagram

�

~~

// ePn

##~~

// Pn � Pn

Pr
L

// Pn
( 1

x0
: 1
x1

:���: 1
xn

)
// Pn

where L = [L0 : � � � : Ln ] and ePn is the standard resolution of

the Cremona transformation.
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ePn is the toric variety of the permutohedron:

L : Pr ! Pn defines a subvariety of ePn (the maximal wonderful model of

the hyperplane arrangement), and hence a homology class.
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In general, a homology class of a toric variety can be described as

a combinatorial object called tropical variety.

Any combinatorial geometry M on n + 1 elements of rank r + 1

can be tropicalized to define
�M 2 Ar

�ePn�:
�M is representable as a homology class of ePn iff

M is representable over the field of definition of ePn .
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Therefore, Hartshorne’s problem is impossibly difficult even for

relatively simple toric varieties, because it is at least as difficult as

Problem (Whitney’s missing axiom)

Find an axiom of matroid theory which characterizes representability over an infinite

field (say C).
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Theorem (H-Katz)

For any combinatorial geometry M ,

ePn �! Pn � Pn ; �M 7! �M (q):

From our point of view, Rota’s conjecture precisely says that some multiple of

�M (q) is representable by a subvariety.

If the conjecture is true, I believe it is because the same is true for �M in ePn .
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Wild speculation

Every combinatorial geometry is representable over every field

(if we allow multiples and small perturbations).

Whitney’s original axioms guarantee representability, and hence

there is no missing axiom.

This statement is valid if several ‘expected properties’ hold

for the effective cone and the nef cone of algebraic cycles in ePn .
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In general, the effective cone of a toric variety is a polyhedral cone

spanned by closures of torus orbits. In particular, the effective cone

depends only on the fan of the toric variety.

Example

There is no subvariety of eP7C representing �M .

However, �M is in the effective cone of eP7C.
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Various cones of positive cycles are thoroughly explored in

dimension and codimension 1: Ample cone, nef cone, big cone,

pseudoeffective cone, cone of effective curves, movable curves, etc.

Grothendieck asked several questions concerning higher codimension

cones. Debarre, Ein, Lazarsfeld, Voisin (2012) showed that

the answers are ‘no, no, and no’.
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If that is too difficult, I propose to study the positive cones

only for toric varieties.

There are computational evidences (Maclagan and Smith)

which suggest ‘no, no’.

If that is too difficult, I propose to study the positive cones

of this one toric variety ePn , that of the permutohedron.

There are computational evidences

which says ‘perhaps yes’.
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Conclusion

1. Rota’s conjecture leads us to the study of positive cycles in ePn .

2. The permutohedral variety ePn is a nice playground for everyone:
- matroid theorists,

- commutative algebraists (who like matroids and multigraded Hilbert polynomials),

- toric experts,

- G=B experts,

- birational geometers interested in various positive cones,

- geometers studying general questions concerning algebraic cycles.

3. ePn is a simple variety with many mysteries.
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