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1. Combinatorial geometries
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Hassler Whitney (1935).
A matroid on a finite set E is a collection of subsets of E, called independent

sets, with the following properties:

@ Every subset of an independent set is independent.

@ If an independent set A has more elements than independent set B,
then there is an element in A, when added to B, gives a larger

independent set.
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Let G be a finite graph, and E the set of edges.
Call a subset of E independent if it does not contain a circuit.

This defines a graphic matroid M.

Example

Independent sets of M: All subsets of B = {1, 2, 3, 4} except {1, 2, 3, 4}.
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Let V be a vector space over a field k, and E a finite set of vectors.
Call a subset of E independent if it is linearly independent.

This defines a matroid M representable over k.

Example

Independent sets of M: All subsets of B = {1, 2, 3, 4} except {1, 2, 3, 4}.

Graphic matroids are representable over every field.
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Without loss of generality, we may assume that every set

with < 2 elements are independent.

These matroids are called combinatorial geometry.

In the representable case, a combinatorial geometry is defined from

@ a finite set of points in P(V'), or equivalently,

@ a finite set of hyperplanes in P(V'V).
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2. Concavity
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@ A sequnce ay,..., a, iS log-concave if for all ¢
2
ai—1ai+1 < aj.
@ If there are no internal zeroes, log-concavity implies unimodality:

ap <---<aji—1<a; > ai41 >+ >a, forsome .
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George Birkhoff (1912).

@ The chromatic polynomial of G is the function
xc(g) = (number of proper colorings of G with g colors).
@ xc(q) is a polynomial in g with integer coefficients.

@ xc(4) > 0for planar G?

Example
e — 0
e — 0
xc(q) = 1q¢* —4¢>+6¢° -3¢
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Conjecture (Read and Hoggar 1968)

The coefficients of x(q) form a log-concave sequence for any graph G.
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@ Let E be afinite set of points in IP(V).
@ Define the f-vector by

fi = (number of independent subsets of £ with size 1).

Example (Fano plane)
For E = FF3 \ {0}, we have

fo=1, A=7 f =21, f;=28
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Conjecture (Welsh and Mason 1969)

The sequence fo, f1, - . ., fr is log-concave for any finite subset of P(V).
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@ The analogous conjectures on the f-vector of simplicial polytopes,
another representative class of shellable simplicial complexes,

were disproved by Bjérner (1981).

@ The conjecture on x¢(g) was computer verified for all graphs

with < 13 vertices by Lundow and Markstrém (2006).
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Bjorner’s example

Examples 8.40. The unimodality conjecture fails for a simplicial polytope

of dimension d = 20 with the following f-vector, for which fi1 > fi2 < fis.

June Huh

fa
fo
I
fa
fa
fa
fs
fo
fz
fs
fa
fio
bit!
fiz
fa
f]4
fis
fie
fir
fis
flﬂ

o

(|

1

4203045807626
84060916163336
TO8578704207074
4791472253296106
20363758019368323
65164051780016980
162910744316489788
325834059588060117
529707205213463823
709935971390166248
805494832051588614
821976324224631043
821976324224611712  «—
822000129478641948
TAT383755288236256
546761228419958342
203715859557026466
106920718330384544
23458617733909980
2345861773390008

— —
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Results

Theorem (-)

The conjecture on the chromatic polynomial is true for all graphs.

Theorem (Lenz, k)

The conjecture on the f-vector is true for any set of vectors.
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Rota (1964).
Rota noted the significance of the characteristic polynomial x(q)

of a combinatorial geometry M.

“One of the most useful principles of enumeration in discrete probability and

combinatorial theory is the celebrated principle of inclusion-exclusion.”

Rota, The first line of On the Foundations of Combinatorial Theory |.
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Conjecture (Rota 1970)

The coefficients of xu(q) form a log-concave sequence for any graph G.
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Example

We may write

and compute

Therefore

xc(q) = 1¢* —4¢® +64° — 3¢

1= 1 1IN
xe'(q) = a(g—1)°
xe(q) = q(qg—1)(g—2).

xc(q) = xe(q) — xor(q) = 1¢* — 4¢° + 6¢° — 3q.
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e If M', and M" are deletion and contraction of M respectively, then

xm(q) = xmr(g) — xXn (9)-

@ In fact, the characteristic polynomial is the finest ‘additive’ invariant of

combinatorial geometries.

@ xum(q) is really the x of M.
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@ xc(q) = xum(q) if M is the matroid of G, and
@ fir(q) = xut(q) if MTis the coextension M (Brylawski '77, Lenz '12).

@ There are many other interesting specializations of xu(g).
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Theorem (-)

If M is representable over a field of characteristic zero, then

the coefficients of xu(q) form a log-concave sequence.

@ Our proof is algebro-geometric in nature and cannot be
generalized to non-representable combinatorial geometries.
However, all except one argument ‘tropicalize’, and this

allows us to drop the characteristic zero assumption (H-Katz).
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3. Milnor numbers of projective hypersurfaces
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Milnor (1968).

If f: (C",0) — (C,0) is a germ of an isolated singularity at 0,

then the Milnor fiber of f is homotopic to the bouquet of spheres.

The number of spheres in the Milnor fiber is the degree of the gradient map

of f restricted to a small sphere.
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@ If » is a homogeneous polynomial, consider the complement
D(h)={h #0} CP".
The complement D(k) is d-fold covered by the Milnor fiber {r = 1} of

R:CH S C

@ In this projective setting, the theory of Milnor can be carried out

without any assumption on h.
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Let I" be the graph of the gradient map P" --> IP"

Define u'(k) by

r

[1=> 4w (r) [P x P'] € Ha (P" x P, Z).

=0
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Theorem (-)
For any homogeneous polynomial b € C[z, . . ., zx],
1. w'(R) is the number of i-cells in a CW-model of D(h).
More precisely, D(k) N P* is obtained from D(k) NTP*~* by

attaching p* (k) cells of dimension i.

2. If h is a product of linear forms, then the attaching maps are trivial:
w'(h) = bi(D(h))

Writing A for the hyperplane arrangement defined by h,

T

xa(g) = (-1)'u(h)g" "

=0
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In other words, u = .

This provides new intuition on the coefficients of x(g), because

homology classes of subvarieties are very special.
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4. Representable algebraic cycles
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Let X be a complex algebraic variety. It is interesting to ask
“Which even dimensional homology classes of X come from a subvariety?”

(Hartshorne 1974)

Let’'s say that such homology classes are representable by a subvariety.

This is an extremely difficult problem, even for very simple X...
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Example (IP™)

Let
¢ = d[IP*] € Ho(P"; Z).

1. If k is 0 or n, then £ is representable iff d = 1.

2. If otherwise, then ¢ is representable iff d > 1.
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Example (P! x P?)

Let
¢ = do[P* x P°] + d1[P° x P'] € Hy(P* x P*; Z).

Then £ is representable iff
1. do, di are nonnegative, and

2. if one of the d; is 0, the other d; is 1.
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Theorem (in preparation)

Let
¢ = do[P? x P°] + dy[P* x P'] + do[IP° x IP?] € Hy(P? x P*; Z).

1. If di = 0, then ¢ is representable iff (do, d1, d2) is (1,0,0) or (0,0, 1).

2. If otherwise, then ¢ is representable iff do, di, do > 0 and di > dods.

This is really the question on the shape of bigraded Hilbert polynomials

of standard bigraded domains.
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I don’t think this statement has a very short proof.

The current argument is

(delicate argument on representing a collection of integers as sums of squares)

+
(delicate argument on free divisors on a blowup of P> at many points).
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Theorem (-)

Let
6 = Z d,‘[IPkii X IP’] € Hgk(IPm X ]Pn,Z)

1. If¢ is of the form
d[P° x %), d[P™ x P°], d[P° x PP"], d[P™ x P"],
then ¢ is representable iff d = 1.

2. If otherwise, some positive multiple of ¢ is representable iff {d;} form

a log-concave sequence of nonnegative integers with no internal zeros.
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In particular, the sequence u'(k) is log-concave for any k.
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Surprisingly, the homology class in Hio(IP® x IP%; Z)
£ = 1[P° x P°] + 2[IP* x P'] + 3[P? x P?] + 4[P® x P?] + 2[P* x IP*] + 1[P° x IP?]

is not representable.
This can be deduced from Pirio and Russo’s recent result (2012),

which asserts that there is a bijective correspondence between

rank 3 Jordan algebras and quadro-quadric Cremona transformations.
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Vv Algebra Jordan adjoint (z, y, z, t, u, V)7 Type | Multidegree | dim (R,

T Yz — 02,2z — U2, ay — £, uv — 2t, tv — uy, tu — av) IV | (2,4,4,2 0
. Jes Y2+ 2% + 12 + u? +v%, oy, —x2, —at, —TU, —TV) T (2,2,2,2 0
C X Jpa | (ot 22 + 2+, 2y, 22, —t, —2u, —2v) T | (2.2.2.2 1
C x Jog | (7 + 22 + %, ay, —wz, —at, —au, —av) 1 2,2,2,2 2
Toz Yz — t°,02, 2y, —at, tv — uz, tu - yv) v 2,4,4,2 2
Thoo Y2, &2, 2y, —at, —u, —v) 1 2,2,2,2 3
Jio1 (yz, 3z, ay, —2t, —2u, —yv) 11 2,3,3,2 3
T%, (yz,22, 2y, —2t, —yu, —av) IV | (2,4,4,2 3
7, (yz,2, 2y, — 2t + 2uv, —yu, —7v) IV | (2,4,4.2 3
_'_77‘? Ty, 32, —yz, —ty, —yth, —v) 17 2,3,3,2 a)
A zy, &7, —yz + V7, —yt, —yu, —xv) TIT | (2,4,4,2 4
7 2y, @ —ty, —zu, —av) 17 2,3,3,2 7
N ay,z°, u?, —yt, —zu, —xv) Jid 2,4,4,2) 4
7; 2y, 2%, ~yz + 2uv, —yt, —wu, —wv) V| (2,4,4,2 a
T TY, T, ~yz + u’, ~yt + v’ ,—Iu,—zv) v 2,4,4,2 4
T 2y,27, —yz + 0%, —yL + 2uv, —zu, —av) V| (24,42 )
T (2y,27, —yz, —yt, —wu, —av + 2tu) V| (24,42 7
Tiaa (zy, 2%, —yz + u’, —yt, —xu, —zv + 2tu) v 2,4,4,2) 4
T (2y,2%, —yz, —yt, —wu, —ov + 2zu + 2tu) V| (2,4,4,2) )
T (zy,2%, —yz + %, —yt — %, —zu, ~zv + 22ut 2tw) | IV | (2,4,4,2) a
I (2y,2?, ~yz, —at, —zu, —zv) I [ (2222 4
_\_7%[;___ (zy, 2%, —yz + t*, ~at, ~zu, ~xv) T | (2222 2
I (zy, 2%, —yz + t* + u?, —ot, ~zu, —zv) 1 (2,2,2,2 4
J]l}n (zy, 2%, —yz+ +t2 + u? + 0%, —xt, —au, ~av) I | (2,222 4

. Jias (zy,27, —yz, —at, —wu, ~zv + 22t) 17 | (2.3,3.2 7
T (a7, ~ay, —z2z, —at + 2yu— 20, ~zu + 2%, —2v + 242) | IV | (2,4,4,2 5
Ji (2%, —ay, —wz, —at + 2yz, —zu + y°, —2v + 2°) IV 1 (2,442 5
Tes D | (2% ~ay, ~wz, —at,—zu— 2yz + 22t,—zv—y? + ) | 11 | (2,3,3,2) 5
TeD | (a?, —wy, —wz, —at, —zu + 22t, —av + 1) 11 | (2,3,3,2) 5
T | (a2, —ay, —az, —at, —cu + 22t, —av + 22 + £2) v | (2,4,4,2) 5
TesD | (2% —ay, —x2, —at, —au+ y? + 22t, —av + £2) v | (2,442 s
TeD | (a?, —ay, —w2, —ot, —zu + 22t, —av + y? + £7) v | (2,442 5
Te) | (2% —ay, w2, —ot, —zu+ 2yz + 22t, —zv + 12) v | (2,4,4,2 B
TetV | (e —wy, —wz, —at, —vut 22t, —zv + 2yz + £2) v | (2,4,4,2 5
Jg (2%, —zy, —wz, —at, —zu + y* + 22t, —av + 22 + 1?) IV | (2,4,4,2 5
Tee® | (2%, —ay, —wz, —at, —zu,—av + ) 1 (2,2,2,2 5
JE' O 1 (2%, —ay, —xz, —at, —zu, —zv + y? + 2) 1 (2,2,2,2] 5
Tian | (@ —ay, —wz, —at,—ou,—av + y* + 2 + £7) 1 (2,2,2,2) 5
Jis | (3% —ay, —wz, —at, —au, —zv + 47 + 22 + £ + uP) I | (2,2,22) 5

TABLE 10. Involutive normal forms for quadro-quadric Cremona transformations of P®
(dim R stands for the dimension of the radical of the corresponding Jordan algebra, this one
being labelled with the notation used in [30]).

. REFERENCES

June Huh Positivity of algebraic cycles convexity of combinatorial geometries



Perhaps this is part of a general phenomenon:

Representability questions tend to have ‘answers’ if we allow multiples.

We have similar experiences when we studied very ample divisors,
graded free resolutions over a polynomial ring, stable homotopy theory,

Hodge conjecture, etc.
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@ Tension between axioms of field theory and axioms of combinatorial

geometry goes back at least to Whitney (1935) and even Hilbert (1899).
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@ Tension between axioms of field theory and axioms of combinatorial

geometry goes back at least to Whitney (1935) and even Hilbert (1899).

@ Vamos (1978),

The missing axiom of matroid theory is lost forever.
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@ Tension between axioms of field theory and axioms of combinatorial

geometry goes back at least to Whitney (1935) and even Hilbert (1899).

@ Vamos (1978),

The missing axiom of matroid theory is lost forever.

@ Mayhew, Newman, and Whittle (2012),

Is the missing axiom of matroid theory lost forever?
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5. Is the missing axiom of matroid theory lost forever??

(A nonrepresentable combinatorial geometry violating the Pappus theorem)
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@ The gradient map is the blowup of the singular locus of

{LoLy-+-Ln =0} CTP".

@ Over a field of any characteristic, we consider the diagram

where L = [Lo : - -- : L,] and P" is the standard resolution of

the Cremona transformation.

June Huh Positivity of algebraic cycles and convexity of combinatorial geometries
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P" is the toric variety of the permutohedron:

(4,1,2,3)

(3,124

L : P" — P" defines a subvariety of P" (the maximal wonderful model of

the hyperplane arrangement), and hence a homology class.
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@ In general, a homology class of a toric variety can be described as

a combinatorial object called tropical variety.

@ Any combinatorial geometry M on n + 1 elements of rank r + 1

can be tropicalized to define _
Ay € A, (P).

@ Ay is representable as a homology class of P~ iff

M is representable over the field of definition of IP".
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Therefore, Hartshorne’s problem is impossibly difficult even for
relatively simple toric varieties, because it is at least as difficult as
Problem (Whitney’s missing axiom)

Find an axiom of matroid theory which characterizes representability over an infinite

field (say C).
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Theorem (H-Katz)
For any combinatorial geometry M,

jlv)n — P" X]P", AMl—)XM(q)

From our point of view, Rota’s conjecture precisely says that some multiple of

xm(q) is representable by a subvariety.

If the conjecture is true, | believe it is because the same is true for Ay in P”.
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Wild speculation

Every combinatorial geometry is representable over every field
(if we allow multiples and small perturbations).
Whitney’s original axioms guarantee representability, and hence

there is no missing axiom.

This statement is valid if several ‘expected properties’ hold

for the effective cone and the nef cone of algebraic cycles in P".
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In general, the effective cone of a toric variety is a polyhedral cone
spanned by closures of torus orbits. In particular, the effective cone
depends only on the fan of the toric variety.

Example

There is no subvariety of ]T’E representing An.

However, Ay is in the effective cone of P.
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@ Various cones of positive cycles are thoroughly explored in
dimension and codimension 1: Ample cone, nef cone, big cone,

pseudoeffective cone, cone of effective curves, movable curves, etc.

@ Grothendieck asked several questions concerning higher codimension
cones. Debarre, Ein, Lazarsfeld, Voisin (2012) showed that

the answers are ‘no, no, and no’.
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@ [f that is too difficult, | propose to study the positive cones

only for toric varieties.

@ There are computational evidences (Maclagan and Smith)

which suggest ‘no, no’.

@ If that is too difficult, | propose to study the positive cones

of this one toric variety P, that of the permutohedron.

@ There are computational evidences

which says ‘perhaps yes’.
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Conclusion

1. Rota’s conjecture leads us to the study of positive cycles in P

2. The permutohedral variety P" is a nice playground for everyone:
- matroid theorists,

- commutative algebraists (who like matroids and multigraded Hilbert polynomials),
- toric experts,

- G/B experts,

- birational geometers interested in various positive cones,

- geometers studying general questions concerning algebraic cycles.

3. P"isa simple variety with many mysteries.
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