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@ Lefschetz Properties

@ Lozenge tilings, perfect matchings, and lattice paths
@ Mahonian Determinants

@ Type 2 algebras

@ Existence of Laplace equations
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R = K[xq,...,Xn], K aninfinite field
I € R homogeneous, artinian ideal (dimyx R/l < c0)

Definition
A = R/l has the Weak Lefschetz Property (WLP) if there is a
linear form ¢ € R such that the multiplication
X/ [A], — [A]i+1
has maximal rank for all 7 (i.e. is injective or surjective).
A has the Strong Lefschetz Property (SLP) if
<09 : [Alj = [Alisd
has maximal rank for all / and d.




Lefschetz Properties

R = K[xq,...,Xn], K aninfinite field
I € R homogeneous, artinian ideal (dimyx R/l < c0)

Definition
A = R/l has the Weak Lefschetz Property (WLP) if there is a
linear form ¢ € R such that the multiplication
X/ [A], — [A]i+1
has maximal rank for all 7 (i.e. is injective or surjective).
A has the Strong Lefschetz Property (SLP) if
<09 : [Alj = [Alisd
has maximal rank for all / and d.

Remark: (i) ¢ general.

(ii) WLP implies restrictions on Hilbert function
(g-Theorem (Stanley)).

(iii) WLP and SLP are related to Fréberg’s conjecture.



Known results

@ (Harima, Migliore, N., Watanabe, 2003) If n < 2 and
char K = 0, then A has the SLP.

@ (Migliore, Zanello, 2007) If n < 2, then A always has the
WLP.
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Known results

@ (Harima, Migliore, N., Watanabe, 2003) If n < 2 and
char K = 0, then A has the SLP.

@ (Migliore, Zanello, 2007) If n < 2, then A always has the
WLP.

\

Theorem (Stanley, 1980; ...)

Ifchar K = 0, then each monomial c.i., | = (x{',...,x5"), has
the SLP,

\

Theorem (Harima, Migliore, N., Watanabe, 2003)

Ifn= 3, charK =0, then every c.i. | = (fi, f, f3) has the WLP,
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I ¢ R = K|x,y, z] artinian monomial ideal.
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I ¢ R = K|x,y, z] artinian monomial ideal.
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Ifn=3, charK =0, and R/ is level of type 2, then R/I has the
WLP

Counterexamples if R/I'is not level or if char K > 0.
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if the characteristic of K is not 2 or 7.




Monomial ideals in three variables

I ¢ R = K|x,y, z] artinian monomial ideal.

Theorem (Boij, Migliore, Mir6-Roig, N., Zanello, 2012)

Ifn=3, charK =0, and R/ is level of type 2, then R/I has the
WLP,

Counterexamples if R/I'is not level or if char K > 0.

Example

o If I=(x",y’ 2z’ x?y?z?), then R/l has the WLP if and only
if the characteristic of K is not 2 or 7.
@ If = (x20,y20 720 x3y8713) then R/l has the WLP if and

only if the characteristic of K isnot 2, 3, 5,7, 11, 17, 19,
23, or




Monomial ideals in three variables

I ¢ R = K|x,y, z] artinian monomial ideal.

Theorem (Boij, Migliore, Mir6-Roig, N., Zanello, 2012)

Ifn=3, charK =0, and R/ is level of type 2, then R/I has the
WLP,

Counterexamples if R/I'is not level or if char K > 0.

Example

o If I=(x",y’ 2z’ x?y?z?), then R/l has the WLP if and only
if the characteristic of K is not 2 or 7.

@ If = (x20,y20 720 x3y8713) then R/l has the WLP if and
only if the characteristic of K isnot 2, 3, 5,7, 11, 17, 19,
23, or 20554657.




Triangular regions

Triangular region T4: equilateral triangle of side length d,
subdivided into equilateral unit triangles:

o (%) downward-pointing (/) - labeled by monom. in [Rly_»,
and

e (93"} upward-pointing (A) - labeled by monom. in [Rly_+.

X
X
X fL'y Tz
1 y/\ 2
y \/ z v’ \/yz\/ 2>




Triangular regions

I € R any monomial ideal

d > 1 any integer

triangular region T4(/): obtained from 74 by removing triangles
with labels in /.

Example 1
I = (xy,y? 2%, d = 4.

JAN 2
VOVAN
VAV :

NP NN 22\/ 2 Yz
7:1 T4(Xy,y2723)




Triangular regions
Example 2

I = (x3ybz°).




Lozenge tilings

T C T4 any subregion

Lozenge (diamond, callisson, rhombus):
glue an v/- and an A-triangle along the common edge



Lozenge tilings

T C T4 any subregion

Lozenge (diamond, callisson, rhombus):
glue an v/- and an A-triangle along the common edge

Tile T by lozenges if possible

Atiling of Tg(x”,y’, 28 xy*z2 x3yz? x*yz)

Necessary tileability condition: balanced (#7 = #/A)



Bipartite graphs and perfect matchings

T C T4 any subregion

G(T) bipartite graph:
B = set of centers of s/-triangles, ordered reviex by labels,
W = set of centers of A-triangles, ordered revlex by labels
@ Vertices: BU W

@ Edges: (B;, W) if the corresponding triangles share an
edge

Bi-adjacency matrix Z(T): zero-one matrix of size #B x #W:

2(T) = 1 if (B;, W) is an edge
)70 otherwise



Bipartite graphs and perfect matchings

Assume T is balanced (#B = #W):

Perfect matching of G(T): a set of pairwise non-adjacent edges
of G(T) such that each vertex is matched



Bipartite graphs and perfect matchings

Assume T is balanced (#B = #W):

Perfect matching of G(T): a set of pairwise non-adjacent edges
of G(T) such that each vertex is matched

11—1

lozenge tiling of T

The graph G(T) A perfect matching



Bipartite graphs and perfect matchings

Proposition
If T is balanced, then

#lozenge tilings of T = #perfect matchings = perm Z(T).




Bipartite graphs and perfect matchings

Proposition

If T is balanced, then

#lozenge tilings of T = #perfect matchings = perm Z(T).

Definition

A lozenge tiling 7 of T induces a bijection B — W, B; — W, ;,
where o € G4p. The perfect matching sign of 7 is

msgn 7 := sgno.




Bipartite graphs and perfect matchings

Proposition

If T is balanced, then

#lozenge tilings of T = #perfect matchings = perm Z(T).

Definition

A lozenge tiling 7 of T induces a bijection B — W, B; — W, ;,
where o € G4p. The perfect matching sign of 7 is

msgn 7 := sgno.

>~ msgnr:=detZ(T).
7 tiling of T
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detZ(T) = 10.

permZ(T)




Lattice paths

T C T4 any subregion
L(T): set of midpoints of NE edges of triangles in T
@ Label the vertices of L(T) that are only on A-triangles by
A1, ..., An according to the revlex order of the monomials,
beginning with the smallest.
@ Label the vertices of L(T) are only on s/-triangles by
E4, ..., E, according to the reviex order of the monomials,
beginning with the smallest.
A lattice path from A; to Ej is a path in L(T) where each single
move is to the East (—) or to the South-East ().



Lattice paths

T C T4 any subregion
L(T): set of midpoints of NE edges of triangles in T
@ Label the vertices of L(T) that are only on A-triangles by
A1, ..., An according to the revlex order of the monomials,
beginning with the smallest.
@ Label the vertices of L(T) are only on s/-triangles by
E4, ..., E, according to the reviex order of the monomials,
beginning with the smallest.
A lattice path from A; to Ej is a path in L(T) where each single
move is to the East (—) or to the South-East ().




Lattice paths

Lattice path matrix N(T): size m x n

N(T)(;j) = #lattice paths in Z? from A; to E;.
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Lattice path matrix N(T): size m x n
N(T)(;j) = #lattice paths in Z? from A; to E;.

Assume T is balanced (m = n):
family of non-intersecting lattice paths in L(T) (from A+, ..., An

to Ey,...,Ep)



Lattice paths

Lattice path matrix N(T): size m x n
N(T)(;j) = #lattice paths in Z? from A; to E;.

Assume T is balanced (m = n):

family of non-intersecting lattice paths in L(T) (from A+, ..., An

to Ey,. .., Em) <=5 lozenge tiling = of T




Lattice paths

Lattice path matrix N(T): size m x n
N(T)(;j) = #lattice paths in Z? from A; to E;.
Assume T is balanced (m = n):

family of non-intersecting lattice paths in L(T) (from A¢, ..., An
to Eq,...,En) = lozenge tiling 7 of T

Definition
The lattice path sign of a lozenge tiling 7 of T is

lpsgn T :=sgnao,

where o € &, is the permutation such that, for all /, the path
starting in A; ends in E, ;).




Lattice paths

Lattice path matrix N(T): size m x n
N(T)(;j) = #lattice paths in Z? from A; to E;.
Assume T is balanced (m = n):

family of non-intersecting lattice paths in L(T) (from A¢, ..., An
to Eq,...,En) = lozenge tiling 7 of T

Definition
The lattice path sign of a lozenge tiling 7 of T is

lpsgn T :=sgnao,

where o € &, is the permutation such that, for all /, the path
starting in A; ends in E, ;).

Theorem (Lindstrdm, Gessel &Viennot)

If T is balanced, then ) lpsgnr := det N(T).
T tiling of T




Lattice paths

T = Te(x3, y*, 25) and its rotations.

oy

[ 10 ] 46 310
14 3 3 1
133




Comparisons

T=Ty(l) CTq

T lozenge tiling of T
@ perfect matching sign msgn 7 - enumerated by det Z(T)
@ lattice path sign Ipsgn 7 - enumerated by det N(T)



Comparisons

T=Ty(l) CTq

T lozenge tiling of T
@ perfect matching sign msgn 7 - enumerated by det Z(T)
@ lattice path sign Ipsgn 7 - enumerated by det N(T)

(a) Let 7 and 7’ be two lozenge tilings of T. Then

msgn(7) - lpsgn(7) = msgn(7’) - lpsgn(’).

(b)
|det Z(T)| = | det N(T)).




Comparisons

T=Ty(l) CTq

T lozenge tiling of T
@ perfect matching sign msgn 7 - enumerated by det Z(T)
@ lattice path sign Ipsgn 7 - enumerated by det N(T)

(a) Let 7 and 7’ be two lozenge tilings of T. Then

msgn(7) - lpsgn(7) = msgn(7’) - lpsgn(’).

(b)
|det Z(T)| = | det N(T)).

If T is tileable and simply connected, then

|detZ(T)| =permZ(T) > 0.




Comparisons

T= TG(X37y47 25)'

Then
10 = |detN(T)| = |det Z(T)| = perm(T).




Mahonian determinants

%/ //%

332221
322100
/
A 2 x 6 x 3 plane partition. The associated lozenge tiling.

Theorem (MacMahon)

The number of plane partitions in an a x b x ¢ box is

H(a)yH(b)H(c)H(a+ b+ c)

Mac(a, b, c) := H(a+ b)H(a+c)H(b+c)’

where H(n) = ,":_01 i' is the hyperfactorial of n.




Mahonian determinants

Proposition

If T = Tq(x2,yb,z°) is balanced, that is, d = }(a+ b+ c) is an
integer, then

|detZ(T)| =permZ(T) = Mac(d — a,d — b,d — ¢).




Mahonian determinants

If T = Tq(x2,yb,z°) is balanced, that is, d = }(a+ b+ c) is an
integer, then

|detZ(T)| =permZ(T) = Mac(d — a,d — b,d — ¢).

If T = Ty(x@te, yP, z° x3yP x3z7) is balanced, then

|detZ(T)| = perm Z(T)
= Mac(d—a,d—b,d—c)Mac(d—a—a,d—a—p3,d—a—~)

v




Mahonian determinants

If T = Ta(x3,y?, z° xy?) is balanced (as below), then
|detZ(T)| = permZ(T) is

Mac(a+3—d,d—a,d—(a+p3))Mac(a+b—d,d—b,d—(a+p))
H(d—a+d—(a+8))H(d—b+d—(a+8))H(d—c+d—(a+8))H(d)

X o

H(a)H(b)H(c)H(d—(a+P))

v




Relation to WLP

I ¢ R = K|x,y, z] artinian monomial ideal.

If K is infinite, then R// has the WLP iff multiplications by
£ = X + y + z have maximal rank.



Relation to WLP

I ¢ R = K|x,y, z] artinian monomial ideal.

If K is infinite, then R// has the WLP iff multiplications by
£ = X + y + z have maximal rank.

@ fForeach d > 1, the coordinate matrix of
[R/Ng—z “22% [R/14_1 with respect to monomial bases in
reviex order is Z(Ty4(1)).

o dimk[R/(l,x + y + 2)]g—1 = dimg (ker N(Ty(1))7).




Relation to WLP

I ¢ R = K|x,y, z] artinian monomial ideal.

If K is infinite, then R// has the WLP iff multiplications by
£ = X + y + z have maximal rank.

@ fForeach d > 1, the coordinate matrix of
[R/Ng—z “22% [R/14_1 with respect to monomial bases in
reviex order is Z(Ty4(1)).

@ dimk[R/(I,x +y + 2)]d—1 = dimk(ker N(Tg(1)T).

Corollary

Assume T = Ty(/) is balanced and the socle elements of R//
have degrees > d — 1. TFAE:

@ A/l has the WLP.
@ detZ(T4(/)) mod (char K) # 0.
@ det N(Ty(/)) mod (char K) # 0.




Type two algebras

Proposition

If R/l has type two, then I has one of the following two forms:
(i) I=(x2,yP, z° x*yP),

(i) 1= (x3yb z¢ x2yP x227),

where0<a<a 0<fB8<band0 <~ <c.

Ta(x®,y°, 2¢, 2%yP) Ty(a®,yP, 2, 2%y a*27)



Type two algebras
Assume char K = 0.

Theorem

If R/l has type two, then R/ fails to have the WLP if and only if

I = (x2 yP, z¢, x*yP x*z7) and there exists an integer d such
that

a
max{a,a+ﬁ,a+%+agﬁ+v} <d

. b+c
<m|n{a+ﬁ+fy,a+2+,b+c,a+c,a+b}.

<




Type two algebras
Assume char K = 0.

Theorem

If R/l has type two, then R/ fails to have the WLP if and only if

I = (x2 yP, z¢, x*yP x*z7) and there exists an integer d such
that

a
max{a,a+ﬁ,a+7,+a26+7} <d

: b+c
<m|n{a+ﬁ+fy,a+2+,b+c,a+c,a+b}.

<

Corollary (BMMNZ, 2012)
If R/I has type two and is level, then R/I has the WLP.

New proof: R/lis level ifand onlyifa—a =b— 3+ c—~. Then

2 .
a+azﬁ+7 _ a+2b+c > o+ min{b.c}.




Proof of the Theorem (sketch)

Decompose Ty4(/):

Ta(z,y, 2¢, a2yl 227)

T = Ty(a®,y, )



Proof (sketch)
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Proof (sketch)

Cases 1-7:




Proof (sketch)

Cases 1-7:




Proof (sketch)

Case 8:
T = (2°,y°, 2°)
47 =19
4N =921
S VAVAVAVAY N
/NN NN N NN/ T! = (23,98, 2°)
4y =22
4N =21




Proof (sketch)

Case 8:
T = (2°,y°, 2°)
47 =19
N
S VAVAVAVAY N
/NN NN N NN/ T! = (23,98, 2°)
4y =22
4N =21




Proof (sketch)
Case 8:




Proof (sketch)

Case 9:
Tv — (x4,y4,z5)
#v =14
SN =13
. AVAVAY S
/NN NN NN/ Tt = (23,9, 2°)
H#y =24
HN = 25



Laplace equations

X c PN = P n-dim proj. variety, K = K,charK = 0
P € X a smooth point, ¢ a local parametrization around P

T,(,S)X = IP(span of partial derivatives of ¢ of order at most s)
s-th osculating space to X at P
Expected dimension is ("5°%) — 1.



Laplace equations

X c PN = P n-dim proj. variety, K = K,charK = 0
P € X a smooth point, ¢ a local parametrization around P

T,(,S)X = IP(span of partial derivatives of ¢ of order at most s)
s-th osculating space to X at P
Expected dimension is ("5°%) — 1.

Definition

X is said to satisfy § Laplace equations of order s if, for a
general point P of X,

dim TS X = <”:s> 14,

Interesting only if N > ("£%) — 1.

Togliatti, 1929, 1946

Perkinson, 2000

Mezzetti, Mir6-Roig, Ottaviani, 2012
Di Genaro, llardi, Vallés, 2012



Laplace equations

I=(fi,....,f) C S=K][xo,...,Xn], where deg f; = d
¢ : P" --» P'~ 1 induced rational map with image X, ;,
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I=(fi,....,f) C S=K][xo,...,Xn], where deg f; = d
¢ : P" --» P'~ 1 induced rational map with image X, ;,

Example (Togliatti)

Letn=2, J=(x2y,x?z,xy? xz2,y?z,yz?). Then Xo, CP°isa
toric surface satisfying one Laplace equation of order 2.
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I=(fi,....,f) C S=K][xo,...,Xn], where deg f; = d
¢ : P" --» P'~ 1 induced rational map with image X, ;,

Example (Togliatti)

Letn=2, J=(x2y,x?z,xy? xz2,y?z,yz?). Then Xo, CP°isa
toric surface satisfying one Laplace equation of order 2.

I=1 inverse system of /
o1 P -—s P("»)="~" induced rational map with image X, -1,



Laplace equations

I=(fi,....,f) C S=K][xo,...,Xn], where deg f; = d
¢ : P" --» P'~ 1 induced rational map with image X, ;,

Example (Togliatti)

Letn=2, J=(x2y,x?z,xy? xz2,y?z,yz?). Then Xo, CP°isa
toric surface satisfying one Laplace equation of order 2.

I=1 inverse system of /
o1 P -—s P("»)="~" induced rational map with image X, -1,

(i) If I ¢ S'is an artinian monomial ideal, then /=" is generated by
monomials in S\ /.

(ii) dimK[I_1]d = dImK[S//]d

(iii) If 1 = (x3, 3, 2%, xyz), then I-1 = J.




Laplace equations

Mezzetti, Mir6-Roig, Ottaviani, 2012: connection to WLP

I ¢ S artinian ideal with r < (”J,;d) minimal generators of degree d,
¢ € [S]y general. TFAE:

(a) Multiplication map [S/1|4—1 N [S/1g has a §-dim kernel.

(b) X1y, = ¢i-1(P") satisfies § Laplace equations of order d — 1.

If 6 > 0, then /is said to define a Togliatti system.



Laplace equations

Mezzetti, Mir6-Roig, Ottaviani, 2012: connection to WLP

I ¢ S artinian ideal with r < (”J,;d) minimal generators of degree d,
¢ € [S]y general. TFAE:

(a) Multiplication map [S/1|4-1 N [S/1g has a §-dim kernel.
(b) Xn 11, = -1 (P") satisfies 6 Laplace equations of order d — 1.

If 6 > 0, then /is said to define a Togliatti system.
Assume n=2, | C R = K]x, y,z] monomial.

Example

Togliatti systems with few generators:
(i) (Franco, llardi, 2002; Valles, 2006) 4 generators:
I=(x3,y% 23, xyz).
(i) 5 generators: | = (x*, y*, z* x?yz, y?z?) or
I=(xy9, 29 x7 "y, x9"2).




Laplace equations

Proposition

Let U C Ty.1(/) be a tileable monomial subregion such that
det Z(U) # 0. Let J be a monomial ideal such that
TAU=Tg1(J).

Then [R/flq—1 227 [R/N)g and [R/J]q—_1 227 [R/J] fail to
have maximal rank by the same margin.




Laplace equations

Proposition

Let U C Ty.1(/) be a tileable monomial subregion such that
det Z(U) # 0. Let J be a monomial ideal such that
TAU=Tg1(J).

Then [R/flq—1 227 [R/N)g and [R/J]q—_1 227 [R/J] fail to
have maximal rank by the same margin.

Example
Togliatti systems obtained from Tg(x°, y°, z°, xyz).

fon A

252 2,52 42,2
(X57y57257Xy237xyszaxsyz) (Xsﬁy5725axy Z5,X°yze, X7y Z)




Laplace equations

Proposition

Assume, [R//]4-1 gray —" [R/I]4 is not injective although it is expected
(dimk[R/Ng—1 < dimk[R/l]lg), T = T4.1(/) has no overlapping
punctures, and x9, y9, z9 ¢ |.

For each puncture, in each row fill in all triangles, but one A-triangle.
Call the result T’, and let J be the smallest ideal such that

T' = T411(J). Then J defines a Togliatti system.




Laplace equations

. . . d—1
Letj be an integer such that1 < j < %= and

/j = (.yd) + Z4j+1 (y7 Z)d_1_4j + (Xsaysa Zs,XyZ) : Xd+1_4j : (X47.y4)j_1'

Then:

(@) [R/ k-1 Ay [R/ Ik has maximal rank for all k # d.
(b) Zyt1(l) is balanced.

(€) Xay -4 satisfies exactly j Laplace equations of order d — 1.




Laplace equations

T14(k2)
A




