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Lefschetz Properties

R = K [x1, . . . , xn], K an infinite field
I ⊂ R homogeneous, artinian ideal (dimK R/I <∞)

Definition
A = R/I has the Weak Lefschetz Property (WLP) if there is a
linear form ` ∈ R such that the multiplication

×` : [A]i → [A]i+1
has maximal rank for all i (i.e. is injective or surjective).
A has the Strong Lefschetz Property (SLP) if

×`d : [A]i → [A]i+d
has maximal rank for all i and d .

Remark: (i) ` general.
(ii) WLP implies restrictions on Hilbert function

(g-Theorem (Stanley)).
(iii) WLP and SLP are related to Fröberg’s conjecture.
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Known results

Theorem
(Harima, Migliore, N., Watanabe, 2003) If n ≤ 2 and
char K = 0, then A has the SLP.
(Migliore, Zanello, 2007) If n ≤ 2, then A always has the
WLP.

Theorem (Stanley, 1980; ...)

If char K = 0, then each monomial c.i., I = (xa1
1 , . . . , xan

n ), has
the SLP.

Theorem (Harima, Migliore, N., Watanabe, 2003)

If n = 3, char K = 0, then every c.i. I = (f1, f2, f3) has the WLP.
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Monomial ideals in three variables

I ⊂ R = K [x , y , z] artinian monomial ideal.

Theorem (Boij, Migliore, Miró-Roig, N., Zanello, 2012)

If n = 3, char K = 0, and R/I is level of type 2, then R/I has the
WLP.

Counterexamples if R/I is not level or if char K > 0.

Example

If I = (x7, y7, z7, x2y2z2), then R/I has the WLP if and only
if the characteristic of K is not 2 or 7.
If I = (x20, y20, z20, x3y8z13), then R/I has the WLP if and
only if the characteristic of K is not 2, 3, 5, 7, 11, 17, 19,
23, or 20554657.
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Triangular regions

Triangular region Td : equilateral triangle of side length d ,
subdivided into equilateral unit triangles:(d

2

)
downward-pointing (5) - labeled by monom. in [R]d−2,

and(d+1
2

)
upward-pointing (4) - labeled by monom. in [R]d−1.

T2 T3 T4



Triangular regions

I ⊂ R any monomial ideal
d ≥ 1 any integer
triangular region Td(I): obtained from Td by removing triangles
with labels in I.

Example 1

I = (xy , y2, z3), d = 4.

T4 T4(xy , y2, z3)



Triangular regions

Example 2

I = (xaybzc).

Td(xaybzc)



Lozenge tilings

T ⊂ Td any subregion

Lozenge (diamond, callisson, rhombus):
glue an 5- and an 4-triangle along the common edge

Tile T by lozenges if possible

A tiling of T8(x7, y7, z6, xy4z2, x3yz2, x4yz)

Necessary tileability condition: balanced (#5 = #4)



Lozenge tilings

T ⊂ Td any subregion

Lozenge (diamond, callisson, rhombus):
glue an 5- and an 4-triangle along the common edge

Tile T by lozenges if possible

A tiling of T8(x7, y7, z6, xy4z2, x3yz2, x4yz)

Necessary tileability condition: balanced (#5 = #4)



Bipartite graphs and perfect matchings

T ⊂ Td any subregion

G(T ) bipartite graph:
B = set of centers of 5-triangles, ordered revlex by labels,
W = set of centers of 4-triangles, ordered revlex by labels

Vertices: B ∪W
Edges: (Bi ,Wj) if the corresponding triangles share an
edge

Bi-adjacency matrix Z (T ): zero-one matrix of size #B ×#W :

Z (T )(i,j) =

{
1 if (Bi ,Wj) is an edge
0 otherwise



Bipartite graphs and perfect matchings

Assume T is balanced (#B = #W ):

Perfect matching of G(T ): a set of pairwise non-adjacent edges
of G(T ) such that each vertex is matched

xy1− 1

lozenge tiling of T

The graph G(T ) A perfect matching
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Bipartite graphs and perfect matchings

Proposition
If T is balanced, then

#lozenge tilings of T = #perfect matchings = perm Z (T ).

Definition
A lozenge tiling τ of T induces a bijection B →W , Bi 7→Wσ(i),
where σ ∈ S#B. The perfect matching sign of τ is

msgn τ := sgnσ.

Corollary ∑
τ tiling of T

msgn τ := det Z (T ).
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Bipartite graphs and perfect matchings

Example

Consider T = T6(x3, y4, z5).

Z (T ) =



1 1 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0
0 1 0 0 1 1 0 0 0 0 0
0 0 1 0 0 1 1 0 0 0 0
0 0 0 1 0 0 1 1 0 0 0
0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 0 1 1 0
0 0 0 0 0 0 1 0 0 1 1
0 0 0 0 0 0 0 1 0 0 1


.

perm Z (T ) = det Z (T ) = 10.



Lattice paths
T ⊂ Td any subregion
L(T ): set of midpoints of NE edges of triangles in T

Label the vertices of L(T ) that are only on 4-triangles by
A1, . . . ,Am according to the revlex order of the monomials,
beginning with the smallest.
Label the vertices of L(T ) are only on 5-triangles by
E1, . . . ,En according to the revlex order of the monomials,
beginning with the smallest.

A lattice path from Ai to Ej is a path in L(T ) where each single
move is to the East (→) or to the South-East (↘).
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Lattice paths

Lattice path matrix N(T ): size m × n

N(T )(i,j) = #lattice paths in Z2 from Ai to Ej .

Assume T is balanced (m = n):
family of non-intersecting lattice paths in L(T ) (from A1, . . . ,Am

to E1, . . . ,Em) 1−1←→ lozenge tiling τ of T
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Definition
The lattice path sign of a lozenge tiling τ of T is

lpsgn τ := sgnσ,

where σ ∈ Sm is the permutation such that, for all i , the path
starting in Ai ends in Eσ(i).

Theorem (Lindström, Gessel &Viennot)

If T is balanced, then
∑

τ tiling of T

lpsgn τ := det N(T ).
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Lattice paths

Example

T = T6(x3, y4, z5) and its rotations.



Comparisons

T = Td(I) ⊂ Td

τ lozenge tiling of T :
perfect matching sign msgn τ - enumerated by det Z (T )

lattice path sign lpsgn τ - enumerated by det N(T )

Theorem
(a) Let τ and τ ′ be two lozenge tilings of T . Then

msgn(τ) · lpsgn(τ) = msgn(τ ′) · lpsgn(τ ′).

(b)
|det Z (T )| = |det N(T )|.

Corollary
If T is tileable and simply connected, then

|det Z (T )| = perm Z (T ) > 0.



Comparisons

T = Td(I) ⊂ Td

τ lozenge tiling of T :
perfect matching sign msgn τ - enumerated by det Z (T )

lattice path sign lpsgn τ - enumerated by det N(T )

Theorem
(a) Let τ and τ ′ be two lozenge tilings of T . Then

msgn(τ) · lpsgn(τ) = msgn(τ ′) · lpsgn(τ ′).

(b)
|det Z (T )| = |det N(T )|.

Corollary
If T is tileable and simply connected, then

|det Z (T )| = perm Z (T ) > 0.



Comparisons

T = Td(I) ⊂ Td

τ lozenge tiling of T :
perfect matching sign msgn τ - enumerated by det Z (T )

lattice path sign lpsgn τ - enumerated by det N(T )

Theorem
(a) Let τ and τ ′ be two lozenge tilings of T . Then

msgn(τ) · lpsgn(τ) = msgn(τ ′) · lpsgn(τ ′).

(b)
|det Z (T )| = |det N(T )|.

Corollary
If T is tileable and simply connected, then

|det Z (T )| = perm Z (T ) > 0.



Comparisons

Example

T = T6(x3, y4, z5).

Then
10 = |det N(T )| = |det Z (T )| = perm(T ).



Mahonian determinants

3 3 2 2 2 1
3 2 2 1 0 0

A 2× 6× 3 plane partition. The associated lozenge tiling.

Theorem (MacMahon)
The number of plane partitions in an a× b × c box is

Mac(a,b, c) :=
H(a)H(b)H(c)H(a + b + c)
H(a + b)H(a + c)H(b + c)

,

where H(n) :=
∏n−1

i=0 i! is the hyperfactorial of n.



Mahonian determinants

Proposition

If T = Td(xa, yb, zc) is balanced, that is, d = 1
2(a + b + c) is an

integer, then

|det Z (T )| = perm Z (T ) = Mac(d − a,d − b,d − c).

Proposition

If T = Td(xa+α, yb, zc , xayβ, xazγ) is balanced, then

|det Z (T )| = perm Z (T )

= Mac(d−a,d−b,d−c)Mac(d−a−α,d−a−β,d−a−γ).
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Mahonian determinants

Proposition

If T = Td(xa, yb, zc , xαyβ) is balanced (as below), then
|det Z (T )| = perm Z (T ) is

Mac(a+β−d ,d−a,d−(α+β))Mac(α+b−d ,d−b,d−(α+β))

×H(d−a+d−(α+β))H(d−b+d−(α+β))H(d−c+d−(α+β))H(d)
H(a)H(b)H(c)H(d−(α+β))

.



Relation to WLP

I ⊂ R = K [x , y , z] artinian monomial ideal.

If K is infinite, then R/I has the WLP iff multiplications by
` = x + y + z have maximal rank.

Theorem
For each d ≥ 1, the coordinate matrix of
[R/I]d−2

x+y+z−→ [R/I]d−1 with respect to monomial bases in
revlex order is Z (Td(I)).
dimK [R/(I, x + y + z)]d−1 = dimK (ker N(Td(I))T ).

Corollary

Assume T = Td(I) is balanced and the socle elements of R/I
have degrees ≥ d − 1. TFAE:

R/I has the WLP.
det Z (Td(I)) mod (char K ) 6= 0.
det N(Td(I)) mod (char K ) 6= 0.
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Type two algebras

Proposition

If R/I has type two, then I has one of the following two forms:
(i) I = (xa, yb, zc , xαyβ),
(ii) I = (xa, yb, zc , xαyβ, xαzγ),

where 0 < α < a, 0 < β < b, and 0 < γ < c.



Type two algebras
Assume char K = 0.

Theorem
If R/I has type two, then R/I fails to have the WLP if and only if
I = (xa, yb, zc , xαyβ, xαzγ) and there exists an integer d such
that

max
{

a, α+ β, α+ γ,
a + α+ β + γ

2

}
< d

< min
{

a + β + γ,
α+ b + c

2
,b + c, α+ c, α+ b

}
.

Corollary (BMMNZ, 2012)

If R/I has type two and is level, then R/I has the WLP.

New proof: R/I is level if and only if a−α = b− β+ c− γ. Then

a + α+ β + γ

2
=

2α+ b + c
2

≥ α+ min{b, c}.



Type two algebras
Assume char K = 0.

Theorem
If R/I has type two, then R/I fails to have the WLP if and only if
I = (xa, yb, zc , xαyβ, xαzγ) and there exists an integer d such
that

max
{

a, α+ β, α+ γ,
a + α+ β + γ

2

}
< d

< min
{

a + β + γ,
α+ b + c

2
,b + c, α+ c, α+ b

}
.

Corollary (BMMNZ, 2012)

If R/I has type two and is level, then R/I has the WLP.

New proof: R/I is level if and only if a−α = b− β+ c− γ. Then

a + α+ β + γ

2
=

2α+ b + c
2

≥ α+ min{b, c}.



Proof of the Theorem (sketch)

Decompose Td(I):



Proof (sketch)

1 2 9

3 4 5

8 6 7



Proof (sketch)

Cases 1 – 7:
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Cases 1 – 7:
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Case 8:
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Case 8:
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Case 8:



Proof (sketch)

Case 9:



Laplace equations

X ⊂ PN = PN
K n-dim proj. variety, K = K , char K = 0

P ∈ X a smooth point, ϕ a local parametrization around P
T (s)

P X = P(span of partial derivatives of ϕ of order at most s)
s-th osculating space to X at P

Expected dimension is
(n+s

s

)
− 1.

Definition
X is said to satisfy δ Laplace equations of order s if, for a
general point P of X ,

dim T (s)
P X =

(
n + s

s

)
− 1− δ.

Interesting only if N ≥
(n+s

s

)
− 1.

Togliatti, 1929, 1946
Perkinson, 2000
Mezzetti, Miró-Roig, Ottaviani, 2012
Di Genaro, Ilardi, Vallès, 2012
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Laplace equations

I = (f1, . . . , fr ) ⊂ S = K [x0, . . . , xn], where deg fi = d
ϕI : Pn 99K Pr−1 induced rational map with image Xn,[I]d

Example (Togliatti)

Let n = 2, J = (x2y , x2z, xy2, xz2, y2z, yz2). Then X2,[J]3 ⊂ P5 is a
toric surface satisfying one Laplace equation of order 2.

I−1 inverse system of I

ϕI−1 : Pn 99K P(
n+d

n )−r−1 induced rational map with image Xn,[I−1]d

Remark

(i) If I ⊂ S is an artinian monomial ideal, then I−1 is generated by
monomials in S \ I.
(ii) dimK [I−1]d = dimK [S/I]d .
(iii) If I = (x3, y3, z3, xyz), then I−1 = J.
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Theorem

I ⊂ S artinian ideal with r ≤
(n+d

n

)
minimal generators of degree d,

` ∈ [S]1 general. TFAE:

(a) Multiplication map [S/I]d−1
`−→ [S/I]d has a δ-dim kernel.

(b) Xn,[I−1]d
= ϕI−1(Pn) satisfies δ Laplace equations of order d − 1.

If δ > 0, then I is said to define a Togliatti system.

Assume n = 2, I ⊂ R = K [x , y , z] monomial.

Example
Togliatti systems with few generators:

(i) (Franco, Ilardi, 2002; Vallès, 2006) 4 generators:
I = (x3, y3, z3, xyz).

(ii) 5 generators: I = (x4, y4, z4, x2yz, y2z2) or
I = (xd , yd , zd , xd−1y , xd−1z).



Laplace equations
Mezzetti, Miró-Roig, Ottaviani, 2012: connection to WLP

Theorem

I ⊂ S artinian ideal with r ≤
(n+d

n

)
minimal generators of degree d,

` ∈ [S]1 general. TFAE:

(a) Multiplication map [S/I]d−1
`−→ [S/I]d has a δ-dim kernel.

(b) Xn,[I−1]d
= ϕI−1(Pn) satisfies δ Laplace equations of order d − 1.

If δ > 0, then I is said to define a Togliatti system.

Assume n = 2, I ⊂ R = K [x , y , z] monomial.

Example
Togliatti systems with few generators:

(i) (Franco, Ilardi, 2002; Vallès, 2006) 4 generators:
I = (x3, y3, z3, xyz).

(ii) 5 generators: I = (x4, y4, z4, x2yz, y2z2) or
I = (xd , yd , zd , xd−1y , xd−1z).



Laplace equations

Proposition

Let U ⊂ Td+1(I) be a tileable monomial subregion such that
det Z (U) 6= 0. Let J be a monomial ideal such that
T \ U = Td+1(J).
Then [R/I]d−1

x+y+z−→ [R/I]d and [R/J]d−1
x+y+z−→ [R/J]d fail to

have maximal rank by the same margin.

Example

Togliatti systems obtained from T6(x5, y5, z5, xyz).

(x5, y5, z5, xyz3, xy3z, x3yz) (x5, y5, z5, xy2z2, x2yz2, x2y2z)
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Proposition

Assume, [R/I]d−1
x+y+z−→ [R/I]d is not injective although it is expected

(dimK [R/I]d−1 ≤ dimK [R/I]d ), T = Td+1(I) has no overlapping
punctures, and xd , yd , zd ∈ I.
For each puncture, in each row fill in all triangles, but one 4-triangle.
Call the result T ′, and let J be the smallest ideal such that
T ′ = Td+1(J). Then J defines a Togliatti system.
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Theorem

Let j be an integer such that 1 ≤ j ≤ d−1
4 and

Ij = (yd) + z4j+1(y , z)d−1−4j + (x3, y3, z3, xyz) · xd+1−4j · (x4, y4)j−1.

Then:
(a) [R/Ij ]k−1

x+y+z−→ [R/I]k has maximal rank for all k 6= d.
(b) Zd+1(Ij) is balanced.
(c) Xn,[(Ij )−1]d

satisfies exactly j Laplace equations of order d − 1.
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Example

T14(I2)


