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Motivations to study derived categories

X � algebraic variety (smooth, complete, over C)

The category of coherent sheaves

is abelian

Theorem (Gabriel)

Two noetherian schemes have equivalent categories of coherent sheaves if

and only if they are isomorphic.

but... many functors are not exact.

Mateusz Michaªek Derived categories of toric varieties



Derived categories
Derived categories of toric varieties

Motivations
De�nition
Exceptional collections

Motivations to study derived categories

X � algebraic variety (smooth, complete, over C)
The category of coherent sheaves

is abelian

Theorem (Gabriel)

Two noetherian schemes have equivalent categories of coherent sheaves if

and only if they are isomorphic.

but... many functors are not exact.

Mateusz Michaªek Derived categories of toric varieties



Derived categories
Derived categories of toric varieties

Motivations
De�nition
Exceptional collections

Motivations to study derived categories

X � algebraic variety (smooth, complete, over C)
The category of coherent sheaves

is abelian

Theorem (Gabriel)

Two noetherian schemes have equivalent categories of coherent sheaves if

and only if they are isomorphic.

but... many functors are not exact.

Mateusz Michaªek Derived categories of toric varieties



Derived categories
Derived categories of toric varieties

Motivations
De�nition
Exceptional collections

Motivations to study derived categories

X � algebraic variety (smooth, complete, over C)
The category of coherent sheaves

is abelian

Theorem (Gabriel)

Two noetherian schemes have equivalent categories of coherent sheaves if

and only if they are isomorphic.

but... many functors are not exact.

Mateusz Michaªek Derived categories of toric varieties



Derived categories
Derived categories of toric varieties

Motivations
De�nition
Exceptional collections

Motivations to study derived categories

X � algebraic variety (smooth, complete, over C)
The category of coherent sheaves

is abelian

Theorem (Gabriel)

Two noetherian schemes have equivalent categories of coherent sheaves if

and only if they are isomorphic.

but...

many functors are not exact.

Mateusz Michaªek Derived categories of toric varieties



Derived categories
Derived categories of toric varieties

Motivations
De�nition
Exceptional collections

Motivations to study derived categories

X � algebraic variety (smooth, complete, over C)
The category of coherent sheaves

is abelian

Theorem (Gabriel)

Two noetherian schemes have equivalent categories of coherent sheaves if

and only if they are isomorphic.

but... many functors are not exact.

Mateusz Michaªek Derived categories of toric varieties



Derived categories
Derived categories of toric varieties

Motivations
De�nition
Exceptional collections

Cohomology

One should consider sheaf cohomology.

Replace the object by objects that behave better with respect to the

functor

An object I is called injective i� the functor Hom(·, I) is exact
Left exact functors preserve exactness of sequences of injective objects

Replace the object by an injective resolution

0→ P → I1 → I2 → . . .0→ I1 → I2 → . . .

The resolution may be not bounded and the objects may be not

coherent

After applying the functor we obtain a complex. From algebraic topology

we know that the information about cohomologies may be not su�cient.

There exist topological spaces with isomorphic homology groups, but not

homotopy equivalent.
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Objects

The bounded derived category of coherent sheaves

Objects:

Bounded complexes of coherent sheaves

Complexes of quasicoherent sheaves with bounded, coherent

cohomology

We may identify coherent sheaves with complexes (with cohomology)

concentrated in degree 0.

· · · → 0→ P → 0→ . . .
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Morphisms

Morphisms of complexes:

Consider a graded morphism (fi) of degree n of complexes Ai and Bi

(squares do not have to commute):

// A0
d0 //

f0
��

A1
//

f1
��

// Bn
∂n // Bn+1

//

The square commutes i� f1d0 − f0∂n = 0. In general, we obtain:

→Mor−1 →Mor0 →Mor1 → . . .

We consider the degree zero cohomology of the above complex. These are

those degree zero morphisms of complexes that commute with di�erentials

and are regarded up to homotopy. We obtain the homotopy category.
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Morphisms

Recall that our original idea was to replace an object by a resolution.

In particular we would want

. . . // 0 //

��

P //

��

0 //

��

. . .

. . . // 0 // I1 // I2 // . . .

to be an isomorphism.

De�nition

A morphism of complexes is called a quasi-isomorphism if it induces an

isomorphism of cohomologies.

As homotopy equivalent morphisms de�ne the same morphism on the level of

cohomologies the notion of quasi-isomorphism makes sense in the homotopy

category.
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Morphisms

The idea to de�ne morphisms in the derived category is to add formal

inverses in the homotopy category.

What does this mean? How do I

compose the morphisms? Is this a category?

How do we teach our children/students to invert numbers?
Each rational number is a (class of) pair of two integers (a, b) what we
represent as a

b = b−1a. The number b must be di�erent from 0.
Each morphism in the derived category is a (class of) pair of morphisms

(f, g) what we represent as g−1f . The morphism g must be a

quasi-isomorphism. More formally a morphism from an object A to B is a

(class of) pair of morphisms as in the diagram (roof):

C
g

{�

f

  
A B

where C is any object and g is a quasi-isomorphism.
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Morphisms

Identi�cations:

Not all pairs of numbers de�ne di�erent rational numbers

1

2
=

2

4

Two roofs de�ne the same morphism if they can be dominated by a

common roof:

E

{�   
C

�� ''

D

s{ ��
A B
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Morphisms

How do we compose morphisms? How do we multiply numbers?

(
2

3
)(
5

7
) = (3 · 7)−1(2 · 5)

For any two roofs:

F

{�   

G

z� ��
A B C

For any two roofs, there exists a dominating roof:

H

z�   
F

{�   

G

z� ��
A B C

in the homotopy category!
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General remarks on the derived category

There is a general way to localize a category with respect to a class of

morphisms. There are only three requirements:

The class has to closed under composition;

fg−1 = r−1s;

sf = sg for some s i� ft = gt for some t.

If you do not like roofs, fractions etc.: HomDer(A,B) = HomH(A, I)
The derived category is not abelian, but has a structure of a triangulated

category.

All the constructions applied not only to the category of sheaves, but to

arbitrary abelian category.

As before we can identify objects of the abelian category with complexes

(with cohomology) concentrated in degree 0.
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Derived category of a point

Coherent sheaves are �nite dimensional vector spaces

Every short exact sequence splits

Every object of the derived category is quasi-isomorphic to its

cohomology complex, with trivial di�erentials

The derived category is very simple: we can consider only complexes with

trivial di�erentials.

We can see that there is an exceptional object E in this category: the one

dimensional vector space in degree 0. All other objects can be obtained by

shifts and sums.

Note that Hom(E,E) = C and Hom(E,E[k]) = 0, where [·] is the shift

and k 6= 0.
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Derived category of an algebraic variety

In general exceptional objects

Hom(E,E) = C Hom(E,E[k]) = 0 k 6= 0

are very helpful for understanding the structure of the derived category. If

we can �nd an exceptional object then it generates a subcategory

equivalent to Db(pt).

If we can �nd su�ciently many of them (with additional conditions on

orthogonality) we have a much better understanding of the derived

category.
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Exceptional collections

De�nition

A sequence of exceptional objects (E1, . . . , En) is called an exceptional

collection if HomD(Ei, Ej [k]) = 0 for i > j. It is called strong if

HomD(Ei, Ej [k]) = 0 always when k 6= 0. It is called full if it generates the

derived category.

Do full (strong) exceptional collections exist? If yes, what are the objects

Ei?

In general full exceptional collections do not have to exist.

For a given variety these questions are hard to answer. It is an interesting

problem to try to answer them for...
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Our beloved toric varieties

Do full (strong) exceptional collections (of line bundles) exist on

smooth, complete (Fano) toric varieties?

The strongest version was due to King.

The �rst counterexample (of a surface) was given by Hille and
Perling.
Now much more counterexamples are known - e.g.

Theorem (-)

Pn blown up in two points for n large enough does not admit a full strongly

exceptional collection of line bundles.

The case of surfaces is well-understood due to Hille and Perling.

Theorem (E�mov)

There exist smooth, toric Fano varieties with no full exceptional collections

of line bundles.
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Why line bundles?

Why?

Line bundles are easy to describe. There are more general results due

to Klyachko, but are technically more di�cult.

Calculating cohomologies is very easy.

Borisov, Horja: Every object of the derived category is isomorphic to a

complex of sums of line bundles.

Why not?

By E�mov's result it is not enough to consider collections of line bundles.
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How to attack these problems

Orthogonality

For two coherent sheaves A and B we have

HomDer(A,B[i]) = Exti(A,B).

Generation

If all elements, but one of an exact sequence are generated, then we

can generate also the missing one. For toric varieties it is enough to

generate line bundles.
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Beilinson's theorem

Theorem (Beilinson)

The sequence (O(a),O(a+ 1), . . . ,O(a+ n)) is a full strong exceptional

collection on Pn for any integer a.

Proof.

HomD(O(i),O(j)[k]) = Extk(O(i),O(j)) = Hk(O(j − i))

= 0, unless k = 0 or k = n.
If −n ≤ j − i < 0, then Hk(O(j − i)) = 0. This proves that the collection

is exceptional.

Moreover for i < j we have Hn(O(j − i)) = 0, thus the collection is

strong.
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Beilinson's theorem continued

Proof.

Consider the Koszul exact sequence:

0→ O(−
∑

Di)→ · · · → ⊕O(−Di −Dj)→ ⊕n+1
i=1 O(−Di)→ O → 0.

Tensor by O(a+ n+1), generating O(a+ n+1). Analogously we generate

all other line bundles.

Theorem (Bondal, Costa, E�mov, Hille, Laso«, Miró-Roig, Perling, -)

For many smooth complete toric varieties there exist full strongly

exceptional collections of line bundles.
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Positive results

Theorem (Kawamata)

For any smooth, complete toric variety there exists a full, exceptional

collection.

Conjecture

Does a smooth, complete toric variety admit a full, strong exceptional

collection?
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Two important facts

Fact 1:'Before Serre, just a few maestri who had spent all their lives

contemplating the intricacies of the black arts could say when some

restriction map was surjective, and all you could do was to believe them;

after Serre, any idiot could write down exact sequences and deduce any

number of such'

O. Zariski

Fact 2: Christmas is coming

'Before <your name>, just a few maestri could describe derived

categories of some algebraic varieties, and all you could do was to believe

them; after <your name>, any idiot can deduce any number of such'

M. Michalek
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