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Outline

0 Derived categories
@ Motivations
@ Definition
@ Exceptional collections

e Derived categories of toric varieties
@ General results
@ Example of the projective space
@ Further results
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Motivations
Definition
Exceptional collections

Derived categories

Motivations to study derived categories

X — algebraic variety (smooth, complete, over C)
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Motivations to study derived categories

X — algebraic variety (smooth, complete, over C)
The category of coherent sheaves

@ is abelian
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Motivations
Definition
Exceptional collections

Derived categories

Motivations to study derived categories

X — algebraic variety (smooth, complete, over C)
The category of coherent sheaves

@ is abelian

Theorem (Gabriel)

Two noetherian schemes have equivalent categories of coherent sheaves if
and only if they are isomorphic.

Mateusz Michatek Derived categories of toric varieties



Motivations
Definition
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Derived categories

Motivations to study derived categories

X — algebraic variety (smooth, complete, over C)
The category of coherent sheaves

@ is abelian

Theorem (Gabriel)

Two noetherian schemes have equivalent categories of coherent sheaves if
and only if they are isomorphic.

but...
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Motivations
Definition
Exceptional collections

Derived categories

Motivations to study derived categories

X — algebraic variety (smooth, complete, over C)
The category of coherent sheaves

@ is abelian

Theorem (Gabriel)

Two noetherian schemes have equivalent categories of coherent sheaves if
and only if they are isomorphic.

but... many functors are not exact.
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Derived categories Definition

Exceptional collections

Cohomology

One should consider sheaf cohomology.
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Motivations
Definition
Exceptional collections

Derived categories

Cohomology

One should consider sheaf cohomology.

@ Replace the object by objects that behave better with respect to the
functor
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Derived categories

Cohomology

One should consider sheaf cohomology.

@ Replace the object by objects that behave better with respect to the
functor

@ An object I is called injective iff the functor Hom(-, I) is exact
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Motivations
Definition
Exceptional collections

Derived categories

Cohomology

One should consider sheaf cohomology.

@ Replace the object by objects that behave better with respect to the
functor

@ An object I is called injective iff the functor Hom(-, I) is exact

o Left exact functors preserve exactness of sequences of injective objects
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Motivations
Definition
Exceptional collections

Derived categories

Cohomology

One should consider sheaf cohomology.

@ Replace the object by objects that behave better with respect to the
functor

@ An object I is called injective iff the functor Hom(-, I) is exact
o Left exact functors preserve exactness of sequences of injective objects
@ Replace the object by an injective resolution

O—=P—->1H—>1),— ...
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Definition
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Derived categories

Cohomology

One should consider sheaf cohomology.

@ Replace the object by objects that behave better with respect to the
functor

@ An object I is called injective iff the functor Hom(-, I) is exact
o Left exact functors preserve exactness of sequences of injective objects
@ Replace the object by an injective resolution

0—->0L—>1,— ...
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Motivations
Definition
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Derived categories

Cohomology

One should consider sheaf cohomology.

@ Replace the object by objects that behave better with respect to the
functor

@ An object I is called injective iff the functor Hom(-, I) is exact
o Left exact functors preserve exactness of sequences of injective objects
@ Replace the object by an injective resolution

0—->0L—>1,— ...

@ The resolution may be not bounded and the objects may be not
coherent
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Derived categories

Cohomology

One should consider sheaf cohomology.

@ Replace the object by objects that behave better with respect to the
functor

@ An object I is called injective iff the functor Hom(-, I) is exact
o Left exact functors preserve exactness of sequences of injective objects
@ Replace the object by an injective resolution

0—->0L—>1,— ...

After applying the functor we obtain a complex. From algebraic topology
we know that the information about cohomologies may be not sufficient.
There exist topological spaces with isomorphic homology groups, but not
homotopy equivalent.
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Definition
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Derived categories

Objects

The bounded derived category of coherent sheaves
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Objects

The bounded derived category of coherent sheaves

Objects:
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Objects

The bounded derived category of coherent sheaves

Objects:
@ Bounded complexes of coherent sheaves
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Objects

The bounded derived category of coherent sheaves

Objects:
@ Bounded complexes of coherent sheaves

@ Complexes of quasicoherent sheaves with bounded, coherent
cohomology
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Definition
Exceptional collections

Derived categories

Objects

The bounded derived category of coherent sheaves

Objects:
@ Bounded complexes of coherent sheaves

@ Complexes of quasicoherent sheaves with bounded, coherent
cohomology

We may identify coherent sheaves with complexes (with cohomology)
concentrated in degree 0.

o =>0—=>P—=>0—...
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Derived categories

Morphisms

Morphisms of complexes:
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Derived categories

Morphisms

Morphisms of complexes:

Consider a graded morphism (f;) of degree n of complexes A; and B;
(squares do not have to commute):
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Motivations
Definition
Exceptional collections

Derived categories

Morphisms

Morphisms of complexes:
Consider a graded morphism (f;) of degree n of complexes A; and B;
(squares do not have to commute):

N

— B, —> Bpy1 —

The square commutes iff fidy — fo0n = 0.
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Derived categories

Morphisms

Morphisms of complexes:
Consider a graded morphism (f;) of degree n of complexes A; and B;
(squares do not have to commute):

N

— B, —> Bpy1 —

The square commutes iff fidy — fo0, = 0. In general, we obtain:

— Mor_1 — Morog — Mory — ...
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Definition
Exceptional collections

Derived categories

Morphisms

Morphisms of complexes:
Consider a graded morphism (f;) of degree n of complexes A; and B;
(squares do not have to commute):

Ag Ay
foJ/ f1J{
871/

The square commutes iff fidy — fo0, = 0. In general, we obtain:
— Mor_1 — Morog — Mory — ...

We consider the degree zero cohomology of the above complex. These are
those degree zero morphisms of complexes that commute with differentials
and are regarded up to homotopy.
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Derived categories

Morphisms

Morphisms of complexes:
Consider a graded morphism (f;) of degree n of complexes A; and B;
(squares do not have to commute):

The square commutes iff fidy — fo0, = 0. In general, we obtain:
— Mor_1 — Morog — Mory — ...

We consider the degree zero cohomology of the above complex. These are
those degree zero morphisms of complexes that commute with differentials
and are regarded up to homotopy. We obtain the homotopy category.



Motivations
Definition
Exceptional collections

Derived categories

Morphisms

Recall that our original idea was to replace an object by a resolution.
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Derived categories

Morphisms

Recall that our original idea was to replace an object by a resolution.
In particular we would want

P

L

O=<—O
O

to be an isomorphism.
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Derived categories

Morphisms

Recall that our original idea was to replace an object by a resolution.
In particular we would want

P

L

O

O=<=—-0O

to be an isomorphism.

Definition

A morphism of complexes is called a quasi-isomorphism if it induces an
isomorphism of cohomologies.

Mateusz Michatek Derived categories of toric varieties



Motivations
Definition
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Derived categories

Morphisms

Recall that our original idea was to replace an object by a resolution.
In particular we would want

P

L

O=<—O
O

to be an isomorphism.

Definition

A morphism of complexes is called a quasi-isomorphism if it induces an
isomorphism of cohomologies.

As homotopy equivalent morphisms define the same morphism on the level of
cohomologies the notion of quasi-isomorphism makes sense in the homotopy
category.
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Exceptional collections

Derived categories

Morphisms

The idea to define morphisms in the derived category is to add formal
inverses in the homotopy category.
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Derived categories

Morphisms

The idea to define morphisms in the derived category is to add formal
inverses in the homotopy category. What does this mean? How do |
compose the morphisms? Is this a category?
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The idea to define morphisms in the derived category is to add formal
inverses in the homotopy category. What does this mean? How do |
compose the morphisms? Is this a category?
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Motivations
Definition
Exceptional collections

Derived categories

Morphisms

The idea to define morphisms in the derived category is to add formal
inverses in the homotopy category. What does this mean? How do |
compose the morphisms? Is this a category?

How do we teach our children/students to invert numbers?
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Derived categories

Morphisms

The idea to define morphisms in the derived category is to add formal
inverses in the homotopy category. What does this mean? How do |
compose the morphisms? Is this a category?

How do we teach our children/students to invert numbers?

Each rational number is a (class of) pair of two integers (a,b) what we
represent as § = b~'a. The number b must be different from 0.
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Motivations
Definition
Exceptional collections

Derived categories

Morphisms

The idea to define morphisms in the derived category is to add formal
inverses in the homotopy category. What does this mean? How do |
compose the morphisms? Is this a category?

How do we teach our children/students to invert numbers?

Each rational number is a (class of) pair of two integers (a,b) what we
represent as § = b~'a. The number b must be different from 0.

Each morphism in the derived category is a (class of) pair of morphisms
(f,g) what we represent as g~ ' f. The morphism g must be a
quasi-isomorphism. More formally a morphism from an object A to B is a
(class of) pair of morphisms as in the diagram (roof):

A/CXB

where C' is any object and g is a quasi-isomorphism.
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Derived categories

Morphisms

Identifications:
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Exceptional collections

Derived categories

Morphisms

Identifications: Not all pairs of numbers define different rational numbers
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Derived categories

Morphisms

Identifications: Not all pairs of numbers define different rational numbers

Two roofs define the same morphism if they can be dominated by a

common roof:
/E
CXD
A B
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Derived categories it

Exceptional collections

Morphisms

How do we compose morphisms? How do we multiply numbers?
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Derived categories

Morphisms

How do we compose morphisms? How do we multiply numbers?

()2 =315
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Derived categories

Morphisms

How do we compose morphisms? How do we multiply numbers?

()2 =315

For any two roofs:

PAVAN
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Definition
Exceptional collections

Derived categories

Morphisms

How do we compose morphisms? How do we multiply numbers?

()2 =315

For any two roofs, there exists a dominating roof:

in the homotopy category!
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Definition
Exceptional collections

Derived categories

General remarks on the derived category

There is a general way to localize a category with respect to a class of
morphisms. There are only three requirements:
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Derived categories

General remarks on the derived category

There is a general way to localize a category with respect to a class of
morphisms. There are only three requirements:

@ The class has to closed under composition;
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Derived categories

General remarks on the derived category

There is a general way to localize a category with respect to a class of
morphisms. There are only three requirements:

@ The class has to closed under composition;

o fg~l=rls;
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Derived categories

General remarks on the derived category

There is a general way to localize a category with respect to a class of
morphisms. There are only three requirements:

@ The class has to closed under composition;

o fgl=rls
e sf = sg for some s iff ft = gt for some t.

Mateusz Michatek Derived categories of toric varieties
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Derived categories

General remarks on the derived category

There is a general way to localize a category with respect to a class of
morphisms. There are only three requirements:

@ The class has to closed under composition;
° fg_1 =rlg;
e sf = sg for some s iff ft = gt for some t.

If you do not like roofs, fractions etc.: Homp,, (A, B) = Hompg (A, I)
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Derived categories

General remarks on the derived category

There is a general way to localize a category with respect to a class of
morphisms. There are only three requirements:

@ The class has to closed under composition;
o fg~l=rls;
e sf = sg for some s iff ft = gt for some t.
If you do not like roofs, fractions etc.: Homp,, (A, B) = Hompg (A, I)

The derived category is not abelian, but has a structure of a triangulated
category.
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Derived categories

General remarks on the derived category

There is a general way to localize a category with respect to a class of
morphisms. There are only three requirements:

@ The class has to closed under composition;

o fg~t =rls;

e sf = sg for some s iff ft = gt for some t.
If you do not like roofs, fractions etc.: Homp,, (A, B) = Hompg (A, I)
The derived category is not abelian, but has a structure of a triangulated
category.
All the constructions applied not only to the category of sheaves, but to
arbitrary abelian category.
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Derived categories

General remarks on the derived category

There is a general way to localize a category with respect to a class of
morphisms. There are only three requirements:

@ The class has to closed under composition;

o fg~t =rls;

e sf = sg for some s iff ft = gt for some t.
If you do not like roofs, fractions etc.: Homp,, (A, B) = Hompg (A, I)
The derived category is not abelian, but has a structure of a triangulated
category.
All the constructions applied not only to the category of sheaves, but to
arbitrary abelian category.
As before we can identify objects of the abelian category with complexes
(with cohomology) concentrated in degree 0.
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Derived categories

Derived category of a point
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Derived categories

Derived category of a point

@ Coherent sheaves are finite dimensional vector spaces
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Derived categories

Derived category of a point

@ Coherent sheaves are finite dimensional vector spaces

@ Every short exact sequence splits
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Derived categories

Derived category of a point

@ Coherent sheaves are finite dimensional vector spaces
@ Every short exact sequence splits

@ Every object of the derived category is quasi-isomorphic to its
cohomology complex, with trivial differentials
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Derived categories

Derived category of a point

@ Coherent sheaves are finite dimensional vector spaces

@ Every short exact sequence splits

@ Every object of the derived category is quasi-isomorphic to its
cohomology complex, with trivial differentials

The derived category is very simple: we can consider only complexes with
trivial differentials.
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Derived categories

Derived category of a point

@ Coherent sheaves are finite dimensional vector spaces
@ Every short exact sequence splits

@ Every object of the derived category is quasi-isomorphic to its
cohomology complex, with trivial differentials

The derived category is very simple: we can consider only complexes with
trivial differentials.

We can see that there is an exceptional object E' in this category: the one
dimensional vector space in degree 0. All other objects can be obtained by
shifts and sums.

Note that Hom(F, E) = C and Hom(FE, E[k]) = 0, where [-] is the shift
and k # 0.
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Definition
Exceptional collections

Derived categories

Derived category of an algebraic variety

In general exceptional objects
Hom(E,E)=C Hom(E,Ek]) =0 k#0

are very helpful for understanding the structure of the derived category. If
we can find an exceptional object then it generates a subcategory
equivalent to D®(pt).
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Derived categories

Derived category of an algebraic variety

In general exceptional objects
Hom(E,E)=C Hom(E,Ek]) =0 k#0

are very helpful for understanding the structure of the derived category. If
we can find an exceptional object then it generates a subcategory
equivalent to D®(pt).

If we can find sufficiently many of them (with additional conditions on
orthogonality) we have a much better understanding of the derived
category.
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Derived categories

Exceptional collections

Definition

A sequence of exceptional objects (E1, ..., Ey) is called an exceptional
collection if Homp(E;, Ejk]) = 0 for i > j. It is called strong if

Homp (E;, Ej[k]) = 0 always when k # 0. It is called full if it generates the
derived category.
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Derived categories

Exceptional collections

Definition

A sequence of exceptional objects (E1, ..., Ey) is called an exceptional
collection if Homp(E;, Ejk]) = 0 for i > j. It is called strong if

Homp (E;, Ej[k]) = 0 always when k # 0. It is called full if it generates the
derived category.

Do full (strong) exceptional collections exist? If yes, what are the objects
E;?
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Derived categories

Exceptional collections

Definition
A sequence of exceptional objects (E1, ..., Ey) is called an exceptional
collection if Homp(E;, Ejk]) = 0 for i > j. It is called strong if

Homp (E;, Ej[k]) = 0 always when k # 0. It is called full if it generates the
derived category.

Do full (strong) exceptional collections exist? If yes, what are the objects
E;?
In general full exceptional collections do not have to exist.
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Derived categories

Exceptional collections

Definition

A sequence of exceptional objects (E1, ..., Ey) is called an exceptional
collection if Homp(E;, Ejk]) = 0 for i > j. It is called strong if

Homp (E;, Ej[k]) = 0 always when k # 0. It is called full if it generates the
derived category.

Do full (strong) exceptional collections exist? If yes, what are the objects
E;?

In general full exceptional collections do not have to exist.

For a given variety these questions are hard to answer. It is an interesting
problem to try to answer them for...

Mateusz Michatek Derived categories of toric varieties



General results
Example of the projective space

Derived categories of toric varieties
g Further results

Our beloved toric varieties

@ Do full (strong) exceptional collections (of line bundles) exist on
smooth, complete (Fano) toric varieties?
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General results
Example of the projective space

Derived categories of toric varieties
g Further results

Our beloved toric varieties

@ Do full (strong) exceptional collections (of line bundles) exist on
smooth, complete (Fano) toric varieties?

The strongest version was due to King.
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General results

Derived categories of toric varieties el off die preieive apree
Further results

Our beloved toric varieties

@ Do full (strong) exceptional collections (of line bundles) exist on
smooth, complete (Fano) toric varieties?

The strongest version was due to King.

The first counterexample (of a surface) was given by Hille and
Perling.
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General results

Derived categories of toric varieties el off die preieive apree
Further results

Our beloved toric varieties

@ Do full (strong) exceptional collections (of line bundles) exist on
smooth, complete (Fano) toric varieties?
The strongest version was due to King.
The first counterexample (of a surface) was given by Hille and
Perling.
Now much more counterexamples are known - e.g.

P™ blown up in two points for n large enough does not admit a full strongly
exceptional collection of line bundles.

The case of surfaces is well-understood due to Hille and Perling.
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General results
Example of the projective space

Derived categories of toric varieties
g Further results

Our beloved toric varieties

@ Do full (strong) exceptional collections (of line bundles) exist on
smooth, complete (Fano) toric varieties?

The strongest version was due to King.

The first counterexample (of a surface) was given by Hille and
Perling.

Now much more counterexamples are known - e.g.

P™ blown up in two points for n large enough does not admit a full strongly
exceptional collection of line bundles.

The case of surfaces is well-understood due to Hille and Perling.

Theorem (Efimov)

There exist smooth, toric Fano varieties with no full exceptional collections
of line bundles.
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General results
Example of the projective space

Derived categories of toric varieties
g Further results

Why line bundles?

Why?
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General results
Example of the projective space

Derived categories of toric varieties
g Further results

Why line bundles?

Why?
@ Line bundles are easy to describe. There are more general results due
to Klyachko, but are technically more difficult.
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General results
Example of the projective space

Derived categories of toric varieties
g Further results

Why line bundles?

Why?
@ Line bundles are easy to describe. There are more general results due
to Klyachko, but are technically more difficult.

o Calculating cohomologies is very easy.
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General results
Example of the projective space

Derived categories of toric varieties
g Further results

Why line bundles?

Why?
@ Line bundles are easy to describe. There are more general results due
to Klyachko, but are technically more difficult.

o Calculating cohomologies is very easy.

@ Borisov, Horja: Every object of the derived category is isomorphic to a
complex of sums of line bundles.
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General results
Example of the projective space

Derived categories of toric varieties
g Further results

Why line bundles?

Why?
@ Line bundles are easy to describe. There are more general results due
to Klyachko, but are technically more difficult.

o Calculating cohomologies is very easy.

@ Borisov, Horja: Every object of the derived category is isomorphic to a
complex of sums of line bundles.

Why not?
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General results
Example of the projective space

Derived categories of toric varieties
g Further results

Why line bundles?

Why?
@ Line bundles are easy to describe. There are more general results due
to Klyachko, but are technically more difficult.
o Calculating cohomologies is very easy.

@ Borisov, Horja: Every object of the derived category is isomorphic to a
complex of sums of line bundles.

Why not?
By Efimov’s result it is not enough to consider collections of line bundles.
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How to attack these problems
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How to attack these problems

@ Orthogonality
For two coherent sheaves A and B we have
Homp,, (4, Bli]) = Ext'(A, B).
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How to attack these problems

@ Orthogonality
For two coherent sheaves A and B we have
Homp,, (4, Bli]) = Ext'(A, B).

@ Generation
If all elements, but one of an exact sequence are generated, then we
can generate also the missing one. For toric varieties it is enough to
generate line bundles.

Mateusz Michatek Derived categories of toric varieties



General results

Derived categories of toric varieties Sz off e preieeie apaee
Further results

Beilinson’'s theorem

Theorem (Beilinson)

The sequence (O(a),O(a+1),...,0(a+n)) is a full strong exceptional
collection on P™ for any integer a.
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Further results

Beilinson’'s theorem

Theorem (Beilinson)

The sequence (O(a),O(a+1),...,0(a+n)) is a full strong exceptional
collection on P™ for any integer a.

Homp(0(i), O(j)[k]) = Ext*(0(i), O(j)) = H*(O(j — 1))
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Beilinson’'s theorem

Theorem (Beilinson)

The sequence (O(a),O(a+1),...,0(a+n)) is a full strong exceptional
collection on P™ for any integer a.

Proof.

Homp (O(i), O(j)[K]) = Ext*(0(i), O(j)) = H*(O(j — i)

=0, unless k=0 or k = n.
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Beilinson’'s theorem

Theorem (Beilinson)

The sequence (O(a),O(a+1),...,0(a+n)) is a full strong exceptional
collection on P™ for any integer a.

Proof.

Homp (O(i), O(j)[K]) = Ext*(0(i), O(j)) = H*(O(j — i)

=0, unless k =0 or k =n.
If —n <j —i <0, then H*(O(j — 1)) = 0. This proves that the collection
is exceptional.
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Beilinson’'s theorem

Theorem (Beilinson)

The sequence (O(a),O(a+1),...,0(a+n)) is a full strong exceptional
collection on P™ for any integer a.

Proof.

Homp (O(i), O(j)[K]) = Ext*(0(i), O(j)) = H*(O(j — i)

=0, unless k =0 or k =n.

If —n <j —i <0, then H*(O(j — 1)) = 0. This proves that the collection
is exceptional.

Moreover for i < j we have H"(O(j — 7)) = 0, thus the collection is
strong. L]
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Beilinson’'s theorem continued

Proof.
Consider the Koszul exact sequence:

0= O(=> D)= - = @O(-D; — D) = @ O(-=D;) - O - 0.

Tensor by O(a +n+ 1), generating O(a +n + 1). Analogously we generate
all other line bundles. O
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Beilinson’'s theorem continued

Proof.
Consider the Koszul exact sequence:

0= O(=> D)= - = @O(-D; — D) = @ O(-=D;) - O - 0.

Tensor by O(a +n+ 1), generating O(a +n + 1). Analogously we generate
all other line bundles. O

Theorem (Bondal, Costa, Efimov, Hille, Lason, Miré-Roig, Perling, -)

For many smooth complete toric varieties there exist full strongly
exceptional collections of line bundles.
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Positive results
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Positive results

Theorem (Kawamata)

For any smooth, complete toric variety there exists a full, exceptional
collection.
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Positive results

Theorem (Kawamata)

For any smooth, complete toric variety there exists a full, exceptional
collection.

Does a smooth, complete toric variety admit a full, strong exceptional
collection?
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Two important facts

Fact 1:'Before Serre, just a few maestri who had spent all their lives
contemplating the intricacies of the black arts could say when some
restriction map was surjective, and all you could do was to believe them;
after Serre, any idiot could write down exact sequences and deduce any
number of such’

O. Zariski
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Two important facts

Fact 1:'Before Serre, just a few maestri who had spent all their lives
contemplating the intricacies of the black arts could say when some
restriction map was surjective, and all you could do was to believe them;
after Serre, any idiot could write down exact sequences and deduce any
number of such’

O. Zariski

Fact 2: Christmas is coming
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Two important facts

'Before Serre, just a few maestri who had spent all their lives
contemplating the intricacies of the black arts could say when some
restriction map was surjective, and all you could do was to believe them;
after Serre, any idiot could write down exact sequences and deduce any
number of such’

O. Zariski

'Before <your name>, just a few maestri could describe derived
categories of some algebraic varieties, and all you could do was to believe

them; after <your name>, any idiot can deduce any number of such’
M. Michalek
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