17 Gauss Way	Berkeley, CA 94	720-5070 p	: 510.642.0143	f: 510.642.8	1609 www	v.msri.org	
	NOT	ETAKE	R CHECH	(LIST F	ORM		
		(Comple	te one for ea	ch talk.)			
Name: Eli:	zabeth E	àross i	Email/Phone:	egro	5570	uic.e	<u>edu</u>
peaker's Name	: Thoma	as XX	E Kak	1e			
alk Title:	the com	binat	orics	of	oinom	ial_	ideal
Date: <u>12 / (</u>	2/12	Time: 9	<u>:00</u> m/	pm (circle o	ne)		
ist 6-12 key wo <u>de compo</u> Monoids Please summariz	rds for the talk:	bino	mial.	ideals	, meso	prim	ang
le compo	sition,	primo	ry de	compo	sitin	<u>, co</u>	mmista
	monni	d como	ruences	, mon	omial	local	lizatio

Introduces mesoprimary accomposition for	
commutative monoid cononuences. Explains	
how the theory can be adapted for	
decomposing binomal ideals.	

CHECK LIST

(This is NOT optional, we will not pay for incomplete forms)

- □ Introduce yourself to the speaker prior to the talk. Tell them that you will be the note taker, and that you will need to make copies of their notes and materials, if any.
- Obtain ALL presentation materials from speaker. This can be done before the talk is to begin or after the talk; please make arrangements with the speaker as to when you can do this. You may scan and send materials as a .pdf to yourself using the scanner on the 3rd floor.
 - Computer Presentations: Obtain a copy of their presentation
 - **Overhead**: Obtain a copy or use the originals and scan them
 - <u>Blackboard</u>: Take blackboard notes in black or blue PEN. We will NOT accept notes in pencil or in colored ink other than black or blue.
 - Handouts: Obtain copies of and scan all handouts
- For each talk, all materials must be saved in a single .pdf and named according to the naming convention on the "Materials Received" check list. To do this, compile all materials for a specific talk into one stack with this completed sheet on top and insert face up into the tray on the top of the scanner. Proceed to scan and email the file to yourself. Do this for the materials from each talk.
- When you have emailed all files to yourself, please save and re-name each file according to the naming convention listed below the talk title on the "Materials Received" check list.
 (YYYY.MM.DD.TIME.SpeakerLastName)
- □ Email the re-named files to <u>notes@msri.org</u> with the workshop name and your name in the subject line.

The combinatorics of binomial ideals

Thomas Kahle (MSRI) (joint with Ezra Miller, Duke)

December 6, 2012

No Theorem

Let \Bbbk be a field. Every binomial ideal in $\Bbbk[x_1,\ldots,x_n]$ is an intersection of primary binomial ideals.

No Theorem

Let k be a field. Every binomial ideal in $k[x_1, \ldots, x_n]$ is an intersection of primary binomial ideals.

Theorem (Lasker/Noether 1905/1921)

Let k be a field. Every binomial ideal in $k[x_1, \ldots, x_n]$ is an intersection of primary ideals.

Theorem (Eisenbud/Sturmfels 1996)

Let k be an algebraically closed field. Every binomial ideal in $k[x_1, \ldots, x_n]$ is an intersection of primary binomial ideals.

"If one has never done any calculations, one would be inclined to say – let's extend k as far as needed to split our algebraic set. That is a very bad idea!"

Bayer / Mumford "What can be computed in algebraic geometry"

Monoids

 $\bullet\,$ In this talk (Q,+) is a commutative Noetherian monoid.

Monoid Algebra

Let \Bbbk be a field. The monoid algebra over Q is the $\Bbbk\text{-vector space}$

$$\Bbbk[Q]:=igoplus_{q\in Q} \Bbbk\left\{\mathbf{t}^q
ight\} \qquad ext{with} \qquad \mathbf{t}^q\mathbf{t}^u:=\mathbf{t}^{q+u}.$$

A binomial ideal is an ideal generated by binomials

$$\mathbf{t}^q - \lambda \mathbf{t}^u, \quad q, u \in Q, \lambda \in \mathbf{k}.$$

Polynomial rings

 $\Bbbk[x_1,\ldots,x_n]=\Bbbk[\mathbb{N}^n]$

 \rightarrow Fix the no theorem combinatorially.

Congruence basics

Definition

A congruence on Q is an equivalence relation \sim such that

$$a \sim b \Rightarrow a + q \sim b + q \quad \forall q \in Q$$

The quotient $\overline{Q} := Q/\sim$ is a monoid again.

Congruences from binomial ideals

Each binomial ideal $I \subseteq \Bbbk[Q]$ induces a congruence \sim_I on Q:

$$a \sim_I b \Leftrightarrow \exists \lambda \neq 0 : \mathbf{t}^a - \lambda \mathbf{t}^b \in I$$

Monomial ideals?

Let $T \subseteq Q$ be a monoid ideal. The monomial ideal $\langle \mathbf{t}^q : q \in T \rangle$ induces the Rees congruence identifying all elements of T.

Congruence basics

Special congruences

- The identity congruence: $\{(q,q): q \in Q\}$: $\overline{Q} = Q$
- The universal congruences: $Q \times Q$: $\overline{Q} = \{0\}$.

Lemma

• Congruences are exactly the kernels of monoid morphisms:

$$\ker \phi = \left\{ (u, v) \in Q^2 : \phi(u) = \phi(v) \right\}$$

• Every commutative Noetherian monoid is presented as $Q = \mathbb{N}^n / \sim$.

 \rightarrow understand monoids really well

The mother of all monoids: \mathbb{N}^n

 \mathbb{N}^2

Affine semigroups

Weird monoids

Nil

An element $q \in Q$ is nil if q + a = q for all $a \in Q$.

Weird monoids

Weird monoids

 $\ensuremath{\mathbb{N}}$ with one doubled

Some binomial ideals

Some binomial ideals

$$\left\langle y^3, y^2(x-1), y(x^2-1) \right\rangle$$

Monoid elements

Monoid elements

An element $q \in Q$ is

- cancellative if $a + q = b + q \Rightarrow a = b$, for all $a, b \in Q$.
- nilpotent if a multiple is nil.

monomial $\mathbf{t}^q \in \Bbbk[Q]$	monoid element $q \in Q$
nonzerodivisor	cancellative
"nilpotent"	nilpotent

Nilpotents

Formal analogy

Definition

An ideal $I \subseteq \Bbbk[Q]$ is

- $\bullet\,$ prime if in $\Bbbk[Q]/I$ every element is either zero or a nonzerodivisor.
- primary if in $\Bbbk[Q]/I$ every element is either nilpotent or a nonzerodivisor.
- irreducible if it is not the intersection of two strictly larger ideals.

Definition (Drbohlav, 1963)

A congruence \sim on Q is

- $\bullet\,$ prime if in $Q/\!\!\sim$ every element is either nil or cancellative.
- $\bullet\,$ primary if in $Q/\!\sim\,$ every element is either nilpotent or cancellative.
- irreducible if it is not the common refinement of two strictly coarser congruences

 \Rightarrow Congruences have primary decompositions.

Primary quotients

Primary congruences

Wants to be decomposed

Conclusion

• Primary decomposition of congruences is too coarse.

Prime congruences may be reducible

The identity congruence on \mathbb{N}^2 has a primary decomposition

Conclusion

• Primary decomposition of congruences is too fine

Mesoprimary congruences

Definition

- An element $q \in Q$ is partly cancellative if a + q = b + q implies a = b or $a + q = \infty$, whenever a and b differ by a cancellative.
- A congruence is mesoprimary if it is primary and in $Q/\!\sim$ every element is partly cancellative.

Mesoprimary decomposition

How to find components?

What are their associated objects?

$$\left\langle y(x^2-1), y^2(x-1), y^3 \right\rangle$$

Localizations of monoids at prime ideals

Prime ideals in monoids

- Q has only finitely many prime ideals.
- $\varnothing \subseteq Q$ is an ideal (think: $\langle 0 \rangle \subseteq \Bbbk[Q]$)

Localization

- Let $P \subseteq Q$ be a prime ideal, and \sim a congruence on Q.
 - The localization Q_P of Q at P is the monoid arising from adjoining inverses for all elements not in P.
 - The induced congruence on Q is also denoted \sim , and $\overline{Q}_P:=Q_P/{\sim}.$

Example

• Localizing a monoid Q without nil at \varnothing gives its universal group $Q_{\varnothing}.$

Witnesses

Detecting combinatorial changes

- $\textcircled{0} \text{ Localize at a prime } P \subseteq Q$
- 2 Detect witnesses: socle elements in Q_P
 - non-trivial kernels of addition morphisms $\phi_p: q\mapsto q+p, \ p\in P_P$

Associated prime congruences

Prime congruences

A congruence \sim is prime if in Q/\sim every element is either nil or cancellative.

A prime congruence is associated if its non-nils look like a witness class.

Coprincipal and mesoprimary components

Witnessed decompositions

- The congruence \sim defines a set of witnesses (P,w)
- For each witness (P, w):
 - Localize at P.
 - 2 Lemma: The nilpotent quotient \overline{Q}_P is partially ordered.
 - **(3)** Make every class below w look like w.

Coprincipal component: the coarsest mesoprimary congruence such that

• The classes of w under \sim and the component are identical.

Coprincipal mesoprimary decomposition

- Decompose using coprincipal components
- Components at key witnesses suffice

Coprincipal mesoprimary decomposition

$$\left\langle x^2 - xy, xy - y^2 \right\rangle$$

 $\langle x - y \rangle$

 $\langle x, y^2 \rangle$

 $\left\langle x^{2},y\right\rangle$

No coprincipal decomposition

Nothing to decompose:

Mesoprimary decomposition of congruences

Theorem

Every congruence \sim on Q is the common refinement of mesoprimary congruences that are coprincipal components at key witnesses.

Mesoprimary decomposition of congruences

- is canonical
- need not be irredundant
- fixes deficiencies of irreducible decomposition

Lifting decompositions to $\Bbbk[Q]$

Mesoprimary decompositions of binomial ideals

- Determine witnesses of \sim_I .
- Construct coprincipal components of *I*:
 - induce coprincipal components of \sim_I ,
 - ▶ inherit their coefficients from *I*.
- Decompose using coprincipal components for character witnesses.

Subtleties in the lifting procedure

• $\langle x-1\rangle\cap\langle y-1\rangle$ is not binomial.

There are character witnesses that are not key.

•
$$\langle z-1\rangle\cap\langle z+1\rangle\neq\langle z-1\rangle\cap\langle z-1\rangle$$

There are false witnesses among the key witnesses.

Mesoprimary decomposition of binomial ideals

Theorem

Let \Bbbk be any field. Every binomial ideal $I\subseteq \Bbbk[Q]$ has a mesoprimary decomposition into binomial ideals that are coprincipal components of I at character witnesses.

Mesoprimary decomposition of binomial ideals

- is canonical
- need not be irredundant
- yields irreducible decomposition of binomial ideals

Even if $\Bbbk = \mathbb{C}$

Do you really...

```
want your computer to decompose \langle x^{17} - 1, y^2 \rangle?
```

Even if $\Bbbk = \mathbb{C}$

Do you really...

```
want your computer to decompose \langle x^{17} - 1, y^2 \rangle?
```

Thank you for your attention.