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No Theorem

Let k be a field. Every binomial ideal in k[z1,...,2,] is an intersection of
primary binomial ideals.




No Theorem

Let k be a field. Every binomial ideal in k[x1,...,z,] is an intersection of
primary binomial ideals.

v

Theorem (Lasker/Noether 1905/1921)

Let k be a field. Every binomial ideal in k[x1,...,z,] is an intersection of
primary ideals.

v

Theorem (Eisenbud/Sturmfels 1996)

Let k be an algebraically closed field. Every binomial ideal in k[z1,. .., x,]
is an intersection of primary binomial ideals.

v




“If one has never done any calculations, one would be inclined to say — let’s
extend k as far as needed to split our algebraic set. That is a very bad idea!”

Bayer / Mumford
“What can be computed in algebraic geometry”



Monoids

e In this talk (@, +) is a commutative Noetherian monoid.

Monoid Algebra
Let k be a field. The monoid algebra over @ is the k-vector space

k[Q] := P k{t7} with — t9t% = 7T,
q€Q

A binomial ideal is an ideal generated by binomials

tq_)\tu7 q7u€Q7>‘€1k

Polynomial rings
k[x1,...,z,] = k[N"]

v

— Fix the no theorem combinatorially.



Congruence basics

Definition

A congruence on @ is an equivalence relation ~ such that
a~b=at+qg~btqg YeeQ

The quotient @ := Q/~ is a monoid again.

Congruences from binomial ideals

Each binomial ideal I C k[Q)] induces a congruence ~; on Q:

a~rbeINA0: 2 — Ml el

Monomial ideals?

Let T C @ be a monoid ideal. The monomial ideal (t?: g € T') induces the
Rees congruence identifying all elements of 7.

v




Congruence basics

Special congruences

@ The identity congruence: {(q,q): ¢ € Q}: Q =Q
@ The universal congruences: @ x @ : @ = {0}.

Lemma
@ Congruences are exactly the kernels of monoid morphisms:

ker = {(u,v) € Q% : 6(w) = $(v)}

@ Every commutative Noetherian monoid is presented as Q = N /~.

— understand monoids really well



The mother of all monoids: N"

o 0 0 @ -
o o 0 ------ * -
* 00 @
o o 0 ------ * -



Affine semigroups
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Weird monoids

Nil
An element g € Q is nil if g+ a =g for all a € Q.




Weird monoids
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Weird monoids
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A weird monoid N with one doubled



Presenting weird monoids



Presenting weird monoids



Presenting weird monoids



Presenting weird monoids
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Presenting weird monoids




Some binomial ideals



Some binomial ideals

() <y2,:c2 — 1> <y3,;v — 1>




Monoid elements

Monoid elements
An element g € Q is
o cancellativeifa+qg=b+qg=a =0, forall a,b € Q.

@ nilpotent if a multiple is nil.

monomial t¢ € k[Q)] | monoid element g €

nonzerodivisor cancellative
“nilpotent” nilpotent




Nilpotents
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Formal analogy
Definition
An ideal I C k[Q] is
o prime if in k[Q]/I every element is either zero or a nonzerodivisor.

e primary if in k[Q]/I every element is either nilpotent or a
nonzerodivisor.

@ irreducible if it is not the intersection of two strictly larger ideals.

Definition (Drbohlav, 1963)
A congruence ~ on @ is
e prime if in @/~ every element is either nil or cancellative.
@ primary if in @/~ every element is either nilpotent or cancellative.

@ irreducible if it is not the common refinement of two strictly coarser
congruences

.

= Congruences have primary decompositions.



Primary quotients

00 oo
00 ®
. ......
o - ® @ R ° .
® 0 -
00 P
,"
Z]Z @ °
Z]2Z  e----® 1 ’,«‘
-,
0O e @ @ @ @ >



Primary congruences

Wants to be decomposed

Conclusion

@ Primary decomposition of
congruences is too coarse.




Prime congruences may be reducible

L1

The identity congruence on N2 has a primary decomposition

Conclusion
@ Primary decomposition of congruences is too fine




Mesoprimary congruences

Definition
@ An element g € @ is partly cancellative if a + g = b+ g implies a = b
or a + q = 0o, whenever a and b differ by a cancellative.

@ A congruence is mesoprimary if it is primary and in )/~ every element
is partly cancellative.

mesoprimary not mesoprimary




Mesoprimary decomposition

How to find components?

o e e e o - What are their associated objects?



Localizations of monoids at prime ideals

Prime ideals in monoids
@ () has only finitely many prime ideals.
e & C (@ is an ideal (think: (0) C k[Q])

Localization
Let P C @ be a prime ideal, and ~ a congruence on Q.

@ The localization @Qp of Q) at P is the monoid arising from adjoining
inverses for all elements not in P.

@ The induced congruence on @ is also denoted ~, and Qp := Qp/~.

Example

@ Localizing a monoid Q without nil at & gives its universal group @ 4.




Witnesses

Detecting combinatorial changes

© Localize at a prime P C Q)
@ Detect witnesses: socle elements in Qp
non-trivial kernels of addition morphisms ¢, : ¢ — q¢+p, p € Pp




Associated prime congruences

Prime congruences
A congruence ~ is prime if in )/~ every element is either nil or canceIIative.J
prime mesoprimary
e e e e e Te e

A prime congruence is associated if its non-nils look like a witness class. J




Coprincipal and mesoprimary components

Witnessed decompositions

@ The congruence ~ defines a set of witnesses (P, w)
@ For each witness (P, w):
@ Localize at P. -
© Lemma: The nilpotent quotient () p is partially ordered.

© Make every class below w look like w.
© Join to oo every class not below w.
Coprincipal component: the coarsest mesoprimary congruence such that

@ The classes of w under ~ and the component are identical.

Coprincipal mesoprimary decomposition
@ Decompose using coprincipal components

@ Components at key witnesses suffice




Coprincipal mesoprimary decomposition

(2% — 2y, 2y — y°)




No coprincipal decomposition

Nothing to decompose:



Mesoprimary decomposition of congruences

Theorem

Every congruence ~ on (Q is the common refinement of mesoprimary
congruences that are coprincipal components at key witnesses.

Mesoprimary decomposition of congruences
@ is canonical

@ need not be irredundant

o fixes deficiencies of irreducible decomposition




Lifting decompositions to k[Q)]

Mesoprimary decompositions of binomial ideals
@ Determine witnesses of ~7.

@ Construct coprincipal components of I:

induce coprincipal components of ~7,
inherit their coefficients from I.

@ Decompose using coprincipal components for character witnesses.

Subtleties in the lifting procedure
e (x—1)N{y— 1) is not binomial.
There are character witnesses that are not key.
o z—1)N{z+1)#(z—1)N(z—1)

There are false witnesses among the key witnesses.




Mesoprimary decomposition of binomial ideals

Theorem

Let k be any field. Every binomial ideal I C k[Q] has a mesoprimary

decomposition into binomial ideals that are coprincipal components of I at
character witnesses.

Mesoprimary decomposition of binomial ideals
@ is canonical

@ need not be irredundant

@ yields irreducible decomposition of binomial ideals




Evenif k =C

Do you really...

want your computer to decompose (27 — 1, 4%)?

{ideal(x—1,y"2), ideal(x—ww.17,y"2), ideal(x—ww.17"2,y"2), ideal(x—ww_17"3,y"2),

ideal (x—ww_17"4,y"2), ideal (x—ww.17"5,y"2),ideal (x—ww_17"6,y"2), ideal (x—ww_17"7,y"2),

ideal (x—ww_17"8,y"2), ideal (x—ww.17"9,y"2), ideal (x—ww.17"10,y"2), ideal (x—ww.17"11,y"2),

ideal (x—ww_17"12,y"2), ideal(x—ww-17"13,y"2), ideal(x—ww-17"14,y"2), ideal (x—ww-17"15,y"2)

ideal (x+ww_17"154+ww_17"144+ww_17"13+ww_17"124+ww_17"114+ww_17"104+ww_17"94+ww_17"8+
ww_17"7+ww_17"6+ww_17"54+ww_17"4+ww_17"3+ww_17"2+ ww_17+1,y"2)}




Evenif k =C

Do you really...

want your computer to decompose (27 — 1, 4%)?

{ideal(x—1,y"2), ideal(x—ww.17,y"2), ideal(x—ww.17"2,y"2), ideal(x—ww_17"3,y"2),

ideal (x—ww_17"4,y"2), ideal (x—ww.17"5,y"2),ideal (x—ww_17"6,y"2), ideal (x—ww_17"7,y"2),

ideal (x—ww_17"8,y"2), ideal (x—ww.17"9,y"2), ideal (x—ww.17"10,y"2), ideal (x—ww.17"11,y"2),

ideal (x—ww_17"12,y"2), ideal(x—ww-17"13,y"2), ideal(x—ww-17"14,y"2), ideal (x—ww-17"15,y"2)

ideal (x+ww_17"154+ww_17"144+ww_17"13+ww_17"124+ww_17"114+ww_17"104+ww_17"94+ww_17"8+
ww_17"7+ww_17"6+ww_17"54+ww_17"4+ww_17"3+ww_17"2+ ww_17+1,y"2)}

Thank you for your attention.




