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Problem
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Which algebraic relations do occur between the t-minors of X777



Notation and maximal minors (Grassmannian)

» K is a field of characteristic 0;

» t < m < n are positive integers;

» X is an m X n-matrix of indeterminates over K;

» A:(X) is the subalgebra of K[X] generated by the t-minors.

If t = m, then A¢(X) is the coord. ring of a Grassmannian. So the
minimal relations between t-minors of X are the Pliicker relations.

EXAMPLE (Simplest Pliicker relation). t = m=2,n=4:

X:<X11 X2 X3 X14>
Xo1 Xoo Xoz Xoa) '

Then [12][34] — [13][24] + [14][23] = 0,  [ij] = det <§;: §Z)



What if t < m?

Bruns and Conca started the study of A;(X) in 2001. They proved
alot (fromnowon t<mand2<t<n-—2):

» A¢(X) is a normal Cohen-Macaulay domain.

» A:(X) is Gorenstein if and only if 1/t =1/m+ 1/n.
» Description of the singular locus of Spec(A:(X)).

» Much more .....

But what about the relations??7?



What if t < m?
First of all we need a notation for the t-minors:

Xi17j1
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Already if t =2, m =3 and n = 4 degree 2 is not anymore
enough. The following is a minimal cubic relation:

[1212] [12]13] [12]14]
(x) det [ [13[12] [13[13] [13]14] | =0
[23]12] [23]13] [23(14]

This was noticed by Bruns already in 1991. The goal of the first
part of the talk will be to introduce the necessary representation
theoretic tools to understand why (*) must be there.



Representation theory of GL(V)

V is a finite dimensional K-vector space. There is a bijection:

{polynomial irreducible GL(V/)-representations}

!

{A=(A1,..., Ax) partitions (A1 > ... > Ag > 0) with A\; < dimgk V}

For all such partitions A, the Schur functors L, associate a
representation to any representation.

Thm: L)V is a nonzero irreducible representation for every
A= (A1,..., ) with A\; < dimk V. Moreover, all polynomial
representations decompose as direct sum of Ly V's.



Young diagrams

It is useful to figure out a partition as a diagram. For example:

l

(6,5,53,1) =

In our (unusual) convention:

ANV () e [T-TT]

We write A = (A1,...,A\) F e if X has e boxes (A1 + ...+ A\ = e).



Examples

We all know that V ® V decomposes as:

Ve V2sSym? Ve A VE LoV e LV

Such a decomposition is available for all tensor powers:

3
VeVeV=sym? Ve (LpyV) o AV
= LaiyV @ (LoyV)’ @ LV



Pieri’'s rule

Pieri's rule determines for all A the decomposition in irreducible
representations of L,V @ A'V. It says:

t
Lve Av=dLy,
I

where p is gotten adding t boxes to different columns of A. In
such a case we say that u is a (t-)successor of A (and A is a
(t-)predecessor of ).

For example, if t=2 and X\ :B:D , then p = [ 1]

a successor of \, whereas v = [ ] is not.




The action on our objects

» V is a K-vector space of dimension m;
» W is a K-vector space of dimension n;
» G =GL(V) x GL(W).

G acts on our algebra of minors A;(X), so we have to deal with
the representation theory of G. Luckily, the irreducible polynomial
representations of G are of the form:

L,V&LW,
so we can use the information coming from the representation

theory of GL(V/). Therefore we will speak of bi-diagrams (y|A),
bi-predecessors, bi-successors ...



The action on our objects
We say A = (A1,..., k) F eis (t-)admissible if e = dt and k < d.

(DeConcini, Eisenbud and Procesi):

Ac(X) g@LA\/@L/\W*
X

where X is t-admissible with A\ < m.
Calling E = A*V and F = AW, we are interested in the kernel of
the following G-equivariant map:

¢ :Sym(E ® F*) — A¢(X).

To find a decomposition in G-irreducibles of Sym(E ® F*) is out of
reach, so it may be convenient to go one step more to the left:

¥ (RE) @ (R F*) = Sym(E @ F*) = A(X)



The first cubic minimal relation

The decomposition of (Q) E) ® (& F*) follows by Pieri’s rule:

(RE) & (R F)=@(L,V e Lw)moN

VA

where v and A are t-admissible with v; < m and A; < n. The
cubic of the beginning (t = 2):

[1212] [12[13] [12]14]
det ([1312] [13[13)] [1314])0
[23]12] [23[13] [23]14]

corresponds to L,V ® LyW™* where:

and )\ = 234

= [ 12
! 1 2

Wl

ln—l‘n—ln—l




The first cubic minimal relation

If (v|\) were not minimal in ker(¢), then there would be a
2-admissible bi-predecessor of (y|\) in ker(v)).

The only 2-admissible bi-predecessor of (y|A) is the pair (a]a),

a = [ ]

LoV & Lo W* has multiplicity 1 both in (Q E) @ (® F*) and in
A¢(X). So it cannot be in ker(2). In particular

[12(12] [12]13] [12]14]
det [ [13[12] [13]13] [13]14]
[23]12] [23]13] [23]14]

is @ minimal cubic relation between 2-minors.



T-shape relations
In this way we can find other minimal cubic relations, namely:

Y= (t+u, t+u, t—2u),
A= (t+2u, t —u, t—u).

t=4

t=5

(71]A1)
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(72]122)
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A minimal cubic for 3-minors of different nature

Let us look at the 3-admissible predecessors of p:

JTD [T

They are the same 3-admissible predecessors of o. So the
3-admissible bi-predecessors of (p|o) are:

(ale), (B1B), (alB), (Bla)

We have asymmetric friends, we cannot use the previous argument.



A minimal cubic for 3-minors of different nature

This time we have to think in Sym(A3V @ A3W*). To do this we
have to introduce to the game the bigger group

H = GL(E) x GL(F),
where E = A3V and F = A3W. The Cauchy decomposition says:
Sym(E® F*) =@ LE® L,F*
where p; < dimg E = (’g)

Exploiting it one can show that (p|o) occurs in Sym(E ® F*) and
has only symmetric bi-predecessors in Sym(E ® F*).

So ((5,4)|(6,2,1)) gives a minimal relation between 3-minors.



Shape relations
With this technique we can find all the following minimal cubics:

pu=(t+u, t+u—1 t—2u+1),
ou=(t+2u—1,t—u+1, t—u).

t=2 t=3 t=4 t=5

eniro 80| BB | BT | EEEREET
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The conjecture

It is easy to describe in a representation-theoretic fashion the
minimal quadratic relations:

(tulTv), where 7y = (t+u,t —u), u# v, u+v even.

t=2 t=3 t=4
(ol |FR|OO0| BRI | EFR|AT
(ril73) FHD || R o
(rol7a) |
(7al) 0| o

Conjecture: (14]7v), (vulAy) and (pulou) (and their mirror bi-
diagrams) generate the ideal of relations between t-minors. In
particular, such minimal relations are at most cubic.



Evidence

Based on a mixture of theoretical and computational tools:

» The conjecture is true for 2-minors and m < 4.
» No further cubic minimal relations for t = 2, 3.

> No degree 4 minimal relations between 2-minors.

Regularity does not help: reg(A¢(X)) ~ mn— mn/t.



Single A'-type

All the minimal relations we found have a common, nice, feature:

Fixed A |- td, the multiplicity of LyV in L,(A*V), where put-d, is
denoted by mjy ().

We say that A\ I td is of single Af-type if my does not vanish only
at one p - d and my(p) = 1.

Fact: 74, Yu, Au, pu and o, are of single Al-type.



Single A'-type

Theorem (Bruns,-): A t-admissible diagram A = (A1,..., \¢) F td
is of single Af-type if and only if one of the following holds:

» k=dand (A\ —1,...,\g — 1) is of single AT~ 1-type.
» A\ <t+1.

» A2 <1 (hooks).

» k=d—1and A\y_1 > \1 — 1.

We can also describe the u - d where each of the above A's occurs.

As a consequence, one can prove that there are no further minimal
relations (y|\) between t-minors with v and X of single Af-type .....



