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Problem

X =


x11 x12 · · · · · · x1n
x21 x22 · · · · · · x2n

...
...

. . .
. . .

...
xm1 xm2 · · · · · · xmn



Which algebraic relations do occur between the t-minors of X???



Notation and maximal minors (Grassmannian)

I K is a field of characteristic 0;

I t ≤ m ≤ n are positive integers;

I X is an m × n-matrix of indeterminates over K ;

I At(X ) is the subalgebra of K [X ] generated by the t-minors.

If t = m, then At(X ) is the coord. ring of a Grassmannian. So the
minimal relations between t-minors of X are the Plücker relations.

EXAMPLE (Simplest Plücker relation). t = m = 2, n = 4:

X =

(
X11 X12 X13 X14

X21 X22 X23 X24

)
.

Then [12][34]− [13][24] + [14][23] = 0, [ij ] = det

(
X1i X1j

X2i X2j

)
.



What if t < m?

Bruns and Conca started the study of At(X ) in 2001. They proved
a lot (from now on t < m and 2 ≤ t ≤ n − 2):

I At(X ) is a normal Cohen-Macaulay domain.

I At(X ) is Gorenstein if and only if 1/t = 1/m + 1/n.

I Description of the singular locus of Spec(At(X )).

I Much more .....

But what about the relations???



What if t < m?

First of all we need a notation for the t-minors:

[i1, . . . , it |j1, . . . , jt ] = det

Xi1,j1 . . . Xi1,jt
...

...
Xit ,j1 . . . Xit ,jt


Already if t = 2, m = 3 and n = 4 degree 2 is not anymore
enough. The following is a minimal cubic relation:

(∗) det

[12|12] [12|13] [12|14]
[13|12] [13|13] [13|14]
[23|12] [23|13] [23|14]

 = 0

This was noticed by Bruns already in 1991. The goal of the first
part of the talk will be to introduce the necessary representation
theoretic tools to understand why (*) must be there.



Representation theory of GL(V )

V is a finite dimensional K -vector space. There is a bijection:

{polynomial irreducible GL(V )-representations}

l

{λ = (λ1, . . . , λk) partitions (λ1 ≥ . . . ≥ λk > 0) with λ1 ≤ dimK V }

For all such partitions λ, the Schur functors Lλ associate a
representation to any representation.

Thm: LλV is a nonzero irreducible representation for every
λ = (λ1, . . . , λk) with λ1 ≤ dimK V . Moreover, all polynomial
representations decompose as direct sum of LλV ’s.



Young diagrams

It is useful to figure out a partition as a diagram. For example:

(6,5,5,3,1) =

In our (unusual) convention:∧t V ↔ (t)↔ . . .

We write λ = (λ1, . . . , λk) ` e if λ has e boxes (λ1 + . . .+ λk = e).



Examples

We all know that V ⊗ V decomposes as:

V ⊗ V ∼= Sym2 V ⊕
∧2 V∼= L(1,1)V ⊕ L(2)V

Such a decomposition is available for all tensor powers:

V ⊗ V ⊗ V ∼= Sym3 V ⊕ (L(2,1)V )2 ⊕
3∧
V

∼= L(1,1,1)V ⊕ (L(2,1)V )2 ⊕ L(3)V



Pieri’s rule

Pieri’s rule determines for all λ the decomposition in irreducible
representations of LλV ⊗ ∧tV . It says:

LλV ⊗
t∧
V ∼=

⊕
µ

LµV ,

where µ is gotten adding t boxes to different columns of λ. In
such a case we say that µ is a (t-)successor of λ (and λ is a
(t-)predecessor of µ).

For example, if t = 2 and λ = , then µ = is

a successor of λ, whereas γ = is not.



The action on our objects

I V is a K -vector space of dimension m;

I W is a K -vector space of dimension n;

I G = GL(V )×GL(W ).

G acts on our algebra of minors At(X ), so we have to deal with
the representation theory of G . Luckily, the irreducible polynomial
representations of G are of the form:

LγV ⊗ LλW ,

so we can use the information coming from the representation
theory of GL(V ). Therefore we will speak of bi-diagrams (γ|λ),
bi-predecessors, bi-successors ...



The action on our objects
We say λ = (λ1, . . . , λk) ` e is (t-)admissible if e = dt and k ≤ d .

(DeConcini, Eisenbud and Procesi):

At(X ) ∼=
⊕
λ

LλV ⊗ LλW
∗

where λ is t-admissible with λ1 ≤ m.
Calling E = ∧tV and F = ∧tW , we are interested in the kernel of
the following G -equivariant map:

φ : Sym(E ⊗ F ∗) −→ At(X ).

To find a decomposition in G -irreducibles of Sym(E ⊗ F ∗) is out of
reach, so it may be convenient to go one step more to the left:

ψ :
(⊗

E
)
⊗ (
⊗

F ∗)→ Sym(E ⊗ F ∗)→ At(X )



The first cubic minimal relation

The decomposition of
(⊗

E
)
⊗ (
⊗

F ∗) follows by Pieri’s rule:

(⊗
E
)
⊗ (
⊗

F ∗) ∼=
⊕
γ,λ

(LγV ⊗ LλW
∗)m(γ,λ)

where γ and λ are t-admissible with γ1 ≤ m and λ1 ≤ n. The
cubic of the beginning (t = 2):

det

[12|12] [12|13] [12|14]
[13|12] [13|13] [13|14]
[23|12] [23|13] [23|14]

 = 0

corresponds to LγV ⊗ LλW
∗ where:

γ = and λ =1
1

2
2

3
3

1
1
1

2 3 4



The first cubic minimal relation

If (γ|λ) were not minimal in ker(ψ), then there would be a
2-admissible bi-predecessor of (γ|λ) in ker(ψ).

The only 2-admissible bi-predecessor of (γ|λ) is the pair (α|α),

α =

LαV ⊗ LαW
∗ has multiplicity 1 both in

(⊗
E
)
⊗ (
⊗

F ∗) and in
At(X ). So it cannot be in ker(ψ). In particular

det

[12|12] [12|13] [12|14]
[13|12] [13|13] [13|14]
[23|12] [23|13] [23|14]


is a minimal cubic relation between 2-minors.



T -shape relations
In this way we can find other minimal cubic relations, namely:

γu= (t + u, t + u, t − 2u),

λu= (t + 2u, t − u, t − u).

t = 2 t = 3 t = 4 t = 5

(γ1|λ1)

(γ2|λ2)



A minimal cubic for 3-minors of different nature

ρ = σ =

Let us look at the 3-admissible predecessors of ρ:

α = β =

They are the same 3-admissible predecessors of σ. So the
3-admissible bi-predecessors of (ρ|σ) are:

(α|α), (β|β), (α|β), (β|α)

We have asymmetric friends, we cannot use the previous argument.



A minimal cubic for 3-minors of different nature

This time we have to think in Sym(∧3V ⊗ ∧3W ∗). To do this we
have to introduce to the game the bigger group

H = GL(E )×GL(F ),

where E = ∧3V and F = ∧3W . The Cauchy decomposition says:

Sym(E ⊗ F ∗) ∼=
⊕

LµE ⊗ LµF
∗

where µ1 ≤ dimK E =
(m
3

)
.

Exploiting it one can show that (ρ|σ) occurs in Sym(E ⊗ F ∗) and
has only symmetric bi-predecessors in Sym(E ⊗ F ∗).

So ((5, 4)|(6, 2, 1)) gives a minimal relation between 3-minors.



Shape relations
With this technique we can find all the following minimal cubics:

ρu= (t + u, t + u − 1, t − 2u + 1),

σu= (t + 2u − 1, t − u + 1, t − u).

t = 2 t = 3 t = 4 t = 5

(γ1|λ1)

(ρ2|σ2)

(γ2|λ2)

(ρ3|σ3)



The conjecture

It is easy to describe in a representation-theoretic fashion the
minimal quadratic relations:

(τu|τv ), where τu = (t + u, t − u), u 6= v , u + v even.

t = 2 t = 3 t = 4

(τ0|τ2)

(τ1|τ3)

(τ0|τ4)

(τ2|τ4)

Conjecture: (τu|τv ), (γu|λu) and (ρu|σu) (and their mirror bi-
diagrams) generate the ideal of relations between t-minors. In
particular, such minimal relations are at most cubic.



Evidence

Based on a mixture of theoretical and computational tools:

I The conjecture is true for 2-minors and m ≤ 4.

I No further cubic minimal relations for t = 2, 3.

I No degree 4 minimal relations between 2-minors.

Regularity does not help: reg(At(X )) ≈ mn −mn/t.



Single ∧t-type

All the minimal relations we found have a common, nice, feature:

Fixed λ ` td , the multiplicity of LλV in Lµ(∧tV ), where µ ` d , is
denoted by mλ(µ).

We say that λ ` td is of single ∧t-type if mλ does not vanish only
at one µ ` d and mλ(µ) = 1.

Fact: τu, γu, λu, ρu and σu are of single ∧t-type.



Single ∧t-type

Theorem (Bruns,-): A t-admissible diagram λ = (λ1, . . . , λk) ` td
is of single ∧t-type if and only if one of the following holds:

I k = d and (λ1 − 1, . . . , λd − 1) is of single ∧t−1-type.

I λ1 ≤ t + 1.

I λ2 ≤ 1 (hooks).

I k = d − 1 and λd−1 ≥ λ1 − 1.

We can also describe the µ ` d where each of the above λ’s occurs.

As a consequence, one can prove that there are no further minimal
relations (γ|λ) between t-minors with γ and λ of single ∧t-type .....


