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Throughout this talk, let k be an algebraically closed field of characteristic
p > 2.



Definition: Hilbn(A2
k) is the scheme parametrizing dimension-0, degree-n

subschemes of A2
k . So, set theoretically,

Hilbn(A2
k) := {I ⊂ k[x , y ] : dim(k[x , y ]/I ) = n as a vector space over k}.

Properties:

I [Hartshorne] Hilbn(A2
k) is connected.

I [Fogarty] Hilbn(A2
k) is non-singular.

I This 2n-dimensional scheme has a T 2 = (k∗)2 action induced by the
standard action of T 2 on A2

k (i.e. (t1, t2) · (x , y) = (t1x , t2y)). The T 2-fixed
points of Hilbn(A2

k) are the colength-n monomial ideals.

Goal: To understand a particular stratification of Hilbn(A2
k). This stratification

will consist of finitely many (locally closed) strata which are automatically reduced,

regular in codimension 1, and stable under the T 2-action.



We begin by stratifying Hilb2(A2
k) by reduced, T 2-invariant subvarieties such that

the open strata are regular in codimension 1.

Consider Hilb2(A2
k) and the reduced, T 2-invariant divisor D where

D =“at least one point is on a coordinate axis”.

The two components of D will be the codimension 1 subvarieties in our
stratification.

We can intersect the irreducible components of this divisor and decompose the
intersection to obtain some new subvarieties. These subvarieties are reduced!



Neither irreducible component of D is regular in codimension 1. So, we include the
codimension 1 component of the singular loci in the union of codimension 2
subvarieties to appear in the stratification of Hilb2(A2

k).

Intersecting each one of these subvarieties with the union of the others and then
decomposing each intersection yields the following codimension 3 subvarieties:

Repeating this procedure once more produces the T 2-fixed points.



This sequence of intersecting, decomposing, and including non-R1 loci produces
the following stratification by reduced subvarieties:

This is precisely the collection of “compatibly Frobenius split” subvarieties of

Hilb2(A2
k).



Definition: Let R be a (commutative) k-algebra and let X = Spec(R). Say that R (or
X ) is Frobenius split by φ : R → R if:

φ(a + b) = φ(a) + φ(b), φ(apb) = aφ(b), φ(1) = 1

for any a, b ∈ R.
(Notice that φ is an R-module map which “splits” the Frobenius endomorphism
F : R → R, r 7→ rp. That is, φ ◦ F = Id.)

It immediately follows from the definition that if R is Frobenius split then R has no
nilpotents. So, X = Spec(R) is reduced.

Definition: Let I ⊂ R be an ideal. We say that I (or V (I )) is compatibly Frobenius
split if φ(I ) ⊂ I .

In this case, there is an induced splitting, φ : R/I → R/I and we get that I is a radical
ideal.

The following are some consequences which we have already used:

1. Intersections, unions and components of compatibly split subschemes are
compatibly split.

2. The non-R1 locus of any compatibly split subvariety is compatibly split.

Note: The above definitions and results generalize to schemes (X ,OX ).



Theorem:

1. For X regular, HomOX
(F∗OX ,OX ) ∼= H0(X ,F∗(ω

1−p
X )), where ωX is the

canonical bundle on X . Thus, certain anticanonical sections determine
Frobenius splittings.

2. [Kumar-Mehta] Let X be an irreducible, normal variety which is Frobenius
split by σ ∈ H0(X ,F∗(ω

1−p
X )). If Y is compatibly split then Y ⊆ V (σ) or

Y ⊆ sing(X ).

Example: The divisor {x1x2 · · · xn = 0} determines a Frobenius splitting of An.
This splitting of An is called the standard splitting. By intersecting the
components of the divisor, decomposing the intersections, intersecting the new
components, etc., we obtain the collection of coordinate subspaces. This is
precisely the set of compatibly split subvarieties of An with the standard splitting.

Theorem: [Lakshmibai-Mehta-Parameswaran] Let f ∈ k[x1, . . . , xn]. If there is a
term order on k[x1, . . . , xn] such that init(f ) = x1x2 · · · xn then {f = 0} determines
a splitting of An that compatibly splits {f = 0}.

Theorem: [Kumar-Thomsen] The anticanonical divisor described by “at least one
point is on an axis” determines a Frobenius splitting of Hilbn(A2

k).



Algorithm: [Knutson-Lam-Speyer]
Input: (X , ∂X ) where X is Frobenius split and ∂X is the anticanonical divisor
which induces the splitting.

Output: Suppose that ∂X = D1 ∪ · · · ∪ Dr . Let Ei = D1 ∪ · · · ∪ D̂i ∪ · · · ∪ Dn.
There are two cases.

1. If X is normal, then return (D1,D1 ∩ E1),. . . ,(Dn,Dn ∩ En).

2. If X is not normal, return (‹X , ν−1(∂X ∪ Xnon-R1)) where ν : ‹X → X is the
normalization of X .

Repeat until neither 1. nor 2. can be applied. When finished, map all subvarieties
back to the original Frobenius split variety to obtain a list of many (for large p)
compatibly split subvarieties.

At each stage of the algorithm, check if ∃ a component of the singular locus that
is both compatibly split and of codimension ≥ 2. (Hard!)
If so, add it (and its compatibly split subvarieties) to the list.

In certain cases, the final list consists of all compatibly split subvarieties of
(X , ∂X ).



As an example of the algorithm, we consider (again) the case of Hilb2(A2
k).

Start with (Hilb2(A2
k),D) where D is as before.

Apply 1.

Due to the symmetry, continue with just the first of the two pairs.

Next, recall that the components of D are not regular in codimension 1.
Apply 2.



From the previous slide, we have:

Apply 1.

Applying 1. once more obtains the preimage of the T 2-fixed points under
map π : Xn → Hilb2(A2

k) where Xn denotes the isospectral Hilbert scheme
(i.e. the scheme of labelled points in the affine plane).



The algorithm produces the following stratification of Hilb2(A2
k):



In contrast to previously studied cases (eg. the flag variety), not every compatibly split
subvariety of Hilbn(A2

k) is normal. As a result, additional non-split subvarieties naturally
arise.

Notice that ν|Y is generically 2:1 but is ramified along the locus where the two points

collide. Letting s = y1 + y2 and m = y1y2 be the two coordinates on ν(Y ) ∼= A2
k/S2, we

can check that the splitting of ν(Y ) is given by the section (s2 − 4m)(p−1)/2mp−1. From

this we see that {m = 0} is compatibly split. It would be nice to be able to say that

{s2 = 4m} (which agrees with the ramification locus of ν|Y ) is “half split”.



The stratification of Hilb3(A2
k) by all compatibly split subvarieties:



The compatibly split subvarieties of Hilb4(A2
k):



Proposition: Y ⊆ Hilbn(A2
k) is a compatibly split subvariety if and only if Y is

the closure of the image of the morphism

i : Hilba(“punctured y-axis”)×Hilbb(“punctured x-axis”)×Hilbc (A2
k\{xy = 0})×Z → Hilbn(A2

k )

(I1, I2, I3, I4) 7→ I1 ∩ I2 ∩ I3 ∩ I4

for some a, b, c ≥ 0 with a + b + c ≤ n and for some compatibly split
Z ⊆ Hilbn−a−b−c(A2

k), where Z is contained inside of the punctual Hilbert scheme
of n − a− b − c points all supported at the origin.

Thus, the problem of finding all compatibly split subvarieties of Hilbn(A2
k) is

equivalent to the problem of finding all compatibly split subvarieties of Hilbm(A2
k),

m ≤ n, where all points are at the origin.



Notice that for n = 1, 2, 3, 5, all torus fixed points are indeed 0-dimensional
compatibly split subvarieties of Hilbn(A2

k). However, when n = 4, {〈x2, y2〉} is not
compatibly split.

For n ≤ 8, the colength-n monomial ideals which do not correspond to any of the
following standard sets (or their ’transposes’) are compatibly split:

Conjecturally, a torus fixed point is a 0-dimensional compatibly split subvariety of

Hilbn(A2
k) if and only if the associated monomial ideal is integrally closed.



For the remainder of the talk, we will restrict to a specific open patch of
Hilbn(A2

k) (for arbitrary n).



Definition: Let λ be a colength-n monomial ideal. Uλ is the set of all
I ∈ Hilbn(A2

k) such that the monomials outside λ form a vector space basis of
k[x , y ]/I .

Example: Let λ = 〈x , y2〉 ∈ Hilb2(A2
k). Then I = 〈y2 + y , x + 2〉 ∈ Uλ as {1, y}

spans the vector space k[x , y ]/I .

Unless otherwise indicated, we consider U〈x,yn〉 from now on. We’ll study the
simpler stratification of U〈x,yn〉 by all of its compatibly split subvarieties.

All colength-n ideals in U〈x,yn〉 have a Gröbner basis of the form:

yn − b1yn−1 − b2yn−2 − · · · − bn−1y − bn
xyn−1 − a1yn−1 − c12yn−2 − · · · − c1(n−1)y − c1n

xyn−2 − a2yn−1 − c22yn−2 − · · · − c2(n−1)y − c2n

...
xy − an−1yn−1 − c(n−1)2y

n−2 − · · · − c(n−1)(n−1)y − c(n−1)n

x − anyn−1 − cn2yn−2 − · · · − cn(n−1)y − cnn

where each cij is a polynomial in a1, . . . , an, b1, . . . , bn.

We see that U〈x,yn〉 ∼= A2n = Spec k[a1, b1, . . . , an, bn].



As before, we begin with the n = 2 case. The compatibly split subvarieties
of U〈x ,y2〉 are the non-empty Y ∩ U〈x ,y2〉 such that Y ⊆ Hilb2(A2

k) is
compatibly split.

The subvarieties to the left of the red curve have non-trivial intersection
with U〈x ,y2〉 ⊂ Hilb2(A2

k).



Recall that U〈x,y2〉
∼= Spec(k[a1, b1, a2, b2]). By imposing the condition “at least one

point is on an axis”, we obtain the divisor {f2 = 0} where f2 = a1b1a2b2 − a2
1b2 + a2

2b
2
2 .

Under the term order
Revlexb2 , Lexa2 , Revlexb1 , Lexa1 ,

init(f2) = a1b1a2b2. In fact, for any compatibly split ideal I , init(I ) (under the same term
order) is a squarefree monomial ideal. We may therefore associate a simplicial complex to
each init(I ).



The n = 2 case generalizes.

Proposition:

1. With respect to the term order Revlexbn , Lexan , . . . , Revlexb1 , Lexa1 ,
init(fn) = a1b1 . . . anbn and (by a theorem of Knutson) all compatibly split
subvarieties of U〈x,yn〉 degenerate to Stanley-Reisner schemes.

2. More precisely, if Y ⊆ U〈x,yn〉 is compatibly split, then LexanRevlexbnY is a
compatibly split subvariety of U〈x,yn−1〉 × A2

k .

3. Y ⊆ U〈x,yn〉 is compatibly split if and only if it is of one of the following four types:

4. Each compatibly split subvariety of U〈x,yn〉 degenerates to the Stanley-Reisner
scheme of a shellable simplicial complex. Thus, each compatibly split subvariety of
U〈x,yn〉 is Cohen-Macaulay.

5. Suppose that Y is compatibly split and that a stratum representative of Y either

I has no points in A2
k \ {xy = 0} or

I has at most one point on the punctured y -axis,

then init(Y ) is the Stanley-Reisner scheme of a simplicial ball.



We now present the ideas in the proof of the proposition. To begin, consider the following
theorem.

Theorem: Let f ∈ k[x1, . . . , xn] be a degree n polynomial such that, under some term
order, init(f ) =

∏
i xi .

1. [LMP] {f = 0} determines a Frobenius splitting of An.

2. [Knutson] If I is compatibly split with respect to this splitting, then init(I ) is
compatibly split with respect to the splitting determined by {init(f ) = 0}.

This theorem applies to our situation:

All elements of U〈x,yn〉 are ideals generated by polynomials of the form:

yn − b1yn−1 − b2yn−2 − · · · − bn−1y − bn
xyn−1 − a1yn−1 − c12yn−2 − · · · − c1(n−1)y − c1n

xyn−2 − a2yn−1 − c22yn−2 − · · · − c2(n−1)y − c2n

...
xy − an−1yn−1 − c(n−1)2y

n−2 − · · · − c(n−1)(n−1)y − c(n−1)n

x − anyn−1 − cn2yn−2 − · · · − cn(n−1)y − cnn

where each cij is a polynomial in a1, . . . , an, b1, . . . , bn. Let Mn be the matrix of
coefficients (−cij)1≤i,j≤n where ci1 = ai . The divisor that determines the splitting on
U〈x,yn〉 is given by {fn = 0} where fn = −bn(detMn). Under the term order
Revlexbn , Lexan , . . . , Revlexb1 , Lexa1 , init(fn) is a1b1 · · · anbn.



For example, we have:

M2 =

Ä
−a1 −a2b2
−a2 −(a1 − b1a2)

ä
, M3 =

Å
−a1 −(a2b2 + a3b3) −a2b3
−a2 −(a1 − b1a2) −a3b3
−a3 −(a2 − b1a3) −(a1 − b1a2 − b2a3)

ã
M4 =

Ç−a1 −(a2b2 + a3b3 + a4b4) −(a2b3 + a3b4) −a2b4
−a2 −(a1 − b1a2) −(a3b3 + a4b4) −a3b4
−a3 −(a2 − b1a3) −(a1 − b1a2 − b2a3) −a4b4
−a4 −(a3 − b1a4) −(a2 − b1a3 − b2a4) −(a1 − b1a2 − b2a3 − b3a4)

å
Computing the determinant of M4 using cofactors along the last column, we get:

det M4 = (M4)44(det M3) + b4(· · · ).

Taking the terms with the smallest power of b4 (i.e. computing Revlexb4 (det M4))
yields:

(M4)44(det M3).

Taking Lexa4 of this polynomial yields:

a4b3(det M3).



Proposition:

1. With respect to the term order Revlexbn , Lexan , . . . , Revlexb1 , Lexa1 ,
init(fn) = a1b1 . . . anbn and (by a theorem of Knutson) all compatibly split
subvarieties of U〈x,yn〉 degenerate to Stanley-Reisner schemes.

2. More precisely, if Y ⊆ U〈x,yn〉 is compatibly split, then LexanRevlexbnY is a
compatibly split subvariety of U〈x,yn−1〉 × A2

k .

3. Y ⊆ U〈x,yn〉 is compatibly split if and only if it is of one of the following four types:

4. Each compatibly split subvariety of U〈x,yn〉 degenerates to the Stanley-Reisner
scheme of a shellable simplicial complex. Thus, each compatibly split subvariety of
U〈x,yn〉 is Cohen-Macaulay.

5. Suppose that Y is compatibly split and that a stratum representative of Y either

I has no points in A2
k \ {xy = 0} or

I has at most one point on the punctured y -axis,

then init(Y ) is the Stanley-Reisner scheme of a simplicial ball.



We do not sketch the proof of 3. here.

For 4., we first determine init(Y ) for each compatibly split subvariety Y by understanding
the degenerations given by Revlexbn and Lexan .

Lemma: Let Y be a subvariety of Spec k[x1, ..., xn]. Let H be the hyperplane {x1 = 0}.
I If Y ⊆ H then Revlexx1 (Y ) = Y × Ox1 ⊆ H × Spec k[x1].

I If Y * H then Revlexx1 (Y ) = (Y ∩ H)× Spec k[x1] ⊆ H × Spec k[x1].

In our case, H = {bn = 0}, which is the subvariety “one point is on the x-axis”.

The Lexan degenerations can be described by the following pictures:



Using the step by step degenerations, we can compute the initial schemes of a compatibly
split ideal Y . We can therefore determine the simplicial complexes associated to init(Y ).

Example:

Thus, init(I (Y )) is 〈a2〉 ∩ 〈b1〉 ∩ 〈a1〉 and the associated simplicial complex is



To each compatibly split subvariety of U〈x,yn〉, the step by step degenerations allow us to
associate “words” in the following “letters”:

(1) a ↑, (2) â ↑, (3) aa ↑, (4) aa, (5) â

Let Y be a compatibly split subvariety of U〈x,yn〉 ⊂ Hilbn(A2
k ). Suppose that a general element

of Y has L points in A2
k \ {xy = 0}, K points on the punctured y -axis, and R points “vertically

stacked” at the origin. For example:

Proposition: The facets of the simplicial complex associated to init(Y ) are in one-to-one
correspondence with words of the following form:

(word in (1), (2), (3)) | (word in (4), (5)) | (a iff “R + 1” at origin)

such that

#(1) + #(3) + #(4) = L, #(2) + #(3) = K , #(4) + #(5) = R.



What about other patches Uλ which are isomorphic to A2n?

Conjecture: There are specific coordinates a1, . . . , an, b1, . . . , bn, chosen in
an analogous manner to the λ = 〈x , yn〉 case, such that {fλ = 0} is a
residual normal crossings divisor. (This has been checked in Macaulay 2 for
n ≤ 8.) The term order such that initfλ = a1b1 · · · anbn depends on the
shape of the partition associated to λ and is a generalization (in a precise
way) of the term order in the U〈x ,yn〉 case.

Question: What about on patches that are not isomorphic to affine space?
Can you do this in a formal neighborhood of a torus fixed point?



Finally, we consider a connection to Poisson geometry.

Consider A2 with the Poisson tensor xy d
dx ∧

d
dy . This induces a Poisson tensor on

the Hilbert scheme. (See a paper of Bottacin for the general situation.)
On the open patch U〈x,yn〉 the Poisson bracket is given by∗:

{bi , bj} = 0, {ai , aj} = −
j−1∑
k=1

akaj−(k−i), i < j

{ai , bj} =
n∑

k=j

ak−(j−i)bk , i ≤ j , {ai , bj} = ai−j −
j−1∑
k=1

ai−j+kbk , i > j

The Pfaffian of the (2n × 2n)-matrix gives the anticanonical divisor that
determines the induced splitting of U〈x,yn〉. With respect to the same weighting of
the variables which gives init(fn) = a1b1 . . . anbn, we can degenerate the Poisson
tensor to a log canonical tensor. Furthermore, all compatibly split subvarieties of
U〈x,yn〉 are Poisson subvarieties.

∗Conjectural for large n.



Thank You.


