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Associated Primes

Let R = k[z1,...,x,], k a field.

Definition

For any ideal I C R a prime ideal P is an associated prime of I if there is
an element M € R such that I : (M) = P. The set of associated primes
of I is denoted Ass(I).

A problem about associated primes first(?) raised by Ratliff (1976):

Problem

Describe the sets Ass(I°) as s varies?

Adam Van Tuyl Persistence of square-free monomial ideals



Eventual behaviour

Theorem (Brodmann (1979))
Let I C R = k[x1,...,x,]. Then there exists an integer so such that

Ass(I°°) = Ass(I°) for all s > sg.

Definition (Index of stability)

astab(I) = min{sg | Ass(I°°) = Ass(I®) for all s > so}.
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Three Problems

1. Bound astab([I) in terms of invariants of I and R.
2. Describe the elements of Ass(72stab(1))

3. What is the initial behaviour of Ass(I?) for s < astab(I).

This talk will focus on 3.

Definition

I C R has the persistence property if

Ass(I®) C Ass(I*T) forall s > 1.
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“Wild” initial behaviour

Brodmann showed the existence of an ideal without the persistence
property. Here is a monomial example:

Example (Herzog, Hibi)

Consider
I = (a% a®b,ab’, 1%, a*b e, bid, a’e? £3, b1e £2)

in the ring R = k[a, b, ¢, d, e, f]. Then

(a,bye,dye, f) € Ass(])
(a,b,c,d,e, f) & Ass(I?)
(a,b,c,d,e, f) € Ass(I®)
(a,b,c,dye, f) & Ass(I*

Original context for this example: studying the depth function
f(s) = depth(R/T*).
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The previous example can be generalized:

Theorem (Bandari, Herzog, Hibi)

For any given integer m > 1, there exists a monomial I ideal in 2m + 4
variables such that

m € Ass(I°) for all s odd and s < 2m + 1

and
m & Ass(I°) for all s even and s < 2m.

Here m = <l'17"' ax2m+4> c k[xl,...,$2m+4].

Monomial ideals can very “un-persistent”
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HOWEVER....
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HOWEVER....

... there are no examples of square-free monomial ideals that do not have
the persistence property.

Do square-free monomial ideals have the persistence property?
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Positive Evidence

Simplest examples of square-free monomial ideals:

1. monomial ideals generated in degree 1, i.e.,
I={(xi,...,2)
2. unmixed height 1 monomial ideals, i.e.,
I'= (i) NV (@iy) N0 (@i,) = (T4, Ty -~ T4,

Both ideals are complete intersections, so
Ass(I°) = Ass(I) forall s >1

Note: Two classes are related via Alexander Duality.
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Positive Evidence Il

Next simplest classes of square-free monomial ideals:
1. monomial ideals generated in degree 2.
2. unmixed height 2 monomial ideals.

Again, two classes are related via Alexander Duality.

More common names:
1. Edge ideals of finite simple graphs

2. Cover ideals of finite simple graphs
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Edge Ideals

G = (Vi, E¢) will denote a finite simple (no loops or multiple edges)
graph with vertex set Vg = {z1,...,z,} and edge set E¢.

Definition (Edge Ideal)

I(G) = <.’EiZL’j | {ifi,ifj} € EG> CR

X1 L2

T4

I<G) = <331CU2,$2$3,I3$4,$4$57$5$1>
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Persistence of Edge ldeals

Theorem (Martinez-Bernal, Morey, Villarreal)

For any finite simple graph G, I(G) has the persistence property.

Completes the program of
e Chen, Morey, Sung (2002)
e Morey, Villarreal (2010)
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Cover ideal

Definition (Cover ldeal)

J=JG)= (] (wz)CR
{Ii,xj}EEG

A subset W C Vi is a vertex cover if for every edge e € Eg,
Wne#.

Let G be a finite simple graph. Then

J=(xi, -z, | W={x;,...,z;.} isa vertex cover).
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For the graph G below:

I1 H )

Iy z3

Ly

J(GQ) = (17224, T2X3%5, L3T4T1, T4T5T2, T5T1L3)
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Perfect Graphs

e Let G be a simple graph and let P C V. The induced graph on P,
denoted G p, is the graph with

Vep =P and Eq, ={{z;,z;} € E¢ | {zi,z;} C P}.

e The complete graph of order n, denoted IC,,, is the graph on n vertices
and edge set Eq = {{z;,z;} |1 <i<j <n}

¢ An induced subgraph Gp is a clique if Gp = K|p.

e The chromatic number of G, denoted x(G), is the least number of
colours in a vertex-colouring of G

Definition

A graph G is perfect if for every induced graph Gp, x(Gp) equals the
size of largest clique in Gp.
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The graph G below is not perfect:

L1 L2

T T3

T4

We have x(G) = 3, but the size of the largest induced clique is 2.
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Persistence of Cover Ideals

Theorem (Villarreal; Francisco, Ha, VT)

For any finite simple graph G that is perfect, J(G) has the persistence
property. Moreover,

X(G) — 1 = astab(J(G))

e There are also families of non-perfect graphs for which we know that
J(Q) has the persistence property. For example if G is an odd cycle or
odd anti-cycle (the complement of a cycle).

e To come: a colouring conjecture that implies that for all J(G) has the
persistence property for all G
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Positive Evidence 11l

1. monomial ideals generated in degree d > 2.

2. unmixed height d > 2 monomial ideals.

For the first class, we have the following results:

1. [Herzog, Rauf, Vladoiu] Let I be a polymatroidal ideal (so I is a
square-free monomial ideal generated in degree d). Then I has the
persistence property.

2. [Herzog, Qureshi] Let I be square-free monomial ideal with the
property that I° has a linear resolution for all s > 1. Then I has the
persistence property.

v
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Generalizing Cover Ideals

Definition

Fix an integer t > 1. The partial t-cover ideal of G is the monomial
ideal

Jt(G): ﬂ m <J},l‘i17...,]}it>

z€Vae \{ziy,...,zi; }CN(z)

e When t =1, J1(G) = J(G), the cover ideal

e Ji(G) is a unmixed height (¢ + 1) square-free monomial ideal
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Further Positive Evidence

Theorem (Bhat-Biermann-VT)

Fixat>1. IfG is a tree, then J,(G) has the persistence property.
Moreover

1 ift=1
astab(J;(GQ)) = { min{s | s(t—1) > AG) =1} ift>1

where A(G) is largest degree of a vertex in G.
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Strategies for proving persistence

Because I is square-free, all associated primes are monomial, i.e.,
P = {(z;,,...,x;,). Localization gives:

P ={(z;,,...,x;,) is an associated prime of I® in k[z1,...,z,] if and
only if PRp = (x;,,...,x;,) is an associated prime of (IpRp)® in
Rp = k‘[ﬂ?il, cen ’xit]

To prove persistence, enough to show:

Let I be a square-free monomial ideal. If m € Ass(I®), then is
m € Ass(I5t1)?
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New annihilators from old

Lemma

Suppose that I° : (T) = (x1,...,%,). If there exists an element M € I
such that MT ¢ I*%Y, then It . (MT) = (21, ..., 1,).

Proof.
Since MT & I°t1,

| A

It (MTY C .y 20).

For any i, Tx; € I®, so MTx; € I°Tt. Thus

(x1,...,2,) CI°TL . (MT).

When does such an element M exist?
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Let I be a square-free monomial ideal such that I°T1 : I = I° for all
s > 1. Then I has the persistence property.

Under the hypothesis, if there exists a T' such that I° : (T") = m, then
there must exist a generator M € I such that MT & I5+1,
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Theorem (Martinez-Bernal, Morey, Villarreal)

IfI = I(G), then I**Y : [ = I* for all s.

To prove this result, a graph theory result of Berge on matchings in a
graph was required.
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Ratliff Ideals

Definition (Herzog-Qureshi)

An ideal I is Ratliffif Ist1: T =1TI* for all s > 1.

e For any ideal in R, Ratliff showed that 151! : T = I for s > 0.
e Edge ideals
e Polymatroidal ideals

e If Iis normal, ie., I¥ = TF for all k, where J is the the integral
closure of J.

Villarreal proved that J(G), the cover ideal of G, is normal when G
is perfect.
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Not all square-free monomial ideals are Ratliff.

Example (Martinez-Bernal, Morey, Villarreal)
The ideal

I = (x122m5, 212324, T1T2%6, T123%6, L1L4T5,

TX3T4, T2X3L5, T2T4T6, LIL5L6, LAL5LE)

has I3 : I # I?. (It does satisfy the persistence property!)
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A combinatorial interpretation

Return to the cover ideal of J(G).

Definition

A graph G is critically s-chromatic if x(G) = s, but x(G\z) =s—1
for every x € V. If G is critically s-chromatic for some s, G is called a
critical graph.

Any odd cycle is a critically 3-chromatic graph.
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Expansion

The expansion of G at a vertex z; is the graph G’ = G[{z;}] whose
vertex set is given by Vi = (Vo \ {@:}) U (24,1, %:2) and with edge set

E¢ = {{u,v} € Eg | u # x; and v # x; }U

Hu, i}, {u, a2} | {w, 3} € Eg} U {{zi1, 72} }

For any W C Vi, the expansion of G at W, denoted G[W], is formed
by successively expanding all the vertices of W in any order.
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Example of Expansion

Consider the 5-cycle on the vertex set {z1,...,z5}.
L1 L2

Ls A L4 N ?3
L

Then the expansion of G at the vertex x4 is G[{z4}]:

X1 T2

Ts Z3

Ty4,2
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The s-th expansion

Definition

Let G be a simple graph with vertex set Viz. The second expansion of
G, denoted G?, is the graph G? = G[Vg], i.e., expand all the vertices of
G.

The s-th expansion of G, denoted G*, is the graph G° = G5~ 1[V] for
s > 2. (G*~! contains a copy of GG, expand those vertices inside G*~1.)
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Associated Primes of Powers of Cover Ideals

Theorem (Francisco, Ha, VT)
Let G be a finite simple graph with cover ideal J = J(G). Then

(Xiyy ooy 2, ) € Ass(J?)
if and only if there exists some set T with

{5, 200005, 2 € W C gy 50000 0By my o 00 08,0 2y o 0o 055, 0lf

such that G%. is critically (s + 1)-chromatic.

Holds for all square-free monomial ideals. Identify the square-free
monomial ideal with a hypergraph. The associated primes are then
related to critically chromatic hypergraphs.
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If G is a critically s-chromatic graph, then there exists a subset W C Vg
such that G[W] is a critically (s + 1)-chromatic graph.

e |f the conjecture is true, we can construct critically
(s + d)-chromatic graphs for any d > 1 by repeated applying the
result.

e Conjecture true for cliques Ky (expand a clique at any vertex and
the new graph is the clique Ks1).
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Example
The 5-cycle is a critically 3-chromatic graph:

X1 X2
@ S

If we expand G at W = {x3, x4}, we get a critically 4-chromatic graph

G[W]:
Z2,2
x
Ts Z3
T4,2
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The persistence property and the conjecture

Suppose the Conjecture is true. Then the cover ideal J has the
persistence property.

Proof.
(Sketch) Suppose (x;,,...,x; ) € Ass(J*®). There exists a set T with

{1, i1} ST CH{Ziy 15 Tiysy ooy Tip 1y, Ty s )

such that G35 is critically (s + 1)-chromatic.
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The persistence property and the conjecture

Suppose the Conjecture is true. Then the cover ideal J has the
persistence property.

Proof.
(Sketch) Suppose (x;,,...,x; ) € Ass(J*®). There exists a set T with

W 15 o o o @il € T € i 5 o 0 0 e a o 0 0805,k © 0 2 5958 o)
such that G35 is critically (s + 1)-chromatic.

By Conjecture, there exists W C Vg, such that G3.[WW] is a critically
(s + 2)-chromatic graph.
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The persistence property and the conjecture

Suppose the Conjecture is true. Then the cover ideal J has the
persistence property.

Proof.
(Sketch) Suppose (x;,,...,x;.) € Ass(J®). There exists a set T with

W 15 o o o @il € T € i 5 o 0 0 e a o 0 0805,k © 0 2 5958 o)
such that G35 is critically (s + 1)-chromatic.

By Conjecture, there exists W C Vg, such that G3.[WW] is a critically
(s + 2)-chromatic graph.

The graph Gi-[W] is isomorphic to a subgraph of G**1. So, exists T":
He ity o000 @i €8 C a0 oo e s B il oo 0 o Bl o o o B oot

such that G- is critically (s 4 2)-chromatic. So
<£C1'1,...,£C1'T> GASS(Jerl). O
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Evidence for the Conjecture

The Conjecture holds if we also assume

X(G) =1 < x4(G) < x(G)

Here, x(G) is the fractional chromatic number.

(Our proof is algebraic.)

The Conjecture holds for the following critical graphs: cliques, odd holes,
and odd antiholes.
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Future directions?

e Look at families of square-free monomial ideals which are not
generated in the same degree nor height unmixed.

e What square-free monomial ideals are Ratliff?

e Does the colouring conjecture hold?
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