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Fundamental Problem

A polynomial f€ 5 :=R[x,...,x,] is
e nonnegative if f(x) >0 for all x e R";

e a sum of squares if there exists
815 ,gf € .S such that f: g%-|— +g%

Sums of squares can provide efficient
certificates for nonnegativity.

PROBLEM: When is nonnegativity the
same as being a sum of squares?



The Solution?

Assume S has the standard N-graded; in
other words, S is the Cox ring of P".

HILBERT (1888): When we have
e n =1 (univariate nonhomogeneous),
e 2d =2 (quadratic forms), or
e n=2,2d =4 (ternary quartics),
every nonnegative f € .5, is a sum of

squares. In all other cases, there exists a
f €S,  that is not sums of squares.



Interpretation

TAGLINE: Except for a few coincidences,
general nonnegative polynomials are not
sums of squares.

42 %254 4 %6 — 3x2x2+2 i
MOTZKIN: xgx1 + x5x7 + X§ 3x0x X3 is

: 172
nonnegative, but not a sum of squares.

BLEKHERMAN (2003): Fixd> 1. As n — o0,
there are significantly more nonnegative
polynomials than sums of squares.



More Solutions!

CHOI-LAM-REZNICK (1980): Let .S be the
Cox ring of P™ x --- X P"; S is N’-graded.
Every nonnegative f € .5,, is a sum of
squares if and only if £ =2 and 2d =(2d,2)
or (2,2d,).

QUESTIONS: Are there more examples?
What explains the equality between
nonnegativity and sums of squares?



General Setting

Let X be a projective variety over R.

For line bundle Oy(D), s € H(X, Ox(2D)) is
e nonnegative if its evaluation at each
point in X(R) is nonnegative;
e a sum of squares if there are
ty,....t, € Vi= H(X, 04(D)) such that
s = u(t3) + --- + u(t2) where

p:Sym*(V)— H'(X, Oy(2D))

PROBLEM: Determine for which (X, Oy (D))
nonnegativity equals a sum of squares.



Convex Cones

LEMMA: The collection of nonnegative
sections (resp. sums of squares) forms a
closed convex cone Py ,, (resp. 2y, ).

Assume Oy (D) is globally generated. Let Y
be the image of the induced map ¢: X —P"

LEMMA: If ¢ surjects X(R) onto Y(R), then

LEMMA: If Iy is not generated by quadrics
then Py,p # 2y, p-



The ‘Real’ Solution

Focus on X C P" cut out by quadrics
where X(R) is Zariski dense and D is a
(totally real) hyperplane section.

Count the non-Koszul first syzygies:
b:=ho(X,0(2D))—(m+1)hO(X, 6(D))+("5).

THEOREM (Blekhermann-Smith-Velasco):
We have b(D)=0iff Py,p =2y ;p.

IDEA FOR =: Show that the extremal rays

of Z; »,p come from evaluation at a point.



Varieties of Minimal Degree

PROPOSITION: We have b(D) =0 if and
only if deg(X) =1 + codim(X).

DELPEZZO-BERTINI (1907): If

deg(X) =1+ codim(X) then X is a cone
over a smooth such variety. If X is smooth,
then it is either

e a quadric hypersurface
e rational normal scroll, or
e the Veronese surface P> C P°



Toric Varieties

Rational normal scrolls are toric varieties.
Let A be the polytope associated to Oy (D).
If the corresponding Ehrhart series is

sz
=0 (1—p)t!

then we have b(D) = h}

BATYREV-NILL (2007) give a polyhedral
description of the possible A.



