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Abstract

A finitely generated group is non-amenable if any of its Cayley graphs
has a positive isoperimetric constant. That constant depends on the gen-
erating set chosen. We show that groups whose first `2-Betti number is
positive have a positive lower bound to their isoperimetric constant over
all generating sets. We do this by considering the free uniform spanning
forests in the Cayley graphs. This is joint work with Mikaël Pichot and
Stéphane Vassout.

1 Background

Let G be the Cayley graph of the (countably infinite) group Γ with respect to
the generating set S. E.g. the Cayley graph of Γ = Zn with the set of generators
{±ei}ni=1 (where ei is the unit vector with a 1 in the ith coordinate) is the infinite
grid in Rn.

Let Bm be the ball of radius m about the identity. We know that Bm ·Bn =
Bm+n, so we have the supermultiplicative property

|Bm| |Bn| ≥ |Bm+n| .

Thus the limit
lim

n→∞
|Bn|1/n =: gr (G) ≡ gr (Γ, S)

exists, and is called the exponential growth rate of G. If gr (G) > 1, then we
say that G has exponential growth. Note that the exponential growth rate does
depend on the set of generators S, but whether or not G has exponential growth
does not depend on S—it is a property of the group Γ.

In 1981, Gromov asked the following question. If gr (G) > 1, is infS gr (Γ, S) >
1? If infS gr (Γ, S) > 1 then we say the group Γ satisfies the uniform exponen-
tial growth property. Examples of groups satisfying this property include free
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groups, word hyperbolic groups, solvable groups, linear groups, etc. However,
the answer in general to Gromov’s question is no: J.S. Wilson provided a coun-
terexample in 2004. This counterexample Γ actually contains F2 (the free group
on 2 generators, which has uniform exponential growth) as a subgroup, and all
of the generating sets S have |S| = 2.

For K ⊂ Γ, define the following two notions of boundary.

∂int
S K := {x ∈ K : xS * K}

∂ext
S K := {x 6∈ K : xS ∩K 6= ∅} .

Define also the isoperimetric constant

Φ (Γ, S) := inf

{
|∂SK|
|K|

: ∅ 6= K ⊆ Γ,K finite

}
.

The two notions of boundary are related via∣∣∂intK
∣∣

|K|
=

∣∣∂extK0
∣∣

|K0|+ |∂extK0|
,

and so consequently

Φint (Γ, S) =
Φext (Γ, S)

1 + Φext (Γ, S)
,

i.e. it does not matter which notion of boundary we use in the definition of the
isoperimetric constant when we care about positivity / uniformity questions.

Whether Φ (Γ, S) is positive or not does not depend on the generating set
S—it is a property of the group Γ. When Φ (Γ, S) > 0, we say that Γ is non-
amenable. For example, the d-dimensional Euclidean lattice is amenable, since
if we take a box with sidelength n, then this will have volume nd, but the volume
of its boundary is of order nd−1, and the ratio of the two goes to 0 as n goes to
infinity.

Note that
gr (Γ, S) ≥ 1 + Φext (Γ, S)

since
|Bn+1|
|Bn|

≥ 1 + Φext (Γ, S) .

So non-amenable groups have exponential growth. The converse is not true:
there exist amenable groups with exponential growth, e.g. solvable groups and
lamplighter groups.

Another question (analogous to Gromov’s question) is the following. If
Φ (Γ, S) > 0, is infS Φ (Γ, S) > 0 (i.e. is there a uniform bound on the expan-
sion constant)? The answer was given by Arzhantseva, Burillo, Lustig, Reeves,
Short, and Ventura in 2005. The statement is true for many families of groups,
e.g. free groups, hyperbolic groups, Burnside groups, etc., but not true in gen-
eral. A counterexample is

BS (m,n) :=
〈
a, t
∣∣t−1amt = an

〉
,

where (m,n) = 1, m,n > 1. Actually, Wilson’s example above is a counterex-
ample too; it is non-amenable, since it contains F2 as a subgroup.
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2 Main result

The main result is the following.

Theorem 2.1 (Lyons, Pichot, Vassout, 2008).

Φext (Γ, S) ≥ 2β1 (Γ) ,

where β1 (Γ) is the first `2-Betti number.

A few properties of the first `2-Betti number:

• β1 (Γ) = 0 if Γ is finite or amenable.

• β1 (Γ1 × Γ2) = β1 (Γ1) + β2 (Γ2) + 1− 1
|Γ1| −

1
|Γ2| .

• β1 (Γ) = 2g − 2 if Γ is the fundamental group of an orientable surface of
genus g.

• β1 (Γ1 × Γ2) = 0 if Γ1,Γ2 are infinite.

Mann asked the following question this year: are there free products whose

uniform growth rate lies in the interval
(√

2, 1+
√

5
2

)
? The answer to this ques-

tion is a corollary of the main theorem. The only possible examples are Z2×Z5

and Z2 ∗ (Z2×Z2).
Where do the interval edges come from? The uniform growth rate of Z2×Z3

is
√

2, while the uniform growth rate of Z2×Z4 is 1+
√

5
2 . Why is the answer

true? All other free products (except Z2 ∗Z2) have 1 + 2β1 ≥ 5
3 .

The proof of the main theorem goes via a connection to free uniform spanning
forests in Cayley graphs. For a finite connected graph, its spanning tree is the
subset of edges that is maximal without cycles. If we choose one uniformly
at random, we call it a Uniform Spanning Tree (UST). If we have a sequence
of subgraphs of a graph G, the nth subgraph giving the uniform spanning tree
USTn, then USTn converges weakly to what is called the Free Uniform Spanning
Forest (FUSF). The FUSF is invariant with respect to all automorphisms of
G. In particular, in a Cayley graph G = (Γ, S), the expected degree of a vertex
in the FUSF is the same for every vertex, so it makes sense to talk about the
expected degree of the FUSF on (Γ, S). Lyons showed in 2003 that this is
exactly 2β1 (Γ) + 2.

Now let us use this fact to prove the theorem. Here is the idea of the talk.
Let us look at the FUSF F . Let F ′ be the part of F that touches K (i.e. the
edges with at least one vertex in K). Let L := V (F ′) \K. Since F is a forest,
we have∑

x∈K
degF (x) ≤

∑
x∈K∪L

degF ′ (x)− |L| = 2 |E (F ′)| − |L|

< 2 |V (F ′)| − |L| = 2 |K|+ |L| ≤ 2 |K|+
∣∣∂ext

S K
∣∣ .
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Now let us take expectation. The right hand side is not random, while the value
of the left hand side is given by Lyons (2003), so we get

|K| (2β1 + 2) ≤ 2 |K|+
∣∣∂ext

S K
∣∣

and dividing by |K| we get the theorem.
Finally, let us show that β1 does not depend on the generating set S. We

begin with an old observation about uniform spanning trees (although of course
it was not originally formulated in this language).

Theorem 2.2 (Kirchoff, 1847). P(e ∈ UST) = 〈P⊥� χe, χe〉, where χe is the
indicator function of the edge e and � is the space spanned by indicators of
cycles.

One can take this theorem to a limit, and prove the exact same thing for a
FUSF:

Theorem 2.3 (BLPS, 2001). P(e ∈ FUSF) = 〈P⊥� χe, χe〉, where χe is the
indicator function of the edge e and � is the space spanned by indicators of
cycles.

Thus, the expected degree of the identity in an FUSF (which is the same, of
course, as the expected degree of any edge) is∑

s∈S∪S−1

〈P⊥� ξ(id,s), ξ(id,s)〉 = 2 dimΓ �⊥,

where dimΓ denotes the von Neumann dimension. But this last quantity is
independent of S!
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