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Planar Brownian motion
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Planar Brownian motion

Theorem (Lévy 1940)

Let B be a planar Brownian motion. Then

L(B[0,1]) =0 a.s.

Perla Sousi Brownian motion with variable drift



Area of planar Brownian motion with drift

Let f be a continuous function. Does (B + f)[0,1] still have 0 area?
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Area of planar Brownian motion with drift

Let f be a continuous function. Does (B + f)[0,1] still have 0 area?

An a.s. property insensitive to the drift:
For any f continuous, B + f is nowhere differentiable a.s.
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Cameron—Martin Theorem

Denote by D[0, 1] the Dirichlet space

D[0,1] = {f € C[0,1] : 3g € L?[0,1] s.t. f(t) = /tg(s)dsﬁt € [o, 1]}
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Cameron—Martin Theorem

Denote by D[0, 1] the Dirichlet space

D[0,1] = {f € C[0,1] : 3g € L?[0,1] s.t. f(t) = /tg(s)dsﬁt € [o, 1]}

Theorem (Cameron—Martin 1944)

If f € D[0,1], then the law of B is mutually absolutely continuous w.r.t.
the law of B + f.
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Cameron—Martin Theorem

Denote by D[0, 1] the Dirichlet space

D[0,1] = {f € C[0,1] : 3g € L?[0,1] s.t. f(t) = /tg(s)dsﬁt € [o, 1]}

Theorem (Cameron—Martin 1944)

If f € D[0,1], then the law of B is mutually absolutely continuous w.r.t.
the law of B + f.

Hence, if f € D[0,1], then £(B + f)[0,1] =0 as.
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Graversen's result

Theorem (Graversen 1982)

For all 0 < aw < 1/2, there exists a Hélder(«:) continuous function
f:Ry - R? st E[L(B+1)[0,1]] > 0.
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Le-Gall's result

The condition & < 1/2 in Graversen's theorem was not an accident,
because
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Le-Gall's result

The condition & < 1/2 in Graversen's theorem was not an accident,
because

Theorem (Le-Gall 1988)

If f is Holder(1/2), then

L(B+1)[0,1]=0 a.s.

Perla Sousi Brownian motion with variable drift



Le-Gall's result

The condition & < 1/2 in Graversen's theorem was not an accident,
because

Theorem (Le-Gall 1988)

If f is Holder(1/2), then

L(B+1)[0,1]=0 a.s.

We will see: same transition from Holder(«) for o < 1/2 to a =1/2
applies to a large variety of properties of Brownian motion.
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Antunovi¢, Peres and Vermesi result

Very recently, Antunovi¢, Peres and Vermesi strengthened Graversen's
result and they proved
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Antunovi¢, Peres and Vermesi result

Very recently, Antunovi¢, Peres and Vermesi strengthened Graversen's
result and they proved

Theorem (Antunovié et al 2010)

For any a < 1/2, there exists a Hélder(a) function f : R, — R? for
which (B + f)[0, 1] completely covers an open set a.s.
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A remaining question

In all these works it was not clear whether for any continuous f

P(L(B + £)[0,1] > 0) € {0, 1}.
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A remaining question

In all these works it was not clear whether for any continuous f

P(L(B + £)[0,1] > 0) € {0, 1}.

This was the impetus for our work.
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Let (B;,0 <t < 1) be a standard Brownian motion in R and let
f :[0,1] — R? be a continuous function.
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Let (B;,0 <t < 1) be a standard Brownian motion in R and let
f :[0,1] — R? be a continuous function.

Theorem (Peres and S.)
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Let (B;,0 <t < 1) be a standard Brownian motion in R and let
f :[0,1] — R? be a continuous function.

Theorem (Peres and S.)

e P(L(B+f)[0,1] > 0) € {0,1}.
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Let (B;,0 <t < 1) be a standard Brownian motion in R and let
f :[0,1] — R? be a continuous function.

Theorem (Peres and S.)

e P(L(B+f)[0,1] > 0) € {0,1}.
o P(interior of (B + f)[0,1] # 0) € {0, 1}.
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Let (B;,0 <t < 1) be a standard Brownian motion in R and let
f :[0,1] — R? be a continuous function.

Theorem (Peres and S.)

e P(L(B+f)[0,1] > 0) € {0,1}.
o P(interior of (B + f)[0,1] # 0) € {0, 1}.

e dim(B + £)[0,1] = ¢ a.s., where c is a positive constant and dim is
the Hausdorff dimension.
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Beyond the Cameron—Martin theorem

Again the same setting, B is a standard Brownian motion and D[0, 1] is
the Dirichlet space

D[0,1] = {f € C[0,1]: 3g € L?[0,1] s.t. f(t) = /Otg(s)ds,Vt e [0, 1]}
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Beyond the Cameron—Martin theorem

Again the same setting, B is a standard Brownian motion and D[0, 1] is
the Dirichlet space

D[0,1] = {f € C[0,1]: 3g € L?[0,1] s.t. f(t) = /Otg(s)ds,Vt e [0, 1]}

Theorem (Cameron—Martin 1944)

If f ¢ D[0,1], then the law of B and the law of B + f are singular.
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Beyond the Cameron—Martin theorem

Again the same setting, B is a standard Brownian motion and D[0, 1] is
the Dirichlet space

D[0,1] = {f € C[0,1]: 3g € L?[0,1] s.t. f(t) = /Otg(s)ds,Vt e [0, 1]}

Theorem (Cameron—Martin 1944)

If f ¢ D[0,1], then the law of B and the law of B + f are singular.

As a consequence, when f ¢ D[0, 1], there is some a.s. property of
Brownian motion that fails for B + f.
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Hitting probabilities

Cauchy—Scwartz inequality gives that if f € D[0,1], then f is
Hélder(1/2).
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Hitting probabilities

Cauchy—Scwartz inequality gives that if f € D[0,1], then f is
Hélder(1/2).

The space of Holder(«) continuous functions is much larger than D0, 1].
Indeed, for any « € (0,1/2], most Holder(a) continuous functions are
nowhere differentiable.
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Hitting probabilities

Cauchy—Scwartz inequality gives that if f € D[0,1], then f is
Hélder(1/2).

The space of Holder(«) continuous functions is much larger than D0, 1].

Indeed, for any « € (0,1/2], most Holder(a) continuous functions are
nowhere differentiable.

Does B + f hit the same sets as B, if f is Holder(1/2)?
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Hitting probabilities

Theorem (Peres and S.)

Let A be a closed set of RY, for d > 2, and f a Holder(1/2) continuous
function. If P.(B hits A) > 0, for all x € RY, then P, (B + f hits A) > 0,
for all x € RY.
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Hitting probabilities

Theorem (Peres and S.)

Let A be a closed set of RY, for d > 2, and f a Holder(1/2) continuous
function. If P.(B hits A) > 0, for all x € RY, then P, (B + f hits A) > 0,
for all x € RY.

In 2 dimensions, if P,(B hits A) > 0, then by neighborhood recurrence,
P.(B hits A) = 1. The same is true for B + f, if f is Holder(1/2).
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Hitting probabilities

Theorem (Peres and S.)

Let A be a closed set of RY, for d > 2, and f a Holder(1/2) continuous
function. If P.(B hits A) > 0, for all x € RY, then P, (B + f hits A) > 0,
for all x € RY.

In 2 dimensions, if P,(B hits A) > 0, then by neighborhood recurrence,
P.(B hits A) = 1. The same is true for B + f, if f is Holder(1/2).

Concerning the existence of multiple points, B + f behaves in the same
way as B, if f is Holder(1/2).
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Hitting probabilities

Theorem (Peres and S.)

Let A be a closed set of RY, for d > 2, and f a Holder(1/2) continuous
function. If P.(B hits A) > 0, for all x € RY, then P, (B + f hits A) > 0,
for all x € RY.

In 2 dimensions, if P,(B hits A) > 0, then by neighborhood recurrence,
P.(B hits A) = 1. The same is true for B + f, if f is Holder(1/2).

Concerning the existence of multiple points, B + f behaves in the same
way as B, if f is Holder(1/2).

(This can fail if f is not Holder(1/2), e.g. for f fractional Brownian
motion.)
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Hausdorff dimension
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Hausdorff dimension

Definition (Hausdorff dimension)

For every a > 0, the a-Hausdorff content of a metric space E is defined

HE(E) = inf{Z(diam(E,-))a : E1,Es, ... is a covering of E}.
i=1
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Hausdorff dimension

Definition (Hausdorff dimension)

For every a > 0, the a-Hausdorff content of a metric space E is defined
HE(E) = inf{Z(diam(E,-))a : E1,Es, ... is a covering of E}.
i=1

The Hausdorff dimension of E is defined to be

dim E = inf{a > 0: H (E) = 0}.
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Hausdorff dimension

Let B be a standard Brownian motion in d > 1 dimensions and let f be a
continuous function, f : [0,1] — R¢.
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Hausdorff dimension

Let B be a standard Brownian motion in d > 1 dimensions and let f be a
continuous function, f : [0,1] — R¢.

From our 0-1 law, we know that dim(B + f)[0, 1] is a constant a.s.
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Hausdorff dimension

Let B be a standard Brownian motion in d > 1 dimensions and let f be a
continuous function, f : [0,1] — R¢.

From our 0-1 law, we know that dim(B + f)[0, 1] is a constant a.s.

Can we provide bounds for dim(B + £)[0,1]?
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Hausdorff dimension

Let B be a standard Brownian motion in d > 1 dimensions and let f be a
continuous function, f : [0,1] — R9.
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Hausdorff dimension

Let B be a standard Brownian motion in d > 1 dimensions and let f be a
continuous function, f : [0,1] — R9.

Recall that dim B[0,1] =2 A d a.s.
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Hausdorff dimension

Let B be a standard Brownian motion in d > 1 dimensions and let f be a
continuous function, f : [0,1] — R9.

Recall that dim B[0,1] =2 A d a.s.

Theorem (Peres and S.)

dim(B + £)[0, 1] > max{2 A d,dim f[0,1]} a.s.
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Back to the 0-1 law

Let B be a d dimensional standard Brownian motion and let f be a
continuous function, f : [0,1] — R9.
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Back to the 0-1 law

Let B be a d dimensional standard Brownian motion and let f be a
continuous function, f : [0,1] — R9.

Theorem (0-1 law for £)

P(L(B + )[0,1] > 0) € {0,1}.
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Proof of the 0-1 law for L

For an interval | C [0, 1], define W(/) = L(B + f)(/).
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Proof of the 0-1 law for L

For an interval | C [0, 1], define W(/) = L(B + f)(/).

Write D, —{[ :k:l,...,Q”}.

2n 2"}
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Proof of the 0-1 law for L

For an interval | C [0, 1], define W(/) = L(B + f)(/).

Write D, —{[ :k:l,...,Q”}.

2n 2"}

Declare | € D, good if W(/) > 0. Write p; = P(V(/) > 0).
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Proof of the 0-1 law for L

For an interval | C [0, 1], define W(/) = L(B + f)(/).

Write D, —{[ :k:l,...,Q”}.

2n 2"}

Declare | € D, good if W(/) > 0. Write p; = P(V(/) > 0).

Let Z, be the number of good intervals of D,,. Then Z, is increasing in
n.
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Proof of the 0-1 law for L

For an interval | C [0, 1], define W(/) = L(B + f)(/).

Write D, —{[ :k:l,...,Q”}.

¥
Declare | € D, good if W(/) > 0. Write p; = P(V(/) > 0).

Let Z, be the number of good intervals of D,,. Then Z, is increasing in
n.

Hence E[Z,] = > _,cp, pi must be increasing.
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Proof of the 0-1 law for L

For an interval | C [0, 1], define W(/) = L(B + f)(/).

Write D, —{[ :k:l,...,Q”}.

¥
Declare | € D, good if W(/) > 0. Write p; = P(V(/) > 0).

Let Z, be the number of good intervals of D,,. Then Z, is increasing in
n.

Hence E[Z,] = > _,cp, pi must be increasing.

The limit of E[Z,] exists and can be either infinite or finite.
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Proof of the 0-1 law for L

Case 1: E[Z,] =3 /cp pi T 0
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Proof of the 0-1 law for L

Case 1: E[Z,] = X,cp, p1 1 00 |Recall (1) = L(B + f)(/)]
Zn =2 ep, L(V(/) > 0)
pr=P(V(I) >0)|
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Proof of the 0-1 law for L

Case 1: E[Z,] = X,cp, p1 1 00 |Recall (1) = L(B + f)(/)]
Zn =2 ep, L(V(/) > 0)
pr=P(V(I) >0)|

P(W([0,1]) = 0)




Proof of the 0-1 law for L

Case 1: E[Z,] = X,cp, p1 1 00 |Recall (1) = L(B + f)(/)]
Zn =2 ep, L(V(/) > 0)
pr=P(V(I) >0)|

P(W([0,1]) = 0) = P(V/ € D, : W(I) = 0)




Proof of the 0-1 law for L

Case 1: E[Z,] = X,cp, p1 1 00 |Recall (1) = L(B + f)(/)]
Zn =2 ep, L(V(/) > 0)
pr=P(V(I) >0)|

PW([0,1]) = 0) = P(v/ € D, - W(I H(l—p/)




Proof of the 0-1 law for L

Case 1: E[Z,] = X,cp, p1 1 00 |Recall (1) = L(B + f)(/)]
Zn =2 ep, L(V(/) > 0)
pr=P(V(I) >0)|

P(W([0,1]) =0) = P(¥/ € D, : W(1) = 0) = [] (1 - p1) < e Zremn




Proof of the 0-1 law for L

Case 1: E[Z,] = X,cp, p1 1 00 |Recall (1) = L(B + f)(/)]
Zn =2 ep, L(V(/) > 0)
pr=P(V(I) >0)|

P(W([0,1]) =0) = P(¥/ € D, : W(1) = 0) = [] (1 - p1) < e Zremn

Letting n — oo gives P(W([0,1]) =0) = 0.




Proof of the 0-1 law for L

Case 2: E[Z,] =) jcp p1 T C <00
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Proof of the 0-1 law for L

Case 2: E[Z,] = X)cp, p1 1 C < oo |Recall (1) = £(B + f)(1)]
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Proof of the 0-1 law for L

Case 2: E[Z,] = X)cp, p1 1 C < oo |Recall (1) = £(B + f)(1)]
Zy = ZIeD,, L(w(/) >0)
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Proof of the 0-1 law for L

Case 2: E[Z,] = X)cp, p1 1 C < oo |Recall (1) = £(B + f)(1)]
Zy = ZIeD,, L(w(/) >0)
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Proof of the 0-1 law for L

Case 2: E[Z,] = X)cp, p1 1 C < oo |Recall (1) = £(B + f)(1)]
Zy = ZIeD,, L(w(/) >0)

Declare x € [0, 1] good if all dyadic intervals that contain it are good.
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Proof of the 0-1 law for L

Case 2: E[Z,] = X)cp, p1 1 C < oo |Recall (1) = £(B + f)(1)]
Zy = ZIeD,, L(w(/) >0)

Declare x € [0, 1] good if all dyadic intervals that contain it are good.

I contains a good point < W(/) > 0.
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Proof of the 0-1 law for L

Case 2: E[Z,] = X)cp, p1 1 C < oo |Recall (1) = £(B + f)(1)]
Zy = ZIeD,, L(w(/) >0)

Declare x € [0, 1] good if all dyadic intervals that contain it are good.

I contains a good point < W(/) > 0.

If |[{good points € [0,1]}| = o0 = Z, — oo, contradiction.
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Proof of the 0-1 law for L

Case 2: E[Z,] = X)cp, p1 1 C < oo |Recall (1) = £(B + f)(1)]
Zy = ZIeD,, L(w(/) >0)

Declare x € [0, 1] good if all dyadic intervals that contain it are good.

I contains a good point < W(/) > 0.
If |[{good points € [0,1]}| = o0 = Z, — oo, contradiction.

Hence,

{good points € [0,1]}] < .
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Proof of the 0-1 law for L

Case 2: E[Z,] = X)cp, p1 1 C < oo |Recall (1) = £(B + f)(1)]
Zy = ZIeD,, L(w(/) >0)

Declare x € [0, 1] good if all dyadic intervals that contain it are good.

I contains a good point < W(/) > 0.
If |[{good points € [0,1]}| = o0 = Z, — oo, contradiction.

Hence,

{good points € [0,1]}] < .

[0,1] is the union of the good points and the dyadic intervals that do not
contain any good points.
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Proof of the 0-1 law for L

Case 2: E[Z,] = X)cp, p1 1 C < oo |Recall (1) = £(B + f)(1)]
Zy = ZIeD,, L(w(/) >0)

Declare x € [0, 1] good if all dyadic intervals that contain it are good.

I contains a good point < W(/) > 0.
If |[{good points € [0,1]}| = o0 = Z, — oo, contradiction.

Hence,

{good points € [0,1]}] < .

[0,1] is the union of the good points and the dyadic intervals that do not
contain any good points.

Since W(good points) = 0 = W([0,1]) =0 a.s.

Perla Sousi Brownian motion with variable drift



More on 0-1 laws

Let (B;,0 < t < 1) be a standard Brownian motion in RY, let
f :]0,1] — R? be a continuous function and A a closed set in [0, 1].
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More on 0-1 laws

Let (B;,0 < t < 1) be a standard Brownian motion in RY, let
f :]0,1] — R? be a continuous function and A a closed set in [0, 1].

Which of the following events satisfy a 0-1 law?
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More on 0-1 laws

Let (B;,0 < t < 1) be a standard Brownian motion in RY, let
f :]0,1] — R? be a continuous function and A a closed set in [0, 1].

Which of the following events satisfy a 0-1 law?
o {L(B+T)(A) >0}
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More on 0-1 laws

Let (B;,0 < t < 1) be a standard Brownian motion in RY, let
f :]0,1] — R? be a continuous function and A a closed set in [0, 1].

Which of the following events satisfy a 0-1 law?
o {L(B+T)(A) >0}
o {interior of (B + f)(A) # 0}
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More on 0-1 laws

Let (B;,0 < t < 1) be a standard Brownian motion in RY, let
f :]0,1] — R? be a continuous function and A a closed set in [0, 1].

Which of the following events satisfy a 0-1 law?
o {L(B+T)(A) >0}
o {interior of (B + f)(A) # 0}
o {dim(B + f)(A) > c}
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More on 0-1 laws

Let (B;,0 < t < 1) be a standard Brownian motion in RY, let
f :]0,1] — R? be a continuous function and A a closed set in [0, 1].

Which of the following events satisfy a 0-1 law?
o {L(B+T)(A) >0}
o {interior of (B + f)(A) # 0}
o {dim(B + f)(A) > c}
o {Bis 1-1on A}
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More on 0-1 laws

Let (B:,0 < t < 1) be a standard Brownian motion in RY, let
f:]0,1] — R? be a continuous function and A a closed set in [0, 1].

Which of the following events satisfy a 0-1 law?
e {L(B+T)(A) >0}
o {interior of (B + f)(A) # 0}
o {dim(B + f)(A) > ¢}
e {Bis 1-1on A}
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More on 0-1 laws

Let (B:,0 < t < 1) be a standard Brownian motion in RY, let
f:]0,1] — R? be a continuous function and A a closed set in [0, 1].

Which of the following events satisfy a 0-1 law?
o {L(B+)A) >0} /
o {interior of (B + f)(A) # 0}
o {dim(B + f)(A) > ¢}
e {Bis 1-1on A}
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More on 0-1 laws

Let (B:,0 < t < 1) be a standard Brownian motion in RY, let
f:]0,1] — R? be a continuous function and A a closed set in [0, 1].

Which of the following events satisfy a 0-1 law?
o {L(B+)A) >0} /
o {interior of (B + f)(A) # 0} /
o {dim(B + f)(A) > ¢}
e {Bis 1-1on A}
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More on 0-1 laws

Let (B:,0 < t < 1) be a standard Brownian motion in RY, let
f:]0,1] — R? be a continuous function and A a closed set in [0, 1].

Which of the following events satisfy a 0-1 law?
o {L(B+)A) >0} /
o {interior of (B + f)(A) # 0} /
o {dm(B+f)(A)>c}
e {Bis 1-1on A}
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More on 0-1 laws

Let (B:,0 < t < 1) be a standard Brownian motion in RY, let
f:]0,1] — R? be a continuous function and A a closed set in [0, 1].

Which of the following events satisfy a 0-1 law?
o {L(B+)A) >0} /
o {interior of (B + f)(A) # 0} /
o {dm(B+f)(A)>c}
o {Bisl-lon A} X
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