Brownian motion with variable drift

Perla Sousi ¹

joint work with Yuval Peres $^{\rm 2}$

²Microsoft Research, Redmond ¹University of Cambridge

∃ ⊳

Planar Brownian motion

< ∃ >

-

æ

Planar Brownian motion

Theorem (Lévy 1940)

Let B be a planar Brownian motion. Then

 $\mathcal{L}(B[0,1]) = 0 \text{ a.s.}$

< ≣ >

≣ ▶

æ

Area of planar Brownian motion with drift

Question

Let f be a continuous function. Does (B + f)[0, 1] still have 0 area?

(注) → (注) →

Area of planar Brownian motion with drift

Question

Let f be a continuous function. Does (B + f)[0, 1] still have 0 area?

An a.s. property insensitive to the drift: For any f continuous, B + f is nowhere differentiable a.s. Denote by D[0,1] the **Dirichlet space**

$$D[0,1] = \left\{ f \in C[0,1] : \exists g \in \mathsf{L}^2[0,1] ext{ s.t. } f(t) = \int_0^t g(s) ds, orall t \in [0,1]
ight\}.$$

Denote by D[0,1] the **Dirichlet space**

$$D[0,1] = \left\{ f \in C[0,1] : \exists g \in \mathsf{L}^2[0,1] ext{ s.t. } f(t) = \int_0^t g(s) ds, orall t \in [0,1]
ight\}.$$

Theorem (Cameron-Martin 1944)

If $f \in D[0,1]$, then the law of B is mutually absolutely continuous w.r.t. the law of B + f.

Denote by D[0,1] the **Dirichlet space**

$$D[0,1] = \left\{ f \in C[0,1] : \exists g \in \mathsf{L}^2[0,1] ext{ s.t. } f(t) = \int_0^t g(s) ds, orall t \in [0,1]
ight\}.$$

Theorem (Cameron-Martin 1944)

If $f \in D[0,1]$, then the law of B is mutually absolutely continuous w.r.t. the law of B + f.

Hence, if $f \in D[0,1]$, then $\mathcal{L}(B+f)[0,1] = 0$ a.s.

Theorem (Graversen 1982)

For all $0 < \alpha < 1/2$, there exists a Hölder(α) continuous function $f : \mathbb{R}_+ \to \mathbb{R}^2$ s.t. $\mathbb{E}[\mathcal{L}(B+f)[0,1]] > 0$.

∃ ⊳

The condition $\alpha < 1/2$ in Graversen's theorem was not an accident, because

- ∢ ≣ →

3

The condition $\alpha < 1/2$ in Graversen's theorem was not an accident, because

Theorem (Le-Gall 1988)

If f is H"older(1/2), then

 $\mathcal{L}(B+f)[0,1] = 0$ a.s.

臣▶ ★ 臣▶

3

The condition $\alpha < 1/2$ in Graversen's theorem was not an accident, because

Theorem (Le-Gall 1988)

If f is H"older(1/2), then

 $\mathcal{L}(B+f)[0,1] = 0$ a.s.

We will see: same transition from Hölder(α) for $\alpha < 1/2$ to $\alpha = 1/2$ applies to a large variety of properties of Brownian motion.

- ∢ ≣ →

Very recently, Antunović, Peres and Vermesi strengthened Graversen's result and they proved

∃ ⊳

Very recently, Antunović, Peres and Vermesi strengthened Graversen's result and they proved

Theorem (Antunović et al 2010)

For any $\alpha < 1/2$, there exists a Hölder(α) function $f : \mathbb{R}_+ \to \mathbb{R}^2$ for which (B + f)[0, 1] completely covers an open set a.s.

In all these works it was not clear whether for any continuous f

 $\mathbb{P}(\mathcal{L}(B+f)[0,1]>0)\in\{0,1\}.$

< ∃ →

In all these works it was not clear whether for any continuous f

 $\mathbb{P}(\mathcal{L}(B+f)[0,1]>0)\in\{0,1\}.$

This was the impetus for our work.

.⊒...>

< ∃⇒

Theorem (Peres and S.)

프 + + 프 +

Theorem (Peres and S.)

• $\mathbb{P}(\mathcal{L}(B+f)[0,1] > 0) \in \{0,1\}.$

문에 비용에

Theorem (Peres and S.)

- $\mathbb{P}(\mathcal{L}(B+f)[0,1] > 0) \in \{0,1\}.$
- $\mathbb{P}(\text{interior of } (B+f)[0,1] \neq \emptyset) \in \{0,1\}.$

- ∢ ≣ →

Theorem (Peres and S.)

- $\mathbb{P}(\mathcal{L}(B+f)[0,1] > 0) \in \{0,1\}.$
- $\mathbb{P}(\text{interior of } (B+f)[0,1] \neq \emptyset) \in \{0,1\}.$
- $\dim(B + f)[0, 1] = c$ a.s., where c is a positive constant and dim is the Hausdorff dimension.

医下 不正下

Beyond the Cameron-Martin theorem

Again the same setting, B is a standard Brownian motion and D[0,1] is the Dirichlet space

$$D[0,1] = \left\{ f \in C[0,1] : \exists g \in \mathsf{L}^2[0,1] ext{ s.t. } f(t) = \int_0^t g(s) ds, orall t \in [0,1]
ight\}.$$

- ∢ ⊒ ▶

Beyond the Cameron-Martin theorem

Again the same setting, B is a standard Brownian motion and D[0,1] is the Dirichlet space

$$D[0,1] = \left\{ f \in C[0,1] : \exists g \in \mathsf{L}^2[0,1] ext{ s.t. } f(t) = \int_0^t g(s) ds, orall t \in [0,1]
ight\}.$$

Theorem (Cameron-Martin 1944)

If $f \notin D[0,1]$, then the law of B and the law of B + f are singular.

∃ → < ∃ →</p>

Again the same setting, B is a standard Brownian motion and D[0,1] is the Dirichlet space

$$D[0,1] = \left\{ f \in C[0,1] : \exists g \in \mathsf{L}^2[0,1] ext{ s.t. } f(t) = \int_0^t g(s) ds, orall t \in [0,1]
ight\}.$$

Theorem (Cameron–Martin 1944)

If $f \notin D[0,1]$, then the law of B and the law of B + f are singular.

As a consequence, when $f \notin D[0,1]$, there is some a.s. property of Brownian motion that fails for B + f.

< 注 > < 注 >

Cauchy–Scwartz inequality gives that if $f \in D[0, 1]$, then f is Hölder(1/2).

프 🖌 🔺 프 🕨

Cauchy–Scwartz inequality gives that if $f \in D[0, 1]$, then f is Hölder(1/2).

The space of Hölder(α) continuous functions is much larger than D[0, 1]. Indeed, for any $\alpha \in (0, 1/2]$, most Hölder(α) continuous functions are nowhere differentiable.

4 E b

Cauchy–Scwartz inequality gives that if $f \in D[0, 1]$, then f is Hölder(1/2).

The space of Hölder(α) continuous functions is much larger than D[0, 1]. Indeed, for any $\alpha \in (0, 1/2]$, most Hölder(α) continuous functions are nowhere differentiable.

Question

Does B + f hit the same sets as B, if f is Hölder(1/2)?

E > < E >

Let A be a closed set of \mathbb{R}^d , for $d \ge 2$, and f a Hölder(1/2) continuous function. If $\mathbb{P}_x(B \text{ hits } A) > 0$, for all $x \in \mathbb{R}^d$, then $\mathbb{P}_x(B + f \text{ hits } A) > 0$, for all $x \in \mathbb{R}^d$.

Let A be a closed set of \mathbb{R}^d , for $d \ge 2$, and f a Hölder(1/2) continuous function. If $\mathbb{P}_x(B \text{ hits } A) > 0$, for all $x \in \mathbb{R}^d$, then $\mathbb{P}_x(B + f \text{ hits } A) > 0$, for all $x \in \mathbb{R}^d$.

In 2 dimensions, if $\mathbb{P}_x(B \text{ hits } A) > 0$, then by neighborhood recurrence, $\mathbb{P}_x(B \text{ hits } A) = 1$. The same is true for B + f, if f is Hölder(1/2).

Let A be a closed set of \mathbb{R}^d , for $d \ge 2$, and f a Hölder(1/2) continuous function. If $\mathbb{P}_x(B \text{ hits } A) > 0$, for all $x \in \mathbb{R}^d$, then $\mathbb{P}_x(B + f \text{ hits } A) > 0$, for all $x \in \mathbb{R}^d$.

In 2 dimensions, if $\mathbb{P}_x(B \text{ hits } A) > 0$, then by neighborhood recurrence, $\mathbb{P}_x(B \text{ hits } A) = 1$. The same is true for B + f, if f is Hölder(1/2).

Concerning the existence of multiple points, B + f behaves in the same way as B, if f is Hölder(1/2).

Let A be a closed set of \mathbb{R}^d , for $d \ge 2$, and f a Hölder(1/2) continuous function. If $\mathbb{P}_x(B \text{ hits } A) > 0$, for all $x \in \mathbb{R}^d$, then $\mathbb{P}_x(B + f \text{ hits } A) > 0$, for all $x \in \mathbb{R}^d$.

In 2 dimensions, if $\mathbb{P}_x(B \text{ hits } A) > 0$, then by neighborhood recurrence, $\mathbb{P}_x(B \text{ hits } A) = 1$. The same is true for B + f, if f is Hölder(1/2).

Concerning the existence of multiple points, B + f behaves in the same way as B, if f is Hölder(1/2).

(This can fail if f is not Hölder(1/2), e.g. for f fractional Brownian motion.)

< 注入 < 注入

Hausdorff dimension

Perla Sousi Brownian motion with variable drift

문▶ 문

Definition (Hausdorff dimension)

For every $\alpha \geq$ 0, the α -Hausdorff content of a metric space E is defined

$$\mathcal{H}^{lpha}_{\infty}(E) = \inf\{\sum_{i=1}^{\infty} (\operatorname{diam}(E_i))^{lpha} : E_1, E_2, \dots \text{ is a covering of } E\}$$

Definition (Hausdorff dimension)

For every $\alpha \geq$ 0, the α -Hausdorff content of a metric space E is defined

$$\mathcal{H}^{lpha}_{\infty}(E) = \inf\{\sum_{i=1}^{\infty} (\operatorname{diam}(E_i))^{lpha} : E_1, E_2, \dots \text{ is a covering of } E\}$$

The Hausdorff dimension of E is defined to be

$$\dim E = \inf \{ \alpha \ge 0 : \mathcal{H}^{\alpha}_{\infty}(E) = 0 \}.$$

Let B be a standard Brownian motion in $d \ge 1$ dimensions and let f be a continuous function, $f : [0, 1] \rightarrow \mathbb{R}^d$.

< ∃ →

Let B be a standard Brownian motion in $d \ge 1$ dimensions and let f be a continuous function, $f : [0, 1] \to \mathbb{R}^d$.

From our 0-1 law, we know that $\dim(B + f)[0, 1]$ is a constant a.s.

< ≣ >
Let B be a standard Brownian motion in $d \ge 1$ dimensions and let f be a continuous function, $f : [0, 1] \rightarrow \mathbb{R}^d$.

From our 0-1 law, we know that $\dim(B + f)[0, 1]$ is a constant a.s.

Question

Can we provide bounds for $\dim(B + f)[0, 1]$?

< ∃ >

Let B be a standard Brownian motion in $d \ge 1$ dimensions and let f be a continuous function, $f : [0, 1] \to \mathbb{R}^d$.

.⊒...>

Let B be a standard Brownian motion in $d \ge 1$ dimensions and let f be a continuous function, $f : [0, 1] \to \mathbb{R}^d$.

Recall that dim $B[0,1] = 2 \wedge d$ a.s.

∃ ⊳

Let B be a standard Brownian motion in $d \ge 1$ dimensions and let f be a continuous function, $f : [0, 1] \to \mathbb{R}^d$.

Recall that dim $B[0,1] = 2 \wedge d$ a.s.

Theorem (Peres and S.)

 $\dim(B+f)[0,1] \ge \max\{2 \land d, \dim f[0,1]\}$ a.s.

< ≣ >

Let B be a d dimensional standard Brownian motion and let f be a continuous function, $f : [0, 1] \to \mathbb{R}^d$.

< ∃ >

э

Let B be a d dimensional standard Brownian motion and let f be a continuous function, $f : [0, 1] \to \mathbb{R}^d$.

Theorem (0-1 law for \mathcal{L})

 $\mathbb{P}(\mathcal{L}(B+f)[0,1] > 0) \in \{0,1\}.$

< ≣ >

< ∃ >

Write $\mathcal{D}_n = \left\{ \left[\frac{k-1}{2^n}, \frac{k}{2^n} \right] : k = 1, \dots, 2^n \right\}.$

ほう くほう

э

Write $\mathcal{D}_n = \{ \left[\frac{k-1}{2^n}, \frac{k}{2^n} \right] : k = 1, ..., 2^n \}.$

Declare $l \in \mathcal{D}_n$ good if $\Psi(l) > 0$. Write $p_l = \mathbb{P}(\Psi(l) > 0)$.

Write
$$\mathcal{D}_n = \{ \left[\frac{k-1}{2^n}, \frac{k}{2^n} \right] : k = 1, ..., 2^n \}.$$

Declare $I \in \mathcal{D}_n$ good if $\Psi(I) > 0$. Write $p_I = \mathbb{P}(\Psi(I) > 0)$.

Let Z_n be the number of good intervals of \mathcal{D}_n . Then Z_n is increasing in n.

- ∢ ≣ ▶

Write
$$\mathcal{D}_n = \{ \left[\frac{k-1}{2^n}, \frac{k}{2^n} \right] : k = 1, ..., 2^n \}.$$

Declare $I \in \mathcal{D}_n$ good if $\Psi(I) > 0$. Write $p_I = \mathbb{P}(\Psi(I) > 0)$.

Let Z_n be the number of good intervals of \mathcal{D}_n . Then Z_n is increasing in n.

Hence $\mathbb{E}[Z_n] = \sum_{I \in D_n} p_I$ must be increasing.

·문▶ · < 문▶ · ·

Write
$$\mathcal{D}_n = \{ \left[\frac{k-1}{2^n}, \frac{k}{2^n} \right] : k = 1, ..., 2^n \}.$$

Declare $I \in \mathcal{D}_n$ good if $\Psi(I) > 0$. Write $p_I = \mathbb{P}(\Psi(I) > 0)$.

Let Z_n be the number of good intervals of \mathcal{D}_n . Then Z_n is increasing in n.

Hence $\mathbb{E}[Z_n] = \sum_{I \in D_n} p_I$ must be increasing.

The limit of $\mathbb{E}[Z_n]$ exists and can be either infinite or finite.

三下 人王下

Case 1: $\mathbb{E}[Z_n] = \sum_{I \in D_n} p_I \uparrow \infty$

∢ ≣ →

Case 1:
$$\mathbb{E}[Z_n] = \sum_{I \in D_n} p_I \uparrow \infty$$

æ

∢ 臣 ▶

Case 1:
$$\mathbb{E}[Z_n] = \sum_{I \in \mathcal{D}_n} p_I \uparrow \infty$$

 $\mathbb{P}(\Psi([0,1])=0)$

æ

-<≣>

Case 1:
$$\mathbb{E}[Z_n] = \sum_{I \in \mathcal{D}_n} p_I \uparrow \infty$$
 Rec

Recall
$$\Psi(I) = \mathcal{L}(B+f)(I)$$
 $Z_n = \sum_{l \in \mathcal{D}_n} \mathbf{1}(\Psi(I) > 0)$ $p_l = \mathbb{P}(\Psi(I) > 0)$

$$\mathbb{P}(\Psi([0,1])=0)=\mathbb{P}(\forall I\in\mathcal{D}_n:\Psi(I)=0)$$

æ

∢ ≣ ≯

Case 1:
$$\mathbb{E}[Z_n] = \sum_{l \in \mathcal{D}_n} p_l \uparrow \infty$$

 $Recall \Psi(l) = \mathcal{L}(B+f)(l)$
 $Z_n = \sum_{l \in \mathcal{D}_n} \mathbf{1}(\Psi(l) > 0)$
 $p_l = \mathbb{P}(\Psi(l) > 0)$

$$\mathbb{P}(\Psi([0,1])=0)=\mathbb{P}(\forall I\in\mathcal{D}_n:\Psi(I)=0)=\prod_{I\in\mathcal{D}_n}(1-p_I)$$

∢ 臣 ▶

э

Case 1:
$$\mathbb{E}[Z_n] = \sum_{l \in \mathcal{D}_n} p_l \uparrow \infty$$

 $Z_n = \sum_{l \in \mathcal{D}_n} \mathbf{1}(\Psi(l) > 0)$
 $p_l = \mathbb{P}(\Psi(l) > 0)$

$$\mathbb{P}(\Psi([0,1])=0)=\mathbb{P}(\forall I\in\mathcal{D}_n:\Psi(I)=0)=\prod_{I\in\mathcal{D}_n}(1-p_I)\leq e^{-\sum_{I\in\mathcal{D}_n}p_I}$$

э

∢ 臣 ▶

-

Case 1:
$$\mathbb{E}[Z_n] = \sum_{l \in \mathcal{D}_n} p_l \uparrow \infty$$

 $Recall \Psi(l) = \mathcal{L}(B + f)(l)$
 $Z_n = \sum_{l \in \mathcal{D}_n} \mathbf{1}(\Psi(l) > 0)$
 $p_l = \mathbb{P}(\Psi(l) > 0)$

$$\mathbb{P}(\Psi([0,1])=0)=\mathbb{P}(\forall I\in\mathcal{D}_n:\Psi(I)=0)=\prod_{I\in\mathcal{D}_n}(1-p_I)\leq e^{-\sum_{I\in\mathcal{D}_n}p_I}$$

Letting $n \to \infty$ gives $\mathbb{P}(\Psi([0,1]) = 0) = 0$.

< ∃⇒

Proof of the 0-1 law for ${\cal L}$

Case 2: $\mathbb{E}[Z_n] = \sum_{I \in D_n} p_I \uparrow C < \infty$

< ∃ →

Case 2: $\mathbb{E}[Z_n] = \sum_{I \in \mathcal{D}_n} p_I \uparrow C < \infty$ Recall $\Psi(I) = \mathcal{L}(B + f)(I)$

< ∃ >

Proof of the 0-1 law for \mathcal{L}

Case 2: $\mathbb{E}[Z_n] = \sum_{I \in D_n} p_I \uparrow C < \infty$

Recall
$$\Psi(I) = \mathcal{L}(B+f)(I)$$

$$Z_n = \sum_{I \in \mathcal{D}_n} \mathbf{1}(\Psi(I) > 0)$$

Proof of the 0-1 law for \mathcal{L}

Case 2: $\mathbb{E}[Z_n] = \sum_{I \in D_n} p_I \uparrow C < \infty$

Recall
$$\Psi(I) = \mathcal{L}(B+f)(I)$$

$$Z_n = \sum_{I \in \mathcal{D}_n} \mathbf{1}(\Psi(I) > 0)$$

Case 2:
$$\mathbb{E}[Z_n] = \sum_{l \in \mathcal{D}_n} p_l \uparrow C < \infty$$
 Recall $\Psi(l) = \mathcal{L}(B+f)(l)$
 $Z_n = \sum_{l \in \mathcal{D}_n} \mathbf{1}(\Psi(l) > 0)$

∢ ≣ →

Case 2:
$$\mathbb{E}[Z_n] = \sum_{l \in \mathcal{D}_n} p_l \uparrow C < \infty$$
 Recall $\Psi(l) = \mathcal{L}(B+f)(l)$
 $Z_n = \sum_{l \in \mathcal{D}_n} \mathbf{1}(\Psi(l) > 0)$

I contains a good point $\Leftrightarrow \Psi(I) > 0$.

∢ ≣ ≯

Case 2:
$$\mathbb{E}[Z_n] = \sum_{l \in \mathcal{D}_n} p_l \uparrow C < \infty$$
 Recall $\Psi(l) = \mathcal{L}(B+f)(l)$
 $Z_n = \sum_{l \in \mathcal{D}_n} \mathbf{1}(\Psi(l) > 0)$

I contains a good point $\Leftrightarrow \Psi(I) > 0$.

 $\mathsf{If} \; |\{\mathsf{good points} \; \in [0,1]\}| = \infty \Rightarrow Z_n \to \infty \text{, contradiction}.$

- ∢ ≣ ▶

Case 2:
$$\mathbb{E}[Z_n] = \sum_{l \in \mathcal{D}_n} p_l \uparrow C < \infty$$
 Recall $\Psi(l) = \mathcal{L}(B+f)(l)$
 $Z_n = \sum_{l \in \mathcal{D}_n} \mathbf{1}(\Psi(l) > 0)$

I contains a good point $\Leftrightarrow \Psi(I) > 0$.

 $\mathsf{If} \; |\{\mathsf{good points} \; \in [0,1]\}| = \infty \Rightarrow Z_n \to \infty, \; \mathsf{contradiction}.$

Hence, $|\{\text{good points }\in[0,1]\}|<\infty.$

医下颌 医下颌

Case 2:
$$\mathbb{E}[Z_n] = \sum_{l \in \mathcal{D}_n} p_l \uparrow C < \infty$$
 Recall $\Psi(l) = \mathcal{L}(B+f)(l)$
 $Z_n = \sum_{l \in \mathcal{D}_n} \mathbf{1}(\Psi(l) > 0)$

I contains a good point $\Leftrightarrow \Psi(I) > 0$.

If $|\{\text{good points } \in [0,1]\}| = \infty \Rightarrow Z_n \to \infty$, contradiction.

Hence, $|\{\text{good points } \in [0,1]\}| < \infty.$

[0,1] is the union of the good points and the dyadic intervals that do not contain any good points.

Case 2:
$$\mathbb{E}[Z_n] = \sum_{l \in \mathcal{D}_n} p_l \uparrow C < \infty$$
 Recall $\Psi(l) = \mathcal{L}(B+f)(l)$
 $Z_n = \sum_{l \in \mathcal{D}_n} \mathbf{1}(\Psi(l) > 0)$

I contains a good point $\Leftrightarrow \Psi(I) > 0$.

If $|\{\text{good points } \in [0,1]\}| = \infty \Rightarrow Z_n \to \infty$, contradiction.

Hence, $|\{\text{good points }\in[0,1]\}|<\infty.$

[0,1] is the union of the good points and the dyadic intervals that do not contain any good points.

Since $\Psi(\text{good points}) = 0 \Rightarrow \Psi([0,1]) = 0$ a.s.

< = > < = > = <> < <> <

•
$$\{\mathcal{L}(B+f)(A) > 0\}$$

- $\{\mathcal{L}(B+f)(A) > 0\}$
- {interior of $(B + f)(A) \neq \emptyset$ }

- $\{\mathcal{L}(B+f)(A) > 0\}$
- {interior of $(B + f)(A) \neq \emptyset$ }
- $\{\dim(B+f)(A) > c\}$

- $\{\mathcal{L}(B+f)(A) > 0\}$
- {interior of $(B + f)(A) \neq \emptyset$ }
- $\{\dim(B+f)(A) > c\}$
- {*B* is 1-1 on *A*}

- $\{\mathcal{L}(B+f)(A) > 0\}$
- {interior of $(B + f)(A) \neq \emptyset$ }
- $\{\dim(B+f)(A) > c\}$
- {*B* is 1-1 on *A*}

- $\{\mathcal{L}(B+f)(A) > 0\}$ \checkmark
- {interior of $(B + f)(A) \neq \emptyset$ }
- $\{\dim(B+f)(A) > c\}$
- {*B* is 1-1 on *A*}

- $\{\mathcal{L}(B+f)(A) > 0\}$ \checkmark
- {interior of $(B + f)(A) \neq \emptyset$ } \checkmark
- $\{\dim(B+f)(A) > c\}$
- {*B* is 1-1 on *A*}

- $\{\mathcal{L}(B+f)(A) > 0\}$ \checkmark
- {interior of $(B + f)(A) \neq \emptyset$ } \checkmark
- $\{\dim(B+f)(A) > c\}$ \checkmark
- {*B* is 1-1 on *A*}

- $\{\mathcal{L}(B+f)(A) > 0\}$ \checkmark
- {interior of $(B + f)(A) \neq \emptyset$ } \checkmark
- $\{\dim(B+f)(A) > c\}$ \checkmark
- {*B* is 1-1 on *A*} X