Near-equivalence of the Restricted Isometry Property and Johnson-Lindenstrauss Lemma

Rachel Ward

University of Texas at Austin

September 20, 2011

Joint work with Felix Krahmer (Hausdorff Center, Bonn, Germany)

メロト メ御 トメ 君 トメ 君 トッ 君 し

 299

Let $\varepsilon \in (0,1)$ and let $x_1,...,x_p \in \mathbb{R}^N$ be arbitrary points. Let $m = O(\varepsilon^{-2} \log(p))$ be a natural number. Then there exists a Lipschitz map $f : \mathbb{R}^N \to \mathbb{R}^m$ such that

$$
(1-\varepsilon) \|x_i - x_j\|^2 \le \|f(x_i) - f(x_j)\|^2 \le (1+\varepsilon) \|x_i - x_j\|^2
$$

for all $i, j \in \{1, 2, ..., p\}$.

Let $\varepsilon \in (0,1)$ and let $x_1,...,x_p \in \mathbb{R}^N$ be arbitrary points. Let $m = O(\varepsilon^{-2} \log(p))$ be a natural number. Then there exists a Lipschitz map $f : \mathbb{R}^N \to \mathbb{R}^m$ such that

$$
(1-\varepsilon) \|x_i - x_j\|^2 \le \|f(x_i) - f(x_j)\|^2 \le (1+\varepsilon) \|x_i - x_j\|^2
$$

for all $i, j \in \{1, 2, ..., p\}$.

Original proof: f is taken as a random orthogonal projection

Let $\varepsilon \in (0,1)$ and let $x_1,...,x_p \in \mathbb{R}^N$ be arbitrary points. Let $m = O(\varepsilon^{-2} \log(p))$ be a natural number. Then there exists a Lipschitz map $f : \mathbb{R}^N \to \mathbb{R}^m$ such that

$$
(1-\varepsilon) \|x_i - x_j\|^2 \le \|f(x_i) - f(x_j)\|^2 \le (1+\varepsilon) \|x_i - x_j\|^2
$$

for all $i, j \in \{1, 2, ..., p\}$.

Original proof: f is taken as a random orthogonal projection

[Alon 2003] m-dependence on p and ε optimal up to log($1/\varepsilon$)

Let $\varepsilon \in (0,1)$ and let $x_1,...,x_p \in \mathbb{R}^N$ be arbitrary points. Let $m = O(\varepsilon^{-2} \log(p))$ be a natural number. Then there exists a Lipschitz map $f : \mathbb{R}^N \to \mathbb{R}^m$ such that

$$
(1-\varepsilon) \|x_i - x_j\|^2 \le \|f(x_i) - f(x_j)\|^2 \le (1+\varepsilon) \|x_i - x_j\|^2
$$

for all $i, j \in \{1, 2, ..., p\}$.

Original proof: f is taken as a random orthogonal projection

[Alon 2003] m-dependence on p and ε optimal up to log($1/\varepsilon$)

(Even with suboptimal dependence we call such f "JL embeddings" or "distance-preserving embeddings")

Probabilistic distance-preserving embeddings

We want a linear map $\Phi:\mathbb{R}^{\textit{N}}\rightarrow\mathbb{R}^{\textit{m}}$ such that

$$
\left|\|\Phi(x_i-x_j)\|-\|x_i-x_j\|\right|\leq \varepsilon\|x_i-x_j\| \text{ for } \left(\begin{matrix}p\\2\end{matrix}\right) \text{ vectors } x_i-x_j.
$$

Probabilistic distance-preserving embeddings

We want a linear map $\Phi:\mathbb{R}^{\textit{N}}\rightarrow\mathbb{R}^{\textit{m}}$ such that

$$
\left|\|\Phi(x_i-x_j)\|-\|x_i-x_j\|\right|\leq \varepsilon\|x_i-x_j\| \text{ for } \binom{p}{2} \text{ vectors } x_i-x_j.
$$

 \blacktriangleright For any fixed vector $v\in\mathbb{R}^N$, and for a matrix $\Phi:\mathbb{R}^N\to\mathbb{R}^m$ with i.i.d. Gaussian entries,

$$
\mathbb{P}\Big(\big|\|\Phi\mathsf{v}\|^2-\|\mathsf{v}\|^2\big|\ge\varepsilon\|\mathsf{v}\|^2\Big)\le\exp(-c\varepsilon^2m).
$$

- \blacktriangleright Take union bound over $\binom{p}{2}$ $\binom{p}{2}$ vectors $x_i - x_j$;
- If $m \geq c' \varepsilon^{-2} \log(p)$, then Φ is optimal embedding with probability $> 1/2$.

Practical distance-preserving embeddings

For computational efficiency, $\Phi:\mathbb{R}^{\textit{N}}\rightarrow\mathbb{R}^{\textit{m}}$ should

- lace allow fast matrix-vector multiplies: $O(N \log N)$ flops per matrix-vector multiply is optimal
- \triangleright not involve too much randomness

Practical distance-preserving embeddings

 \blacktriangleright [Ailon, Chazelle '06] : "Fast Johnson-Lindenstrauss Transform"

$$
\Phi = \mathcal{GFD};
$$

- $\blacktriangleright \;\mathcal{D}:\mathbb{R}^N\to\mathbb{R}^N$ is diagonal matrix with random ± 1 entries.
- $\blacktriangleright~~ \mathcal{F}:\mathbb{R}^{\mathsf{N}}\to\mathbb{R}^{\mathsf{N}}$ is discrete Fourier matrix,
- $\blacktriangleright~\mathcal{G}:\mathbb{R}^N\to\mathbb{R}^m$ is sparse Gaussian matrix.

$$
\mathcal{O}(N \log N)
$$
 multiplication when $p < e^{N^{1/2}}$

Practical distance-preserving embeddings

 \blacktriangleright [Ailon, Chazelle '06] : "Fast Johnson-Lindenstrauss Transform"

$$
\Phi = \mathcal{GFD};
$$

- $\blacktriangleright \;\mathcal{D}:\mathbb{R}^N\to\mathbb{R}^N$ is diagonal matrix with random ± 1 entries.
- $\blacktriangleright~~ \mathcal{F}:\mathbb{R}^{\mathsf{N}}\to\mathbb{R}^{\mathsf{N}}$ is discrete Fourier matrix,
- $\blacktriangleright~\mathcal{G}:\mathbb{R}^N\to\mathbb{R}^m$ is sparse Gaussian matrix.

 $\mathcal{O}(N\log N)$ multiplication when $\rho < e^{N^{1/2}}$

 \blacktriangleright Many more constructions ...

Practical Johnson-Lindenstrauss embeddings

 \blacktriangleright [Ailon, Liberty '10]: $\Phi = \mathcal{F}_{rand}D$,

- $\blacktriangleright \;\mathcal{D}:\mathbb{R}^N\to\mathbb{R}^N$ is diagonal matrix with random ± 1 entries.
- \blacktriangleright $\mathcal{F}_{rand}: \mathbb{R}^N \to \mathbb{R}^m$ consists of m randomly-chosen rows from the discrete Fourier matrix
- \triangleright $\mathcal{O}(N \log(N))$ multiplication, but suboptimal embedding dimension for distance-preservation:

$$
m = \mathcal{O}\left(\varepsilon^{-4}\log(p)\log^4(N)\right)
$$

Proof relies on (nontrivial) estimates for \mathcal{F}_{rand} from [Rudelson, Vershynin '08] (operator LLN, Dudley's inequality, ...)- these estimates are used in *compressed sensing* for sparse recovery guarantees.

Practical Johnson-Lindenstrauss embeddings

[Krahmer, W '10]: Improved embedding dimension for $\Phi = \mathcal{F}_{rand} \mathcal{D}$ to $m = \mathcal{O}\!\left(\varepsilon^{-2}\log(\rho)\log^4(N)\right)$.

Practical Johnson-Lindenstrauss embeddings

[Krahmer, W '10]: Improved embedding dimension for $\Phi = \mathcal{F}_{rand} \mathcal{D}$ to $m = \mathcal{O}\!\left(\varepsilon^{-2}\log(\rho)\log^4(N)\right)$.

Proof relies only on a certain *restricted isometry property* of \mathcal{F}_{rand} introduced in context of sparse recovery. Many random matrix constructions share this property...

The Restricted Isometry Property (RIP)

The Restricted Isometry Property

A vector $x\in\mathbb{R}^N$ with at most k nonzero coordinates is $k-$ sparse.

Definition (Candès/Romberg/Tao (2006)) A matrix $\mathfrak{\Phi}:\mathbb{R}^N\to\mathbb{R}^m$ is said to have the *restricted isometry* property of order k and level δ if

$$
(1-\delta)\|x\|_2^2 \le \|\Phi x\|_2^2 \le (1+\delta)\|x\|_2^2
$$

for all *k*-sparse $x \in \mathbb{R}^N$.

The Restricted Isometry Property

A vector $x\in\mathbb{R}^N$ with at most k nonzero coordinates is $k-$ sparse.

Definition (Candès/Romberg/Tao (2006)) A matrix $\mathfrak{\Phi}:\mathbb{R}^N\to\mathbb{R}^m$ is said to have the *restricted isometry* property of order k and level δ if

$$
(1-\delta)\|x\|_2^2 \le \|\Phi x\|_2^2 \le (1+\delta)\|x\|_2^2
$$

for all *k*-sparse $x \in \mathbb{R}^N$.

Usual context: If $\Phi : \mathbb{R}^N \to \mathbb{R}^m$ has (k, δ) -RIP with δ sufficiently small, and if $x^{\#}$ is a k -sparse solution to the system $y=\Phi x$, then

$$
x^{\#} = \underset{\Phi z = y}{\text{argmin}} \|z\|_1.
$$

RIP through concentration of measure

Recall the concentration inequality for distance-preserving embeddings (i.e. when Φ is Gaussian):

$$
\mathbb{P}\Big(\big|\|\Phi v\|^2-\|v\|^2\big|\geq \varepsilon\|v\|^2\Big)\leq \exp(-c\varepsilon^2 m)\qquad \qquad (1)
$$

RIP through concentration of measure

Recall the concentration inequality for distance-preserving embeddings (i.e. when Φ is Gaussian):

$$
\mathbb{P}\Big(\big|\|\Phi v\|^2-\|v\|^2\big|\geq \varepsilon\|v\|^2\Big)\leq \exp(-c\varepsilon^2 m)\qquad\qquad(1)
$$

[Baraniuk et al 2008]: If $\Phi : \mathbb{R}^N \to \mathbb{R}^m$ satisfies the concentration inequality, then with high probability a particular realization of Φ satisfies (k,ε) -RIP for $m \ge c' \varepsilon^2 k$ log ${\sf N}$

Implies RIP with optimally small m for Gaussian (and more generally subgaussian) matrices

Known RIP bounds

The following random matrices satisfy (k, δ) -RIP with high probability (proved via other methods):

- **Figure 1** [Rudelson/Vershynin '08]: Partial Fourier matrix \mathcal{F}_{rand} ; $m \gtrsim \delta^{-2}k\log^4(N)$
- \blacktriangleright [Adamczak et al '09]: Matrices whose columns are i.i.d. from log-concave distribution - $m \gtrsim \delta^{-2} k \log^2(N)$
- ^I . . .
- ▶ The best known deterministic constructions require $m \gtrsim k^{2-\mu}$ for some small μ (Bourgain et al (2011)).

Main results

Theorem (Krahmer, W. 2010) Fix $\eta>0$ and $\varepsilon>0.$ Let $\{x_j\}_{j=1}^p\subset \mathbb{R}^{\textsf{N}}$ be arbitrary. Set $k\geq 40\log\frac{4p}{\eta}$, and suppose that $\Phi:\mathbb{R}^{N}\rightarrow\mathbb{R}^{m}$ has the $(k, \varepsilon/4)$ -restricted isometry property. Let D be a diagonal matrix of random signs. Then with probability $> 1 - \eta$,

$$
(1-\varepsilon)\|x_j\|_2^2 \le \|\Phi \mathcal{D} x_j\|_2^2 \le (1+\varepsilon)\|x_j\|_2^2
$$

uniformly for all x_j .

 \blacktriangleright \mathcal{F}_{rand} has (k, δ) -RIP with $m \geq c \varepsilon^{-2} k \log^4(N) \Rightarrow$ $\mathcal{F}_{rand}\mathcal{D}$ is a distance-preserving embedding if $m \geq c' \varepsilon^{-2} \log(p) \log^4(N)$.

A Geometric Observation

- \triangleright A matrix that acts as an approximate isometry on sparse vectors (an RIP matrix) also acts as an approximate isometry on most vertices of the Hamming cube $\{-1,1\}^N$).
	- Apply our result to the vector $x = (1, \ldots, 1)$.

Idea of Proof:

- Assume w.l.o.g. x is in decreasing arrangement.
- Partition x in $R = \frac{2N}{k}$ $\frac{k}{k}$ blocks of length $s = \frac{k}{2}$ $\frac{\kappa}{2}$:

$$
x = (x_1, \ldots, x_N) = (x_{(1)}, x_{(2)}, \ldots, x_{(R)}) = (x_{(1)}, x_{(b)})
$$

 \blacktriangleright Need to bound

$$
\|\Phi D_{\xi}x\|_{2}^{2} = \|\Phi D_{x}\xi\|_{2}^{2} = \|\sum_{j=1}^{R} \Phi_{(J)}D_{x_{(J)}}\xi_{(J)}\|_{2}^{2}
$$

$$
= \sum_{J=1}^{R} \|\Phi_{(J)}D_{x_{(J)}}\xi_{(J)}\|_{2}^{2} + 2\xi_{(1)}^{*}D_{x_{(1)}}\Phi_{(1)}^{*}\Phi_{(b)}D_{x_{(b)}}\xi_{(b)}
$$

$$
+ \sum_{\substack{J,L=2\\J\neq L}}^{R} \langle \Phi_{(J)}D_{x_{(J)}}\xi_{(J)}, \Phi_{(L)}D_{x_{(L)}}\xi_{(L)} \rangle
$$

 \blacktriangleright Estimate each term separately.

First term

- \blacktriangleright Φ has (k, δ) -RIP, hence also has (s, δ) -RIP, and each $\Phi_{(J)}$ is almost an isometry.
- \blacktriangleright Noting that $\|D_{\mathsf{x}_{(J)}}\xi_{(J)}\|_2 = \|D_{\xi_{(J)}}\mathsf{x}_{(J)}\|_2 = \|\mathsf{x}_{(J)}\|_2$, we estimate

$$
(1-\delta)\|x\|_2^2 \leq \sum_{J=1}^R \|\Phi_{(J)}D_{x_{(J)}}\xi_{(J)}\|_2^2 \leq (1+\delta)\|x\|_2^2.
$$

► Conclude with $\delta \leq \frac{\varepsilon}{4}$ $\frac{\varepsilon}{4}$ that

$$
\left(1-\frac{\varepsilon}{4}\right)\|x\|_2^2 \leq \sum_{J=1}^R \|\Phi_{(J)}D_{x_{(J)}}\xi_{(J)}\|_2^2 \leq \left(1+\frac{\varepsilon}{4}\right)\|x\|_2^2.
$$

Second term

 $2\xi_{(1)}^*D_{x_{(1)}}\Phi_{(1)}^*\Phi_{(b)}D_{x_{(b)}}\xi_{(b)}$

 \blacktriangleright Keep $\xi_{(1)} = b$ fixed, then use Hoeffding's inequality.

Proposition (Hoeffding (1963))

Let $v\in \mathbb{R}^N$, and let $\xi=(\xi_j)_{j=1}^N$ be a Rademacher sequence. Then, for any $t > 0$,

$$
\mathbb{P}\Big(|\sum_j \xi_j v_j| > t\Big) \leq 2 \exp\Big(-\frac{t^2}{2\|v\|_2^2}\Big).
$$

► Need to estimate $||v||_2$ for $v = D_{x_{(b)}} \Phi_{(b)}^* \Phi_{(1)} D_{x_{(1)}} b$.

Key estimate

Proposition

Let $R = \lceil N/s \rceil$. Let $\Phi = (\Phi_j) = (\Phi_{(1)}, \Phi_{(\flat)}) \in \mathbb{R}^{m \times N}$ have the $(2s,\delta)$ -RIP, let $x=(x_{(1)},x_{(b)})\in \mathbb{R}^{\textsf{N}}$ be in decreasing arrangement with $||x||_2 \leq 1$, fix $b \in \{-1, 1\}^s$, and consider the vector

$$
v\in\mathbb{R}^N,\quad v=D_{x_{(b)}}\Phi_{(b)}^*\Phi_{(1)}D_{x_{(1)}}b.
$$

Then $||v||_2 \leq \frac{\delta}{\sqrt{2}}$ s .

Key ingredients for the proof of the proposition

- \blacktriangleright $||x_{(J)}||_{\infty} \leq \frac{1}{\sqrt{2}}$ $\frac{1}{k} \| \mathsf{x}_{(J-1)} \|_2$ for $J > 1$ (decreasing arrangement).
- ► Off-diagonal RIP estimate: $\|\Phi_{(J)}^*\Phi_{(L)}\|\leq \delta$ for $J\neq L$.

Third term

$$
\sum_{\stackrel{J,L=2}{\stackrel{J\neq L}{\rightarrow}\,}}^{R}\left\langle \Phi_{\left(J\right) }D_{x_{\left(J\right) }}\xi_{\left(J\right) },\Phi_{\left(L\right) }D_{x_{\left(L\right) }}\xi_{\left(L\right) }\right\rangle
$$

 \triangleright Use concentration inequality for Rademacher Chaos:

Proposition (Hanson/Wright '71, Boucheron et al '03) Let X be the $N \times N$ matrix with entries $x_{i,j}$ and assume that $x_{i,j} = 0$ for all $i\in [N]$. Let $\xi=(\xi_j)_{j=1}^N$ be a Rademacher sequence. Then, for any $t>0,\qquad \mathbb{P}\Big(|\sum_{i,j}\xi_i\xi_jx_{i,j}|>t\Big)\leq 2\exp\Big(-\tfrac{1}{64}\min\Big(\tfrac{\frac{96}{65}t}{\|X\|},\tfrac{t^2}{\|X\|}$ $\frac{t^2}{\|X\|_{\mathcal{F}}^2}\bigg)\bigg).$

 \blacktriangleright Need $||C||$ and $||C||_{\mathcal{F}}$ for

$$
C \in \mathbb{R}^{N \times N}, \quad C_{j,\ell} = \left\{ \begin{array}{ll} x_j \Phi_j^* \Phi_\ell x_\ell, & j,\ell > s \text{ in different blocks} \\ 0, & \text{else.} \end{array} \right.
$$

Summary and discussion

Novel connection: An RIP matrix with randomized column signs is a distance-preserving (Johnson-Lindenstrauss) embedding.

- ▶ Yields "near-equivalence" between RIP and JL-Lemma
- \triangleright Allows to transfer the theoretical results developed in compressed sensing to the setting of distance-preserving embeddings
- \triangleright Yields improved bounds for embedding dimension of several classes of random matrices, and optimal dependence on distortion ε for a fast embedding.

Thanks!