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Theorem (Johnson-Lindenstrauss (1984))

Let e € (0,1) and let xi, ..., x, € RN be arbitrary points.
Let m = 0(5_2 Iog(p)) be a natural number. Then there exists a

Lipschitz map f : RN — R™ such that
(1= e)llxi = x> < I (xi) = FOg)IIP < (1 +€)llxi — x1?

foralli,j € {1,2,...,p}.
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Theorem (Johnson-Lindenstrauss (1984))
Let e € (0,1) and let xi, ..., x, € RN be arbitrary points.

Let m = 0(5_2 Iog(p)) be a natural number. Then there exists a
Lipschitz map f : RN — R™ such that

(1= 2)llxi = xlI* < [If (x) = FO)II* < (1 + €)1 — x5
foralli,j € {1,2,...,p}.

Original proof: f is taken as a random orthogonal projection
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Theorem (Johnson-Lindenstrauss (1984))

Let e € (0,1) and let xi, ..., x, € RN be arbitrary points.
Let m= 0(5_2 Iog(p)) be a natural number. Then there exists a
Lipschitz map f : RN — R™ such that

(1= e)llxi = x> < I (xi) = FOg)IIP < (1 +€)llxi — x1?
foralli,j € {1,2,...,p}.
Original proof: f is taken as a random orthogonal projection

[Alon 2003] m-dependence on p and e optimal up to log(1/¢)
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Theorem (Johnson-Lindenstrauss (1984))

Let e € (0,1) and let xi, ..., x, € RN be arbitrary points.
Let m= 0(5_2 Iog(p)) be a natural number. Then there exists a
Lipschitz map f : RN — R™ such that

(1= )l — 51 < [1F(x) = FOQIP < (1 + )l — 1
foralli,j € {1,2,...,p}.
Original proof: f is taken as a random orthogonal projection
[Alon 2003] m-dependence on p and e optimal up to log(1/¢)

(Even with suboptimal dependence we call such f “JL embeddings” or
“distance-preserving embeddings")
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Probabilistic distance-preserving embeddings

We want a linear map ® : RN — R™ such that

[®(xi — X))l — lIxi — xjl|| < ellxi — xj|| for (5) vectors x; — x;.
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Probabilistic distance-preserving embeddings

We want a linear map ® : RN — R™ such that

‘Hd)(x,- — )| — IIxi — xj||‘ < 2llx; — x| for (8) vectors x; — x;.

» For any fixed vector v € RV, and for a matrix ¢ : RV — R™
with i.i.d. Gaussian entries,

P([IovI2 — [vIP] = el|v?) < exp(~ce?m).

» Take union bound over (’2’) vectors x; — X;;

> If m> c’e=2log(p), then & is optimal embedding with
probability > 1/2.
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Practical distance-preserving embeddings

For computational efficiency, ® : RN — R™ should

» allow fast matrix-vector multiplies: O(N log N) flops per
matrix-vector multiply is optimal

» not involve too much randomness
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Practical distance-preserving embeddings

» [Ailon, Chazelle '06] : “Fast Johnson-Lindenstrauss
Transform”

& =GFD;

» D: RN — RN is diagonal matrix with random =+1 entries.
» F:RN — RN s discrete Fourier matrix,
» G: RN — R™ is sparse Gaussian matrix.

O(N log N) multiplication when p < eN'/?
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Practical distance-preserving embeddings

» [Ailon, Chazelle '06] : “Fast Johnson-Lindenstrauss
Transform”

& =GFD;

» D: RN — RN is diagonal matrix with random =+1 entries.
» F:RN — RN s discrete Fourier matrix,
» G: RN — R™ is sparse Gaussian matrix.

O(N log N) multiplication when p < eN'/?

» Many more constructions ...
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Practical Johnson-Lindenstrauss embeddings
» [Ailon, Liberty '10]: b = FandD,

» D: RN — RN is diagonal matrix with random =+1 entries.

» Frand : RV — R™ consists of m randomly-chosen rows from
the discrete Fourier matrix

» O(Nlog (N)) multiplication, but suboptimal embedding
dimension for distance-preservation:

m = O(c *log(p) log*(N))

Proof relies on (nontrivial) estimates for F,,,q4 from [Rudelson,
Vershynin '08] (operator LLN, Dudley’s inequality, ...)- these
estimates are used in compressed sensing for sparse recovery
guarantees.

Discussion
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Practical Johnson-Lindenstrauss embeddings

[Krahmer, W "10]: Improved embedding dimension for ® = F,,,4D
tom= (’)(&:_2 log(p) Iog4(N)>.
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Practical Johnson-Lindenstrauss embeddings

[Krahmer, W "10]: Improved embedding dimension for ® = F,,,4D
tom= (’)(5_2 log(p) Iog4(N)).

Proof relies only on a certain restricted isometry property of Frand
introduced in context of sparse recovery. Many random matrix
constructions share this property...
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The Restricted Isometry Property (RIP)
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The Restricted Isometry Property

A vector x € RN with at most k nonzero coordinates is k—sparse.

Definition (Candés/Romberg/Tao (2006))

A matrix ® : RN — R™ is said to have the restricted isometry
property of order k and level ¢ if

(1= 0)lIxl3 < x|z < (1+3)lIx3

for all k-sparse x € RV,
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The Restricted Isometry Property

A vector x € RN with at most k nonzero coordinates is k—sparse.

Definition (Candés/Romberg/Tao (2006))

A matrix ® : RV — R™ is said to have the restricted isometry
property of order k and level ¢ if

(1= 9)Ix[3 < ex[I3 < (1 +8)|Ix[I3
for all k-sparse x € RV,

Usual context: If ® : RN — R™ has (k, §)-RIP with § sufficiently
small, and if x# is a k-sparse solution to the system y = ®x, then

x* = argmin || z|1.
bz=y
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RIP through concentration of measure

Recall the concentration inequality for distance-preserving
embeddings (i.e. when ® is Gaussian):

P([IovI2 ~ [vIP = e|vI?) < exp(~ce?m) (1)
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RIP through concentration of measure

Recall the concentration inequality for distance-preserving
embeddings (i.e. when @ is Gaussian):

P([IovI2 = [vI?] = el|vI?) < exp(~cem) (1)

[Baraniuk et al 2008]: If & : RY — R™ satisfies the concentration
inequality, then with high probability a particular realization of ¢
satisfies (k, e)-RIP for m > c’e?klog N

» Implies RIP with optimally small m for Gaussian (and more
generally subgaussian) matrices
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Known RIP bounds

The following random matrices satisfy (k,d)-RIP with high
probability (proved via other methods):
» [Rudelson/Vershynin '08]: Partial Fourier matrix F,apq;
m > 62k log*(N)
» [Adamczak et al '09]: Matrices whose columns are i.i.d. from
log-concave distribution - m > 6~ 2k log?(N)

> ...

» The best known deterministic constructions require m > k>~H
for some small 1 (Bourgain et al (2011)).
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Main results

Theorem (Krahmer, W. 2010)
Fixn >0 and e > 0. Let {x;}?_, C RN be arbitrary. Set

k > 40log %p, and suppose that ® : RN — R™ has the
(k,e/4)-restricted isometry property. Let D be a diagonal matrix
of random signs. Then with probability > 1 —n

(1= o)llxll3 < [19Dx3 < (1 + €)llxl13

uniformly for all x;.

> Frand has (k,8)-RIP with m > ce—2klog*(N) =
FrandD is a distance-preserving embedding if
m > c’e? log(p) log*(N).

Discussion
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A Geometric Observation

» A matrix that acts as an approximate isometry on sparse
vectors (an RIP matrix) also acts as an approximate isometry
on most vertices of the Hamming cube {—1,1}V).

» Apply our result to the vector x = (1,...,1).
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|dea of Proof:

> Assume w.l.o.g. x is in decreasing arrangement.
> Partition x in R = 2 blocks of length s = &

§:
X = (X1, xn) = (X1), X@)s - X(R)) = (X(1)s X))
» Need to bound

R
[®Dex(l5 = |ODE[5 = 1Y Py Dsy I3
j=1

190 Dy ElI3 + 2603 Dy @1y @) Dy )

iy

R
J=
R

+ Y (PP € Py Dy b))
Jl=2
Il

» Estimate each term separately.
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First term
> & has (k,0)-RIP, hence also has (s,§)-RIP, and each &) is

almost an isometry.

» Noting that ||DX(J)£(J)“2 = ||D§(J)X(J)”2 = ”X(J)HZ' we estimate

R
(L= )xI3 < Y 190y Dy énll3 < (1 +8)IxII3.
J=1

» Conclude with § < % that

R
(1-3)Ix3 < > 190Dkl < (1+)xI3
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Second term
28 (1) Dty @(1) ® ) D 800)

> Keep §(1) = b fixed, then use Hoeffding’s inequality.

Proposition (Hoeffding (1963))

Let v e RN, and let ¢ = (§j)jN:1 be a Rademacher sequence. Then,
for any t > 0,

P<|Z§jvj| > t) < 2exp(— #‘:‘9

J

» Need to estimate ||v||2 for v = Dx(b)df("b)dD(l)DX(l)b.
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Key estimate

Proposition

Let R=[N/s]. Let & = (®;) = (P(1), D)) € R™N have the
(25,0)-RIP, let x = (x(1), X)) € RN be in decreasing arrangement
with ||x||2 <1, fix b € {—1,1}°, and consider the vector

veRN, v= Dx(b)

CDE‘b)CD(l) Dy, b-

Then ||v|2 < %
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Key ingredients for the proof of the proposition

> Ixlleo < \/iEHX(J_UHz for J > 1 (decreasing arrangement).

» Off-diagonal RIP estimate: ||¢’(*J)¢(L)|| <0 for J# L.
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Third term
R
> <¢(J) D&y @) DX<L>€(L>>
J,L=2
JAL

» Use concentration inequality for Rademacher Chaos:

Proposition (Hanson/Wright 71, Boucheron et al '03)

Let X be the N x N matrix with entries x; ; and assume that x; ; = 0 for
alli € [N]. Let& = (fj)j"’zl be a Rademacher sequence. Then, for any

; 96 2
t>0, P(|Zi,j§i€jxi7j| > t) §2exp(—6—14m|n (”ﬁxﬁ,m))
> Need ||C|| and ||C||# for

xj®r®yxp, j, £ > s in different blocks

NxN R
CeR™ Q,e—{ 0, else.
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Summary and discussion

Novel connection: An RIP matrix with randomized column signs is
a distance-preserving (Johnson-Lindenstrauss) embedding.

> Yields “near-equivalence” between RIP and JL-Lemma

» Allows to transfer the theoretical results developed in
compressed sensing to the setting of distance-preserving
embeddings

» Yields improved bounds for embedding dimension of several
classes of random matrices, and optimal dependence on
distortion ¢ for a fast embedding.
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Thanks!
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