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Johnson-Lindenstrauss Lemma RIP Main Results Idea of proof Discussion

Theorem (Johnson-Lindenstrauss (1984))

Let ε ∈ (0, 1) and let x1, ..., xp ∈ RN be arbitrary points.
Let m = O

(
ε−2 log(p)

)
be a natural number. Then there exists a

Lipschitz map f : RN → Rm such that

(1− ε)‖xi − xj‖2 ≤ ‖f (xi )− f (xj)‖2 ≤ (1 + ε)‖xi − xj‖2

for all i , j ∈ {1, 2, ..., p}.

Original proof: f is taken as a random orthogonal projection

[Alon 2003] m-dependence on p and ε optimal up to log(1/ε)

(Even with suboptimal dependence we call such f “JL embeddings” or

“distance-preserving embeddings”)

2 / 29



Johnson-Lindenstrauss Lemma RIP Main Results Idea of proof Discussion

Theorem (Johnson-Lindenstrauss (1984))

Let ε ∈ (0, 1) and let x1, ..., xp ∈ RN be arbitrary points.
Let m = O

(
ε−2 log(p)

)
be a natural number. Then there exists a

Lipschitz map f : RN → Rm such that

(1− ε)‖xi − xj‖2 ≤ ‖f (xi )− f (xj)‖2 ≤ (1 + ε)‖xi − xj‖2

for all i , j ∈ {1, 2, ..., p}.

Original proof: f is taken as a random orthogonal projection

[Alon 2003] m-dependence on p and ε optimal up to log(1/ε)

(Even with suboptimal dependence we call such f “JL embeddings” or

“distance-preserving embeddings”)

3 / 29



Johnson-Lindenstrauss Lemma RIP Main Results Idea of proof Discussion

Theorem (Johnson-Lindenstrauss (1984))

Let ε ∈ (0, 1) and let x1, ..., xp ∈ RN be arbitrary points.
Let m = O

(
ε−2 log(p)

)
be a natural number. Then there exists a

Lipschitz map f : RN → Rm such that

(1− ε)‖xi − xj‖2 ≤ ‖f (xi )− f (xj)‖2 ≤ (1 + ε)‖xi − xj‖2

for all i , j ∈ {1, 2, ..., p}.

Original proof: f is taken as a random orthogonal projection

[Alon 2003] m-dependence on p and ε optimal up to log(1/ε)

(Even with suboptimal dependence we call such f “JL embeddings” or

“distance-preserving embeddings”)

4 / 29



Johnson-Lindenstrauss Lemma RIP Main Results Idea of proof Discussion

Theorem (Johnson-Lindenstrauss (1984))

Let ε ∈ (0, 1) and let x1, ..., xp ∈ RN be arbitrary points.
Let m = O

(
ε−2 log(p)

)
be a natural number. Then there exists a

Lipschitz map f : RN → Rm such that

(1− ε)‖xi − xj‖2 ≤ ‖f (xi )− f (xj)‖2 ≤ (1 + ε)‖xi − xj‖2

for all i , j ∈ {1, 2, ..., p}.

Original proof: f is taken as a random orthogonal projection

[Alon 2003] m-dependence on p and ε optimal up to log(1/ε)

(Even with suboptimal dependence we call such f “JL embeddings” or

“distance-preserving embeddings”)

5 / 29



Johnson-Lindenstrauss Lemma RIP Main Results Idea of proof Discussion

Probabilistic distance-preserving embeddings

We want a linear map Φ : RN → Rm such that∣∣∣‖Φ(xi − xj)‖ − ‖xi − xj‖
∣∣∣ ≤ ε‖xi − xj‖ for

(p
2

)
vectors xi − xj .

I For any fixed vector v ∈ RN , and for a matrix Φ : RN → Rm

with i.i.d. Gaussian entries,

P
(∣∣‖Φv‖2 − ‖v‖2

∣∣ ≥ ε‖v‖2
)
≤ exp(−cε2m).

I Take union bound over
(p

2

)
vectors xi − xj ;

I If m ≥ c ′ε−2 log(p), then Φ is optimal embedding with
probability ≥ 1/2.
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Johnson-Lindenstrauss Lemma RIP Main Results Idea of proof Discussion

Practical distance-preserving embeddings

For computational efficiency, Φ : RN → Rm should

I allow fast matrix-vector multiplies: O(N log N) flops per
matrix-vector multiply is optimal

I not involve too much randomness

8 / 29



Johnson-Lindenstrauss Lemma RIP Main Results Idea of proof Discussion

Practical distance-preserving embeddings

I [Ailon, Chazelle ′06] : “Fast Johnson-Lindenstrauss
Transform”

Φ = GFD;

I D : RN → RN is diagonal matrix with random ±1 entries.
I F : RN → RN is discrete Fourier matrix,
I G : RN → Rm is sparse Gaussian matrix.

O(N log N) multiplication when p < eN
1/2

I Many more constructions ...
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Johnson-Lindenstrauss Lemma RIP Main Results Idea of proof Discussion

Practical Johnson-Lindenstrauss embeddings

I [Ailon, Liberty ′10]: Φ = FrandD,

I D : RN → RN is diagonal matrix with random ±1 entries.
I Frand : RN → Rm consists of m randomly-chosen rows from

the discrete Fourier matrix
I O(N log (N)) multiplication, but suboptimal embedding

dimension for distance-preservation:

m = O
(
ε−4 log(p) log4(N)

)
Proof relies on (nontrivial) estimates for Frand from [Rudelson,
Vershynin ′08] (operator LLN, Dudley’s inequality, ...)- these
estimates are used in compressed sensing for sparse recovery
guarantees.
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Practical Johnson-Lindenstrauss embeddings

[Krahmer, W ′10]: Improved embedding dimension for Φ = FrandD
to m = O

(
ε−2 log(p) log4(N)

)
.

Proof relies only on a certain restricted isometry property of Frand

introduced in context of sparse recovery. Many random matrix
constructions share this property...
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The Restricted Isometry Property (RIP)
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The Restricted Isometry Property

A vector x ∈ RN with at most k nonzero coordinates is k−sparse.

Definition (Candès/Romberg/Tao (2006))

A matrix Φ : RN → Rm is said to have the restricted isometry
property of order k and level δ if

(1− δ)‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1 + δ)‖x‖2
2

for all k-sparse x ∈ RN .

Usual context: If Φ : RN → Rm has (k , δ)-RIP with δ sufficiently
small, and if x# is a k-sparse solution to the system y = Φx , then

x# = argmin
Φz=y

‖z‖1.
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RIP through concentration of measure

Recall the concentration inequality for distance-preserving
embeddings (i.e. when Φ is Gaussian):

P
(∣∣‖Φv‖2 − ‖v‖2

∣∣ ≥ ε‖v‖2
)
≤ exp(−cε2m) (1)

[Baraniuk et al 2008]: If Φ : RN → Rm satisfies the concentration
inequality, then with high probability a particular realization of Φ
satisfies (k, ε)-RIP for m ≥ c ′ε2k log N

I Implies RIP with optimally small m for Gaussian (and more
generally subgaussian) matrices
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Known RIP bounds

The following random matrices satisfy (k , δ)-RIP with high
probability (proved via other methods):

I [Rudelson/Vershynin ′08]: Partial Fourier matrix Frand ;
m & δ−2k log4(N)

I [Adamczak et al ′09]: Matrices whose columns are i.i.d. from
log-concave distribution - m & δ−2k log2(N)

I . . .

I The best known deterministic constructions require m & k2−µ

for some small µ (Bourgain et al (2011)).
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Main results

Theorem (Krahmer, W. 2010)

Fix η > 0 and ε > 0. Let {xj}pj=1 ⊂ RN be arbitrary. Set

k ≥ 40 log 4p
η , and suppose that Φ : RN → Rm has the

(k , ε/4)-restricted isometry property. Let D be a diagonal matrix
of random signs. Then with probability ≥ 1− η,

(1− ε)‖xj‖2
2 ≤ ‖ΦDxj‖2

2 ≤ (1 + ε)‖xj‖2
2

uniformly for all xj .

I Frand has (k , δ)-RIP with m ≥ cε−2k log4(N) ⇒
FrandD is a distance-preserving embedding if
m ≥ c ′ε−2 log(p) log4(N).
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A Geometric Observation

I A matrix that acts as an approximate isometry on sparse
vectors (an RIP matrix) also acts as an approximate isometry
on most vertices of the Hamming cube {−1, 1}N).

I Apply our result to the vector x = (1, . . . , 1).
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Idea of Proof:
I Assume w.l.o.g. x is in decreasing arrangement.
I Partition x in R = 2N

k blocks of length s = k
2 :

x = (x1, . . . , xN) = (x(1), x(2), . . . , x(R)) = (x(1), x([))

I Need to bound

‖ΦDξx‖2
2 = ‖ΦDxξ‖2

2 = ‖
R∑
j=1

Φ(J)Dx(J)
ξ(J)‖2

2

=
R∑

J=1

‖Φ(J)Dx(J)
ξ(J)‖2

2 + 2ξ∗(1)Dx(1)
Φ∗(1)Φ([)Dx([)

ξ([)

+
R∑

J,L=2
J 6=L

〈
Φ(J)Dx(J)

ξ(J),Φ(L)Dx(L)
ξ(L)

〉

I Estimate each term separately.
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First term

I Φ has (k , δ)-RIP, hence also has (s, δ)-RIP, and each Φ(J) is
almost an isometry.

I Noting that ‖Dx(J)
ξ(J)‖2 = ‖Dξ(J)

x(J)‖2 = ‖x(J)‖2, we estimate

(1− δ)‖x‖2
2 ≤

R∑
J=1

‖Φ(J)Dx(J)
ξ(J)‖2

2 ≤ (1 + δ)‖x‖2
2.

I Conclude with δ ≤ ε
4 that

(
1− ε

4

)
‖x‖2

2 ≤
R∑

J=1

‖Φ(J)Dx(J)
ξ(J)‖2

2 ≤
(

1 +
ε

4

)
‖x‖2

2.
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Second term

2ξ∗(1)Dx(1)
Φ∗(1)Φ([)Dx([)

ξ([)

I Keep ξ(1) = b fixed, then use Hoeffding’s inequality.

Proposition (Hoeffding (1963))

Let v ∈ RN , and let ξ = (ξj)
N
j=1 be a Rademacher sequence. Then,

for any t > 0,

P
(
|
∑
j

ξjvj | > t
)
≤ 2 exp

(
− t2

2‖v‖2
2

)
.

I Need to estimate ‖v‖2 for v = Dx([)
Φ∗([)Φ(1)Dx(1)

b.
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Key estimate

Proposition

Let R = dN/se. Let Φ = (Φj) = (Φ(1),Φ([)) ∈ Rm×N have the

(2s, δ)-RIP, let x = (x(1), x([)) ∈ RN be in decreasing arrangement
with ‖x‖2 ≤ 1, fix b ∈ {−1, 1}s , and consider the vector

v ∈ RN , v = Dx([)
Φ∗([)Φ(1)Dx(1)

b.

Then ‖v‖2 ≤ δ√
s
.
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Key ingredients for the proof of the proposition

I ‖x(J)‖∞ ≤ 1√
k
‖x(J−1)‖2 for J > 1 (decreasing arrangement).

I Off-diagonal RIP estimate: ‖Φ∗(J)Φ(L)‖ ≤ δ for J 6= L.

26 / 29



Johnson-Lindenstrauss Lemma RIP Main Results Idea of proof Discussion

Third term

R∑
J,L=2
J 6=L

〈
Φ(J)Dx(J)

ξ(J),Φ(L)Dx(L)
ξ(L)

〉

I Use concentration inequality for Rademacher Chaos:

Proposition (Hanson/Wright ′71, Boucheron et al ′03)
Let X be the N × N matrix with entries xi,j and assume that xi,i = 0 for
all i ∈ [N]. Let ξ = (ξj)

N
j=1 be a Rademacher sequence. Then, for any

t > 0, P
(
|
∑

i,j ξiξjxi,j | > t
)
≤ 2 exp

(
− 1

64 min
(

96
65 t

‖X‖ ,
t2

‖X‖2
F

))
.

I Need ‖C‖ and ‖C‖F for

C ∈ RN×N , Cj,` =

{
xjΦ
∗
j Φ`x`, j , ` > s in different blocks

0, else.
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Summary and discussion

Novel connection: An RIP matrix with randomized column signs is
a distance-preserving (Johnson-Lindenstrauss) embedding.

I Yields “near-equivalence” between RIP and JL-Lemma

I Allows to transfer the theoretical results developed in
compressed sensing to the setting of distance-preserving
embeddings

I Yields improved bounds for embedding dimension of several
classes of random matrices, and optimal dependence on
distortion ε for a fast embedding.
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Thanks!
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