Near-equivalence of the Restricted Isometry Property and Johnson-Lindenstrauss Lemma

Rachel Ward

University of Texas at Austin

September 20, 2011

Joint work with Felix Krahmer (Hausdorff Center, Bonn, Germany)

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Johnson-Lindenstrauss Lemma	RIP	Main Results	Idea of proof	Discussion
●000000	000	00	000000	00

Let $\varepsilon \in (0, 1)$ and let $x_1, ..., x_p \in \mathbb{R}^N$ be arbitrary points. Let $m = O(\varepsilon^{-2} \log(p))$ be a natural number. Then there exists a Lipschitz map $f : \mathbb{R}^N \to \mathbb{R}^m$ such that

$$(1-\varepsilon)\|x_i - x_j\|^2 \le \|f(x_i) - f(x_j)\|^2 \le (1+\varepsilon)\|x_i - x_j\|^2$$

for all $i, j \in \{1, 2, ..., p\}$.

Johnson-Lindenstrauss Lemma	RIP	Main Results	Idea of proof	Discussion
●000000	000	00	000000	00

Let $\varepsilon \in (0, 1)$ and let $x_1, ..., x_p \in \mathbb{R}^N$ be arbitrary points. Let $m = O(\varepsilon^{-2} \log(p))$ be a natural number. Then there exists a Lipschitz map $f : \mathbb{R}^N \to \mathbb{R}^m$ such that

$$(1-\varepsilon)||x_i - x_j||^2 \le ||f(x_i) - f(x_j)||^2 \le (1+\varepsilon)||x_i - x_j||^2$$

for all $i, j \in \{1, 2, ..., p\}$.

Original proof: f is taken as a random orthogonal projection

Johnson-Lindenstrauss Lemma	RIP	Main Results	Idea of proof	Discussion
●000000	000	00	000000	00

Let $\varepsilon \in (0, 1)$ and let $x_1, ..., x_p \in \mathbb{R}^N$ be arbitrary points. Let $m = O(\varepsilon^{-2} \log(p))$ be a natural number. Then there exists a Lipschitz map $f : \mathbb{R}^N \to \mathbb{R}^m$ such that

$$(1-\varepsilon)||x_i - x_j||^2 \le ||f(x_i) - f(x_j)||^2 \le (1+\varepsilon)||x_i - x_j||^2$$

for all $i, j \in \{1, 2, ..., p\}$.

Original proof: f is taken as a random orthogonal projection

[Alon 2003] *m*-dependence on *p* and ε optimal up to log $(1/\varepsilon)$

Johnson-Lindenstrauss Lemma	RIP	Main Results	Idea of proof	Discussion
●000000	000	00	000000	00

Let $\varepsilon \in (0, 1)$ and let $x_1, ..., x_p \in \mathbb{R}^N$ be arbitrary points. Let $m = O(\varepsilon^{-2} \log(p))$ be a natural number. Then there exists a Lipschitz map $f : \mathbb{R}^N \to \mathbb{R}^m$ such that

$$(1-\varepsilon)\|x_i - x_j\|^2 \le \|f(x_i) - f(x_j)\|^2 \le (1+\varepsilon)\|x_i - x_j\|^2$$

for all $i, j \in \{1, 2, ..., p\}$.

Original proof: f is taken as a random orthogonal projection

[Alon 2003] *m*-dependence on *p* and ε optimal up to log $(1/\varepsilon)$

(Even with suboptimal dependence we call such f "JL embeddings" or "distance-preserving embeddings")

Johnson-Lindenstrauss Lemma	RIP	Main Results	Idea of proof	Discussion
000000	000	00	000000	00

Probabilistic distance-preserving embeddings

We want a linear map $\Phi : \mathbb{R}^N \to \mathbb{R}^m$ such that

$$\left| \left\| \Phi(x_i - x_j) \right\| - \left\| x_i - x_j \right\| \right| \le \varepsilon \|x_i - x_j\|$$
 for $\binom{p}{2}$ vectors $x_i - x_j$.

Johnson-Lindenstrauss Lemma	RIP	Main Results	Idea of proof	Discussion
000000	000	00	000000	00

Probabilistic distance-preserving embeddings

We want a linear map $\Phi : \mathbb{R}^N \to \mathbb{R}^m$ such that

$$\left|\left|\left|\Phi(x_i-x_j)\right|\right|-\left|\left|x_i-x_j\right|\right|\right|\leq \varepsilon \|x_i-x_j\|$$
 for $\binom{p}{2}$ vectors x_i-x_j .

For any fixed vector v ∈ ℝ^N, and for a matrix Φ : ℝ^N → ℝ^m with i.i.d. Gaussian entries,

$$\mathbb{P}\Big(\big| \| \Phi v \|^2 - \| v \|^2 \big| \ge \varepsilon \| v \|^2 \Big) \le \exp(-c \varepsilon^2 m).$$

- Take union bound over $\binom{p}{2}$ vectors $x_i x_j$;
- If m ≥ c'ε⁻² log(p), then Φ is optimal embedding with probability ≥ 1/2.

Johnson-Lindenstrauss Lemma	RIP	Main Results	Idea of proof	Discussion
000000	000	00	000000	00

Practical distance-preserving embeddings

For computational efficiency, $\Phi : \mathbb{R}^N \to \mathbb{R}^m$ should

- allow fast matrix-vector multiplies: O(N log N) flops per matrix-vector multiply is optimal
- not involve too much randomness

Johnson-Lindenstrauss Lemma	RIP	Main Results	Idea of proof	Discussion
000000	000	00	000000	00

Practical distance-preserving embeddings

 [Ailon, Chazelle '06] : "Fast Johnson-Lindenstrauss Transform"

$$\Phi = \mathcal{GFD};$$

- $\mathcal{D}: \mathbb{R}^N \to \mathbb{R}^N$ is diagonal matrix with random ± 1 entries.
- $\mathcal{F}: \mathbb{R}^N \to \mathbb{R}^N$ is discrete Fourier matrix,
- $\mathcal{G}: \mathbb{R}^N \to \mathbb{R}^m$ is sparse Gaussian matrix.

$$\mathcal{O}(N \log N)$$
 multiplication when $p < e^{N^{1/2}}$

Johnson-Lindenstrauss Lemma	RIP	Main Results	Idea of proof	Discussion
000000	000	00	000000	00

Practical distance-preserving embeddings

 [Ailon, Chazelle '06] : "Fast Johnson-Lindenstrauss Transform"

$$\Phi = \mathcal{GFD};$$

- $\mathcal{D}: \mathbb{R}^N \to \mathbb{R}^N$ is diagonal matrix with random ± 1 entries.
- $\mathcal{F}: \mathbb{R}^N \to \mathbb{R}^N$ is discrete Fourier matrix,
- $\mathcal{G}: \mathbb{R}^N \to \mathbb{R}^m$ is sparse Gaussian matrix.

 $\mathcal{O}(N \log N)$ multiplication when $p < e^{N^{1/2}}$

Many more constructions ...

Johnson-Lindenstrauss Lemma	RIP	Main Results	Idea of proof	Discussion
0000000	000	00	000000	00

Practical Johnson-Lindenstrauss embeddings

• [Ailon, Liberty '10]: $\Phi = \mathcal{F}_{rand} \mathcal{D},$

- $\mathcal{D}: \mathbb{R}^N \to \mathbb{R}^N$ is diagonal matrix with random ± 1 entries.
- $\mathcal{F}_{rand} : \mathbb{R}^N \to \mathbb{R}^m$ consists of *m* randomly-chosen rows from the discrete Fourier matrix
- \$\mathcal{O}(N \log (N))\$ multiplication, but suboptimal embedding dimension for distance-preservation:

$$m = \mathcal{O}(\varepsilon^{-4}\log(p)\log^4(N))$$

Proof relies on (nontrivial) estimates for \mathcal{F}_{rand} from [Rudelson, Vershynin '08] (operator LLN, Dudley's inequality, ...)- these estimates are used in *compressed sensing* for sparse recovery guarantees.

Johnson-Lindenstrauss Lemma	RIP	Main Results	Idea of proof	Discussion
0000000	000	00	000000	00

Practical Johnson-Lindenstrauss embeddings

[Krahmer, W '10]: Improved embedding dimension for $\Phi = \mathcal{F}_{rand}\mathcal{D}$ to $m = \mathcal{O}\left(\varepsilon^{-2}\log(p)\log^4(N)\right)$.

Johnson-Lindenstrauss Lemma	RIP	Main Results	Idea of proof	Discussion
0000000	000	00	000000	00

Practical Johnson-Lindenstrauss embeddings

[Krahmer, W '10]: Improved embedding dimension for $\Phi = \mathcal{F}_{rand}\mathcal{D}$ to $m = \mathcal{O}\left(\varepsilon^{-2}\log(p)\log^4(N)\right)$.

Proof relies only on a certain *restricted isometry property* of \mathcal{F}_{rand} introduced in context of sparse recovery. Many random matrix constructions share this property...

Johnson-Lindenstrauss Lemma	RIP	Main Results	Idea of proof	Discussion
000000	000	00	000000	00

The Restricted Isometry Property (RIP)

Johnson-Lindenstrauss Lemma	RIP	Main Results	Idea of proof	Discussion
000000	000	00	000000	00

The Restricted Isometry Property

A vector $x \in \mathbb{R}^N$ with at most k nonzero coordinates is k-sparse.

Definition (Candès/Romberg/Tao (2006)) A matrix $\Phi : \mathbb{R}^N \to \mathbb{R}^m$ is said to have the *restricted isometry* property of order k and level δ if

$$(1-\delta)\|x\|_2^2 \le \|\Phi x\|_2^2 \le (1+\delta)\|x\|_2^2$$

for all *k*-sparse $x \in \mathbb{R}^N$.

Johnson-Lindenstrauss Lemma	RIP	Main Results	Idea of proof	Discussion
000000	000	00	000000	00

The Restricted Isometry Property

A vector $x \in \mathbb{R}^N$ with at most k nonzero coordinates is k-sparse.

Definition (Candès/Romberg/Tao (2006)) A matrix $\Phi : \mathbb{R}^N \to \mathbb{R}^m$ is said to have the *restricted isometry* property of order k and level δ if

$$(1-\delta)\|x\|_2^2 \le \|\Phi x\|_2^2 \le (1+\delta)\|x\|_2^2$$

for all *k*-sparse $x \in \mathbb{R}^N$.

Usual context: If $\Phi : \mathbb{R}^N \to \mathbb{R}^m$ has (k, δ) -RIP with δ sufficiently small, and if $x^{\#}$ is a *k*-sparse solution to the system $y = \Phi x$, then

$$x^{\#} = \underset{\Phi_{z=y}}{\operatorname{argmin}} \|z\|_{1}.$$

Johnson-Lindenstrauss Lemma	RIP	Main Results	Idea of proof	Discussion
000000	000	00	000000	00

RIP through concentration of measure

Recall the concentration inequality for distance-preserving embeddings (i.e. when Φ is Gaussian):

$$\mathbb{P}\Big(\big|\|\Phi v\|^2 - \|v\|^2\big| \ge \varepsilon \|v\|^2\Big) \le \exp(-c\varepsilon^2 m) \tag{1}$$

Johnson-Lindenstrauss Lemma	RIP	Main Results	Idea of proof	Discussion
000000	000	00	000000	00

RIP through concentration of measure

Recall the concentration inequality for distance-preserving embeddings (i.e. when Φ is Gaussian):

$$\mathbb{P}\Big(\big|\|\Phi v\|^2 - \|v\|^2\big| \ge \varepsilon \|v\|^2\Big) \le \exp(-c\varepsilon^2 m) \tag{1}$$

[Baraniuk et al 2008]: If $\Phi : \mathbb{R}^N \to \mathbb{R}^m$ satisfies the concentration inequality, then with high probability a particular realization of Φ satisfies (k, ε) -RIP for $m \ge c' \varepsilon^2 k \log N$

 Implies RIP with optimally small *m* for Gaussian (and more generally subgaussian) matrices

Johnson-Lindenstrauss Lemma	RIP	Main Results	Idea of proof	Discussion
000000	000	00	000000	00

Known RIP bounds

The following random matrices satisfy (k, δ) -RIP with high probability (proved via other methods):

- ► [Rudelson/Vershynin '08]: Partial Fourier matrix \mathcal{F}_{rand} ; $m \gtrsim \delta^{-2} k \log^4(N)$
- ► [Adamczak et al '09]: Matrices whose columns are i.i.d. from log-concave distribution - m ≥ δ⁻²k log²(N)
- ▶ ...
- ▶ The best known deterministic constructions require $m \gtrsim k^{2-\mu}$ for some small μ (Bourgain et al (2011)).

Johnson-Lindenstrauss Lemma	RIP	Main Results	Idea of proof	Discussion
000000	000	•0	000000	00

Main results

Theorem (Krahmer, W. 2010) Fix $\eta > 0$ and $\varepsilon > 0$. Let $\{x_j\}_{j=1}^p \subset \mathbb{R}^N$ be arbitrary. Set $k \ge 40 \log \frac{4p}{\eta}$, and suppose that $\Phi : \mathbb{R}^N \to \mathbb{R}^m$ has the $(k, \varepsilon/4)$ -restricted isometry property. Let \mathcal{D} be a diagonal matrix of random signs. Then with probability $\ge 1 - \eta$,

$$(1 - \varepsilon) \|x_j\|_2^2 \le \|\Phi \mathcal{D} x_j\|_2^2 \le (1 + \varepsilon) \|x_j\|_2^2$$

uniformly for all x_j .

►
$$\mathcal{F}_{rand}$$
 has (k, δ) -RIP with $m \ge c\varepsilon^{-2}k\log^4(N) \Rightarrow \mathcal{F}_{rand}\mathcal{D}$ is a distance-preserving embedding if $m \ge c'\varepsilon^{-2}\log(p)\log^4(N)$.

Johnson-Lindenstrauss Lemma	RIP	Main Results	Idea of proof	Discussion
000000	000	0•	000000	00

A Geometric Observation

 A matrix that acts as an approximate isometry on sparse vectors (an RIP matrix) also acts as an approximate isometry on most vertices of the Hamming cube {-1,1}^N).

• Apply our result to the vector x = (1, ..., 1).

Johnson-Lindenstrauss Lemma	RIP	Main Results	Idea of proof	Discussion
000000	000	00	00000	00

Idea of Proof:

- Assume w.l.o.g. x is in decreasing arrangement.
- Partition x in $R = \frac{2N}{k}$ blocks of length $s = \frac{k}{2}$:

$$x = (x_1, \ldots, x_N) = (x_{(1)}, x_{(2)}, \ldots, x_{(R)}) = (x_{(1)}, x_{(b)})$$

Need to bound

$$\begin{split} \|\Phi D_{\xi} x\|_{2}^{2} &= \|\Phi D_{x} \xi\|_{2}^{2} = \|\sum_{j=1}^{R} \Phi_{(J)} D_{x_{(J)}} \xi_{(J)}\|_{2}^{2} \\ &= \sum_{J=1}^{R} \|\Phi_{(J)} D_{x_{(J)}} \xi_{(J)}\|_{2}^{2} + 2\xi_{(1)}^{*} D_{x_{(1)}} \Phi_{(1)}^{*} \Phi_{(\flat)} D_{x_{(\flat)}} \xi_{(\flat)} \\ &+ \sum_{J,L=2 \atop J \neq L}^{R} \left\langle \Phi_{(J)} D_{x_{(J)}} \xi_{(J)}, \Phi_{(L)} D_{x_{(L)}} \xi_{(L)} \right\rangle \end{split}$$

Estimate each term separately.

Johnson-Lindenstrauss Lemma	RIP	Main Results	ldea of proof	Discussion
0000000	000		○●○○○○	00

First term

- ▶ Φ has (k,δ)-RIP, hence also has (s,δ)-RIP, and each Φ_(J) is almost an isometry.
- ► Noting that $\|D_{x_{(J)}}\xi_{(J)}\|_2 = \|D_{\xi_{(J)}}x_{(J)}\|_2 = \|x_{(J)}\|_2$, we estimate

$$(1-\delta)\|x\|_2^2 \le \sum_{J=1}^R \|\Phi_{(J)}D_{x_{(J)}}\xi_{(J)}\|_2^2 \le (1+\delta)\|x\|_2^2.$$

• Conclude with $\delta \leq \frac{\varepsilon}{4}$ that

$$\left(1-\frac{\varepsilon}{4}\right)\|x\|_{2}^{2} \leq \sum_{J=1}^{R} \|\Phi_{(J)}D_{x_{(J)}}\xi_{(J)}\|_{2}^{2} \leq \left(1+\frac{\varepsilon}{4}\right)\|x\|_{2}^{2}$$

Johnson-Lindenstrauss Lemma	RIP	Main Results	Idea of proof	Discussion
000000	000	00	00000	00

Second term

 $2\xi_{(1)}^* D_{x_{(1)}} \Phi_{(1)}^* \Phi_{(\flat)} D_{x_{(\flat)}} \xi_{(\flat)}$

• Keep $\xi_{(1)} = b$ fixed, then use Hoeffding's inequality.

Proposition (Hoeffding (1963))

Let $v \in \mathbb{R}^N$, and let $\xi = (\xi_j)_{j=1}^N$ be a Rademacher sequence. Then, for any t > 0,

$$\mathbb{P}\Big(|\sum_{j}\xi_{j}v_{j}|>t\Big)\leq 2\exp\Big(-\frac{t^{2}}{2\|v\|_{2}^{2}}\Big).$$

• Need to estimate $\|v\|_2$ for $v = D_{x_{(b)}} \Phi^*_{(b)} \Phi_{(1)} D_{x_{(1)}} b$.

Johnson-Lindenstrauss Lemma	RIP	Main Results	Idea of proof	Discussion
000000	000	00	000000	00

Key estimate

Proposition

Let $R = \lceil N/s \rceil$. Let $\Phi = (\Phi_j) = (\Phi_{(1)}, \Phi_{(\flat)}) \in \mathbb{R}^{m \times N}$ have the $(2s, \delta)$ -RIP, let $x = (x_{(1)}, x_{(\flat)}) \in \mathbb{R}^N$ be in decreasing arrangement with $||x||_2 \leq 1$, fix $b \in \{-1, 1\}^s$, and consider the vector

$$v\in\mathbb{R}^N,\quad v=D_{x_{(\flat)}}\Phi^*_{(\flat)}\Phi_{(1)}D_{x_{(1)}}b.$$

Then $||v||_2 \leq \frac{\delta}{\sqrt{s}}$.

Johnson-Lindenstrauss Lemma	RIP	Main Results	Idea of proof	Discussion
0000000	000	00	000000	00

Key ingredients for the proof of the proposition

- $\|x_{(J)}\|_{\infty} \leq \frac{1}{\sqrt{k}} \|x_{(J-1)}\|_2$ for J > 1 (decreasing arrangement).
- ▶ Off-diagonal RIP estimate: $\|\Phi_{(J)}^*\Phi_{(L)}\| \le \delta$ for $J \ne L$.

Johnson-Lindenstrauss Lemma	RIP	Main Results	Idea of proof	Discussion
000000	000	00	00000	00

Third term

$$\sum_{\substack{J,L=2\\J\neq L}}^{R} \left\langle \Phi_{(J)} D_{x_{(J)}} \xi_{(J)}, \Phi_{(L)} D_{x_{(L)}} \xi_{(L)} \right\rangle$$

Use concentration inequality for Rademacher Chaos:

Proposition (Hanson/Wright '71, Boucheron et al '03) Let X be the N × N matrix with entries $x_{i,j}$ and assume that $x_{i,i} = 0$ for all $i \in [N]$. Let $\xi = (\xi_j)_{j=1}^N$ be a Rademacher sequence. Then, for any t > 0, $\mathbb{P}\left(|\sum_{i,j} \xi_i \xi_j x_{i,j}| > t\right) \le 2 \exp\left(-\frac{1}{64} \min\left(\frac{96}{65}t}{\|X\|}, \frac{t^2}{\|X\|_{\mathcal{F}}^2}\right)\right)$.

• Need ||C|| and $||C||_{\mathcal{F}}$ for

$$C \in \mathbb{R}^{N imes N}, \quad C_{j,\ell} = \left\{ egin{array}{cc} x_j \Phi_j^* \Phi_\ell x_\ell, & j,\ell > s \ 0, & ext{else.} \end{array}
ight.$$
 in different blocks

Johnson-Lindenstrauss Lemma	RIP	Main Results	Idea of proof	Discussion
000000	000	00	000000	•0

Summary and discussion

Novel connection: An RIP matrix with randomized column signs is a distance-preserving (Johnson-Lindenstrauss) embedding.

- Yields "near-equivalence" between RIP and JL-Lemma
- Allows to transfer the theoretical results developed in compressed sensing to the setting of distance-preserving embeddings
- Yields improved bounds for embedding dimension of several classes of random matrices, and optimal dependence on distortion ε for a fast embedding.

Johnson-Lindenstrauss Lemma	RIP	Main Results	Idea of proof	Discussion
000000	000	00	000000	0.

Thanks!