Optimal Gaussian Partitions with Application and Open Problems

Elchanan Mossel

UC Berkeley

September 21, 2011

Optimal Gaussian Partitions

How to partition

- \mathbb{R}^n (*n* is unbounded)
- into $r \times q$ parts $f_i^{-1}(a)$ for $1 \le i \le r$ and $1 \le a \le q$,
- of prescribed Gaussian measures $m_{i,a}$ with $\sum_{a} m_{i,a} = 1$,
- such that r Gaussian vectors $X_1, \ldots, X_r \in \mathbb{R}^n$ with prescribed covariance structure $Cov(X_i, X_j) = V_{i,j}I_n$
- maximize the expected value of "combinatorial quantity" depending only on (f_i(X_i))^r_{i=1}.

Notes

- An asymptotic geometric problem (dimension is unbounded).
- value increases with dimension, maximum is supremum.

Optimal Gaussian Partition

Given:

- $H: [q]^r \to \mathbb{R}$ (combinatorial weights)
- $m \in M_{r \times q}$ a stochastic matrix (parts sizes).
- $0 \le V \in M_{r \times r}$ with $V_{i,i} = 1$ for all *i* (covariance structure).

Define

$$M(H, m, V) := \sup \mathbb{E}[H(f_1(X_1), \ldots, f_r(X_r))]$$

where the sup is taken over all

- dimensions n,
- $f_i : \mathbb{R}^n \to [q]$ s.t.
- $\mathbb{P}[f_i(X) = a] = m_{i,a}$ for all $1 \le i \le r$ and $1 \le a \le q$.
- $X_1, \ldots, X_r \in \mathbb{R}^n$ are jointly Gaussian with $Cov[X_i, X_j] = V_{i,j}I_n$.

Thm: (C. Borell 1985)

When r = 2, q = 2, general m and

$$H(a,b) = 1(a = b), \quad V = \begin{pmatrix} 1 &
ho \\
ho & 1 \end{pmatrix},
ho > 0$$

Maximum is obtained in dimension n = 1 and

$$f_i(x) = \begin{cases} 1 & x < t. \\ 2 & x \ge t. \end{cases}, \quad P[X > t] = m_{i,2}.$$

In words

Partition of \mathbb{R}^n into two parts of equal measure which maximizes the probability that two correlated Gaussians will fall in the same part is given by a half-space.

Thm: (Isaksson-M 2011)

When $r \ge 2, q = 2, m = (m_1, m_2),$ H(a, b, c, ...) = 1(a = b = c = ...) and

$$V = \begin{pmatrix} 1 & \rho & \dots & \rho \\ \rho & 1 & \rho \dots & \\ \vdots & \ddots & \ddots & \dots \end{pmatrix}, \rho > 0$$

Maximum is obtained in dimension n = 1 and

$$f_i(x) = \begin{cases} 1 & x < t. \\ 2 & x \ge t. \end{cases}, \quad P[X > t] = m_{i,2}.$$

What else is known?

Nothing.

Borell's proof (1985)

Ehrhard symmetrization.

Isaksson-M approach (2011)

- Formulate a spherical statement.
- Prove Spherical Statement using Rearrangement Inequalities.
- Project to a small number of coordinates to obtain Gaussian results

Spherical Partition Problem

Given n, $0 \leq \Sigma \in \mathbb{R}^{k \times k}$, $(m_1, \ldots, m_k) \in (0, 1)^k$, Find sup $P(X_1 \in A_1, \ldots, X_k \in A_k)$ where

• X'_1, \ldots, X'_k are jointly normal with $Cov(X'_i, X'_j) = \sum_{i,j} I_n$

•
$$X_i = \frac{X'_i}{\|X'_i\|_2}$$

sup is over A_i with µ(X_i ∈ A_i) = m_i where µ is the Haar measure on the (n − 1)-sphere.

Thm: Optimal Spherical Partition

If $\sum_{i,j}^{-1} \leq 0$ for all $i \neq j$ then:

$$P(X_1 \in A_1,\ldots,X_k \in A_k) \leq P(X_1 \in H_1,\ldots,X_k \in H_k),$$

where $H_i = \{x : x_1 \le a_1\}$ with $\mu(H_i) = \mu(A_i) = m_i$.

Optimal Spherical Partition - Proof Sketch

Express $P(X_1 \in A_1, ..., X_k \in A_k)$ in terms of independent normals $Z_i \sim N(0, c_i I_n)$. Writing $W_i = Z_i / ||Z_i||_2$ to obtain

$$C_1 \mathbb{E} \left[\mathbbm{1}_{\{W_1 \in \mathcal{A}_1,...,W_k \in \mathcal{A}_k\}} \prod_{1 \leq i < j \leq k} e^{-ig(\Sigma^{-1}ig)_{i,j} \langle Z_i, Z_j
angle}
ight] =$$

$$C_1 \mathbb{E} \left[\mathbb{1}_{\{W_1 \in A_1, \dots, W_k \in A_k\}} \prod_{1 \leq i < j \leq k} e^{-(\Sigma^{-1})_{i,j} \langle W_i, W_j \rangle \|Z_i\|_2 \|Z_j\|_2} \right]$$

Conditioned on $||Z_i||_2$, W_i are uniformly distributed on the sphere and $\langle W_i, W_j \rangle$ decreases in $||W_i - W_j||$. Therefore can apply extended Riesz Inequality (Burchard-01, Morpurgo-02) to conclude maximum is obtained for half-spaces H_i .

Optimal Gaussian Partitions

- Take $n \leq m \to \infty$.
- $X_i \in S^{m-1}, Y_i \in R^n$ with the same covariance structure Σ .
- Z_i = first *n* coordinates of X_i .
- $\sqrt{m}(Z_1,\ldots,Z_k) \rightarrow_{m \rightarrow \infty} (Y_1,\ldots,Y_k)$ in distribution.
- Spherical bound implies Gaussian bound.
- Some approximation agruments needed when sets are not closed.

Open Problem 1 - Finite Dimensionality?

1. Finite dimensionality

Is the supremum M(H, m, V) a maximum? Is it obtained in a finite dimension?

1.a Finite dimensionality variant

Same question assuming $f_s = f_1$ and $m_{s,j} = m_{1,j}$ for $1 \le s \le r$? (Conj. of O. Regev: $n = \infty$ for $r = 2, q = 2, H(a, b) = 1(a \ne b)$).

Comment : Approximate Finite Dimensionality

Find explicit $n(\epsilon, H)$ or $n(\epsilon, H, m, V)$ such that sup in dimension n is ϵ close to M(H, m, V)? (Seems doable using dimension reduction ideas (see Raghavendra-Steurer-09)).

More Examples

Find other optimal Gaussian partitions!

The Standard Simplex Conjecture (Isaksson-M-11)

Suppose $X, Y \sim N(0, I_n)$ and $Cov(X, Y) = \rho I_n$. Let $A_1, \ldots, A_q \subseteq \mathbb{R}^n$ be a partition of \mathbb{R}^n and $S_1, \ldots, S_q \subseteq \mathbb{R}^n$ a standard simplex partition. Then,

i) If $\rho \geq 0$ and A_1, \ldots, A_q is *balanced*, then

$$\mathbb{P}((X,Y)\in A_1^2\cup\cdots\cup A_q^2)\leq \mathbb{P}((X,Y)\in S_1^2\cup\cdots\cup S_q^2)$$
 (1)

ii) If $\rho < 0$:

$$\mathbb{P}((X,Y)\in A_1^2\cup\cdots\cup A_q^2)\geq \mathbb{P}((X,Y)\in S_1^2\cup\cdots\cup S_q^2)$$
 (2)

definition

For $n+1 \ge q \ge 2$, A_1, \ldots, A_q is a standard simplex partition of \mathbb{R}^n if for all *i*

$$A_i \supseteq \{ x \in \mathbb{R}^n | x \cdot a_i > x \cdot a_j, \forall j \neq i \}$$
(3)

where $a_1, \ldots a_q \in \mathbb{R}^n$ are q vectors satisfying

$$a_i \cdot a_j = \begin{cases} 1 & \text{if } i = j \\ -\frac{1}{q-1} & \text{if } i \neq j \end{cases}$$
(4)

• I. Ancient: Among all sets with v_n (A) = 1 the minimizer of $v_{n-1}(\partial A)$ is A = Ball.

• II. Recent (Borell, Sudakov-Tsierlson 70's) Among all sets with $\gamma_n(A) = a$ the minimizer of $\gamma_{n-1}(\partial A)$ is A =Half-Space.

• III. More recent (Borell 85): For all ρ , among all sets with $\gamma(A) = a$ the maximizer of E[A(N)A(M)] is given by A = Half-Space.

• <u>Thm1 ("Double-Bubble")</u>:

- Among all pairs of disjoint sets A,B with $v_n(A) = a v_n(B) = b$, the minimizer of $v_{v-1}(\partial A \cup \partial B)$ is a "Double Bubble"
- <u>Thm2</u> ("Peace Sign"):
- Among all partitions A,B,C of Rⁿ with γ (A) = γ (B) = γ (C) = 1/3, the minimum of $\gamma(\partial A \cup \partial B \cup \partial C)$ is obtained for the "Peace Sign"
- 1. Hutchings, Morgan, Ritore, Ros. + Reichardt, Heilmann, Lai, Spielman 2. Corneli, Corwin, Hurder, Sesum, Xu, Adams, Dvais, Lee, Vissochi

Double bubbles

Newer Isoperimetric Results

- Conj (Isaksson-M, Israel J. Math 2011): For all $0 \le \rho \le 1$:
 - argmax E[A(X)A(Y) + B(X)B(Y) + C(X)C(Y)] = "Peace Sign"
 - where max is over all partitions (A,B,C) of ^{Peace sign} R^n with $\gamma_n(A) = \gamma_n(B) = \gamma_n(C) = 1/3$ is Later we'll see applications

3

- Challenges:
- Can one extend the double bubble proof to the Gaussian setup?
- Develop symmetrisation techniques for partition into 3 parts.

Motivation

- Approximate Optimization

 Unique Games and Optimization.

 Quantitative Social choice
 - Quantitative Arrow theorem.

Approximate Optimization

- Many optimization problems are NP-hard.
- Instead: Approximation algorithms
- These are algorithms that guarantee to give a solution which is at least
- α OPT or OPT ϵ .
- S. Khot (2002) invented a new paradigm for analyzing approximation algorithms - called UGC (Ungiue Games Conjecture)

Other Approximation problems Work of KKMO04,MOO-05 gives best approximation factor for Max-Cut.

- Crucially uses Borell's optimal partition.
- A second result using Invariance of M 08;10
- <u>Raghavendra 08</u>: Duality between Algorithms and Hardness for Constraint Satisfaction Problems.
- Solution to Gaussian partition problem implies "best" approximation factor/ algorithm for the corresponding optimization problem.

Majority is Stablest

- Let $(X_i, Y_i) \in \{-1, 1\}^n \& E[X_i] = E[Y_i] = 0; E[X_i Y_i] = \rho$.
- Let $Maj(x) = sgn(\sum x_i)$.
- <u>Thm (Sheffield 1899)</u>:
- E[Maj(X) Maj(Y)] \rightarrow M(ρ) := (2 arcsin ρ)/ π
- <u>Thm (MOO; "Majority is Stablest"):</u>
- Let $f: \{-1,1\}^n \rightarrow \{-1,1\}$ with E[f] = 0.
- $I_i(f) := P[f(X_1,...,X_i,...,X_n) \neq f(X_1,...,X_n)]$,
- $I = max l_i(f)$
- Then: $E[f(X) f(Y)] \le M(\rho) + C/log^2(1/l)$
- Proof follows Borell's result and invariance.

Quantitative Social Choice

- Quantitative social choice studies different voting methods in a quantitative way.
- Standard assumption is of uniform voting probability.
- A "stress-test" distribution
 Bias distributions are not sensitive to errors/manipulation/paradoxes etc.
- Consider general voting rule $f: \{-1,1\}^n \rightarrow \{-1,1\}$ or $f: [q]^n \rightarrow [q]$ etc.

Errors in Voting

- <u>Majority is Stablest (MOO 05;10)</u>:
- Majority minimizes probability of error in outcome among low influence functions.
- Follows from Borll's partition result.
- <u>Plurality is Stablest (IM) 11:</u>
- The statement that
- Plurality minimizes probability of error in outcome among low influence functions is equivalent to
 - Peace-Sign conjecture.

<u>Errors in Voting</u>

- Majority is Most Predictable (M 08; 10):
- Suppose each voter is in a poll with prob. p independently.
- Majority is most predictable from poll among all low influence functions.
- <u>Next Example Arrow theorem</u>
- Fundamental theorem of modern social choice.

Condorcet Paradox

- n voters are to choose between 3 options / candidates.
- Voter i ranks the three candidates A, B & C via a permutation $\sigma_i \in S_3$
- Let $X^{AB}_{i} = +1$ if $\sigma_i(A) > \sigma_i(B)$ $X^{AB}_{i} = -1$ if $\sigma_i(B) > \sigma_i(A)$
- Aggregate rankings via: $f,g,h: \{-1,1\}^n \rightarrow \{-1,1\}$.
- Thus: A is preferred over B if $f(x^{AB}) = 1$.
- A Condorcet Paradox occurs if: $f(x^{AB}) = g(x^{BC}) = h(x^{CA}).$
- Defined by Marquis de Condorcet in 18' th century.

Arrow's Impossibility Thm

• <u>Thm (Condorecet)</u>: If n > 2 and f is the majority function then there exists rankings $\sigma_1, \dots, \sigma_n$ resulting in a Paradox

- <u>Thm</u> (Arrow's Impossibility): For all n > 1, unless f is the dictator function, there exist rankings $\sigma_1,...,\sigma_n$ resulting in a paradox.
- Arrow received the Nobel prize (72)

Probability of a Paradox

- What is the probability of a paradox:
- $PDX(f) = P[f(x^{AB}) = f(x^{BC}) = f(x^{CA})]?$
- <u>Arrow's</u>: f = dictator iff PDX(f) = 0.

- <u>Thm</u>(Kalai 02): Majority is Stablest for $\rho=1/3 \Rightarrow$ majority minimizes probability of paradox among low influences functions (7-8%).
- <u>Thm</u>(Isacsson-M 11): Majority maximizes probability of a unique winner for any number of alternatives.
- (Proof uses invariance + Exchangble Gaussian Theorem)

Summary

- Prove the "Peace Sign Conjecture" (Isoperimetry)
- \Rightarrow "Plurality is Stablest" (Low Inf Bounds)
- \Rightarrow MAX-3-CUT hardness (CS) and voting.
- $+ \Rightarrow$ New isoperimetric results.

Lindeberg & Berry Esseen

- Let $X_i = +/- w.p \frac{1}{2}$, $N_i \sim N(0,1)$ ind.
- $f(x) = \sum_{i=1}^{n} c_i x_i$ with $\sum c_i^2 = 1$.
- <u>Thm: (Berry Esseen CLT):</u>

- $sup_{+} |P[f(X) \le t] P[f(N) \le t]| \le 3 \max |c_{i}|$
- Note that $f(N) = f(N_1,...,N_n) \sim N(0,1)$.
- Lindeberg idea: can replace X_i with N_i as long as all coefficients are small.
- <u>Q</u>: can this be done for other functions f?
 e.g. polynomials?

Some Examples

• <u>Q:</u> Is it possible to apply Lindeberg principle to other functions with small coefficients?

- <u>Ex 1</u>: $f(x) = (n^{3}/6)^{-1/2} \sum_{i < j < k} x_i x_j x_k \rightarrow Okay$
- Limit is N³ 3N

- <u>Ex 2</u>: $f(x) = (2n)^{-1/2} (x_1 x_2) (x_1 + ... + x_n) \rightarrow Not OK$
- For X: $P[f(X) = 0] \ge \frac{1}{2}$.

Invariance Principle

- <u>Thm (MOO := M-O' Donnell-</u> <u>Oleszkiewicz; FOCS05, Ann. Math10):</u>
- Let $Q(x) = \sum_{s} c_{s} X_{s}$ be a multi-linear polynomial of degree d with $\sum c_{s}^{2} = 1$.
- $I_i(Q) := \sum_{S : i \in S} c_S^2$ $I(Q) = \max_i I_i(Q)$
- Then:
- $sup_{\dagger} |P[f(X) \le \dagger] P[f(N) \le \dagger]| \le 3 \text{ d } I^{1/8d}$
- Works if X has 2+e moments + other setups.

The Role of Hyper-Contraction

- <u>Pf Ideas:</u>
- Lindeberg trick (replace one variable at a time)
- Hyper-contraction allows to bound high moments in term of lower ones.
- X is (2,q > 2,a) <u>Hyper-contractive</u> if for all x:
- $|x + a X|_q \le |x + X|_2$
- <u>Key fact</u>: A degree d polynomial of (2,q,a) variables is (2,q,a^d) hyper-contractive.
- <u>Key fact 2</u>: If $|X|_q < \infty$ then it is (2,q,a) hypercontractive for $a=|X|_2/(q-1)^{1/2} |X|_q$

Related Work

- Many works generalizing Lindeberg idea:
- <u>Chatterjee 06</u>: Lindeberg worst case influence.
- <u>Rotar 79</u>: Similar result no Berry Esseen bounds.
- New in our work: use of hyper-contraction.
- Classical results for U,V statistics.
- M (FOCS 08, Geom. and Functional Analysis 10):
- Multi-function versions.
- General "noise".
- Bounds in terms of cross influences.

Majority is Stablest

- Let $(X_i, Y_i) \in \{-1, 1\}^n$ & $E[X_i] = E[Y_i] = 0$; $E[X_i Y_i] = \rho$.
- Let $Maj(x) = sgn(\sum x_i)$.
- <u>Thm (Sheffield 1899)</u>:
- E[Maj(X) Maj(Y)] \rightarrow M(ρ) := (2 arcsin ρ)/ π
- Thm (MOO; "Majority is Stablest"):
- Let $f: \{-1,1\}^n \to \{-1,1\}$ with E[f] = 0.
- $I_i(f) := P[f(X_1,...,X_i,...,X_n) \neq f(X_1,...,X_n)]$
- $I = \max I_i(f)$
- Then: $E[f(X) f(Y)] \le M(\rho) + C/log^2(1/l)$

Majority is Stablest - Pf Idea

- <u>Pf Ideas</u>: Use "non-linear invariance" +
- "noise truncation" (reduction to bdd degree f's) equivalent to the following regarding normal vectors:
- Let N,M be two n-dim normal vectors
- where (N_i, M_i) i.i.d. & $E[N_i] = E[N_i] = 0$; $E[N_i M_i] = \rho$.
- Then
- (*) Argmax {E[f(N) f(M)] : E[f] = 0, f ∈ ± 1} is
 f(x) = sgn(x₁).
- (*) was proved by C. Borell 1985.

Majority is Stablest - Context

- Conext:
- Implies social choice conjecture by Kalai 2002.
- Proves the conjecture of Khot-Kindler-M-O' Donnell 2005 in the context of approximate optimization.
- Strengthen results of Bourgain 2001.
- More general versions proved in M-10
- M-10 allows truncation in general "noise" structure.
- <u>E.g: In M-10: Majority is most predictable</u>:
- Among low influence functions majority outcome is most predictable give a random sample of inputs²³

Motivation

- Approximate Optimization

 Unique Games and Optimization.

 Quantitative Social choice
 - Quantitative Arrow theorem.
Approximate Optimization

- Many optimization problems are NP-hard.
- Instead: Approximation algorithms
- These are algorithms that guarantee to give a solution which is at least
- α OPT or OPT ϵ .
- S. Khot (2002) invented a new paradigm for analyzing approximation algorithms - called UGC (Ungiue Games Conjecture)

Example 1: The MAX-CUT Problem

- G = (V,E)
- C = (S^c,S), partition of V
- w(C) = $|(SxS^c) \cap E|$
- w : E ---> R⁺
- $w(C) = \sum_{e \in E \cap S \times S^c} w(e)$

Example: The Max-Cut Problem

- OPT = OPT(G) = $max_c \{|C|\}$
- MAX-CUT problem: find C with w(C)= OPT
- α -approximation: find C with w(C) $\geq \alpha \cdot OPT$
- Goemans-Williamson-95:
- Rounding of

• Semi-Definite Program gives an α = .878567 approximation algorithm.

MAX-Cut Approximation

- Thm (KKMO = Khot-Kindler-M-O' Donell, FOCS 2004, Siam J. Computing 2007):
- Under UGC, the problem of finding an α > a_{GW} = 0.87... approximation for MAX-CUT is NP-hard.
- Moral: Semi-definite program does the best.

 Thm (IM-2010): Same result for MAX-q-CUT assuming the Peace-Sign Conjecture.

Other Approximation problems

- Work of KKMO04,MOO-05 show gives best approximation factor for Max-Cut.
- Crucially uses Borell's optimal partition.
- A second result using Invariance of M 08;10
- <u>Raghavendra 08</u>: Duality between Algorithms and Hardness for Constraint Satisfaction Problems.
- \Rightarrow Any optimal solution to
- Gaussian partition problem gives "best" approximation factor/algorithm for the corresponding optimization problem.

Quantitative Social Choice

- Quantitative social choice studies different voting methods in a quantitative way.
- Standard assumption is of uniform voting probability.
- A "stress-test" distribution
 Bias distributions are not sensitive to errors/manipulation/paradoxes etc.
- Consider general voting rule $f: \{-1,1\}^n \rightarrow \{-1,1\}$ or $f: [q]^n \rightarrow [q]$ etc.

Errors in Voting

- Suppose each vote is re-randomized with probability
 e (by voting machine):
- <u>Majority is Stablest (MOO 05;10)</u>:
- Majority minimizes probability of error in outcome among low influence functions.
- <u>Plurality is Stablest (IM) 11:</u>
- The statement that
- Plurality minimizes probability of error in outcome among low influence functions is equivalent to Peace-Sign conjecture.

<u>Errors in Voting</u>

- Majority is Most Predictable (M 08; 10):
- Suppose each voter is in a poll with prob. p independently.
- Majority is most predictable from poll among all low influence functions.
- <u>Next Example Arrow theorem</u>
- Fundamental theorem of modern social choice.

Condorcet Paradox

- n voters are to choose between 3 options / candidates.
- Voter i ranks the three candidates A, B & C via a permutation $\sigma_i \in S_3$
- Let $X^{AB}_{i} = +1$ if $\sigma_i(A) > \sigma_i(B)$ $X^{AB}_{i} = -1$ if $\sigma_i(B) > \sigma_i(A)$
- Aggregate rankings via: $f,g,h: \{-1,1\}^n \rightarrow \{-1,1\}$.
- Thus: A is preferred over B if $f(x^{AB}) = 1$.
- A Condorcet Paradox occurs if: $f(x^{AB}) = g(x^{BC}) = h(x^{CA}).$
- Defined by Marquis de Condorcet in 18' th century.

Arrow's Impossibility Thm

• <u>Thm (Condorecet)</u>: If n > 2 and f is the majority function then there exists rankings $\sigma_1, \dots, \sigma_n$ resulting in a Paradox

- <u>Thm</u> (Arrow's Impossibility): For all n > 1, unless f is the dictator function, there exist rankings $\sigma_1,...,\sigma_n$ resulting in a paradox.
- Arrow received the Nobel prize (72)

<u>Probability of a Paradox</u>

- What is the probability of a paradox:
- $PDX(f) = P[f(x^{AB}) = f(x^{BC}) = f(x^{CA})]?$
- <u>Arrow's</u>: f = dictator iff PDX(f) = 0.

- <u>Thm</u>(Kalai 02): Borell's optimal partition = is Stablest for p=1/3 → majority minimizes probability of paradox among low influences functions (7-8%).
- <u>Thm</u>(Isacsson-M 11): Majority maximizes probability of a unique winner for any number of alternatives.
- (Proof uses invariance + Exchangble Gaussian Theorem)

Probability of a Paradox

- <u>Arrow's</u>: f = dictator iff PDX(f) = 0.
- <u>Kalai 02</u>: Is it true that $\forall \epsilon \exists \delta$ such that
- if PDX(f) < δ
- then f is ε close to dictator?
- <u>Kalai O2:</u> Yes if there are 3 alternatives under technical condition.
- <u>M-11:</u> True for any number of alternatives.
- Pf uses Majority is stablest and inverse <u>hyper-</u> <u>contractive inequalities</u>.

Summary

- Prove the "Peace Sign Conjecture" (Isoperimetry)
- \Rightarrow "Plurality is Stablest" (Low Inf Bounds)
- \Rightarrow MAX-3-CUT hardness (CS) and voting.
- $+ \Rightarrow$ Results in Geometry.

