Optimal Gaussian Partitions with Application and Open Problems

Elchanan Mossel

UC Berkeley

September 21, 2011

Optimal Gaussian Partitions

Optimal Gaussian Partitions

How to partition

- \mathbb{R}^{n} (n is unbounded)
- into $r \times q$ parts $f_{i}^{-1}(a)$ for $1 \leq i \leq r$ and $1 \leq a \leq q$,
- of prescribed Gaussian measures $m_{i, a}$ with $\sum_{a} m_{i, a}=1$,
- such that r Gaussian vectors $X_{1}, \ldots, X_{r} \in \mathbb{R}^{n}$ with prescribed covariance structure $\operatorname{Cov}\left(X_{i}, X_{j}\right)=V_{i, j} I_{n}$
- maximize the expected value of "combinatorial quantity" depending only on $\left(f_{i}\left(X_{i}\right)\right)_{i=1}^{r}$.

Notes

- An asymptotic geometric problem (dimension is unbounded).
- value increases with dimension, maximum is supremum.

Optimal Gaussian Partition

Given:

- $H:[q]^{r} \rightarrow \mathbb{R}$ (combinatorial weights)
- $m \in M_{r \times q}$ a stochastic matrix (parts sizes).
- $0 \leq V \in M_{r \times r}$ with $V_{i, i}=1$ for all i (covariance structure).

Define

$$
M(H, m, V):=\sup \mathbb{E}\left[H\left(f_{1}\left(X_{1}\right), \ldots, f_{r}\left(X_{r}\right)\right)\right]
$$

where the sup is taken over all

- dimensions n,
- $f_{i}: \mathbb{R}^{n} \rightarrow[q]$ s.t.
- $\mathbb{P}\left[f_{i}(X)=a\right]=m_{i, a}$ for all $1 \leq i \leq r$ and $1 \leq a \leq q$.
- $X_{1}, \ldots, X_{r} \in \mathbb{R}^{n}$ are jointly Gaussian with $\operatorname{Cov}\left[X_{i}, X_{j}\right]=V_{i, j} I_{n}$.

What's known? $q=2$ parts with $r=2$

Thm: (C. Borell 1985)

When $r=2, q=2$, general m and

$$
H(a, b)=1(a=b), \quad V=\left(\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right), \rho>0
$$

Maximum is obtained in dimension $n=1$ and

$$
f_{i}(x)=\left\{\begin{array}{ll}
1 & x<t . \\
2 & x \geq t .
\end{array}, \quad P[X>t]=m_{i, 2}\right.
$$

In words
Partition of \mathbb{R}^{n} into two parts of equal measure which maximizes the probability that two correlated Gaussians will fall in the same part is given by a half-space.

What's known? $q=2$ parts with general r

Thm: (Isaksson-M 2011)

When $r \geq 2, q=2, m=\left(m_{1}, m_{2}\right)$, $H(a, b, c, \ldots)=1(a=b=c=\ldots)$ and

$$
V=\left(\begin{array}{cccc}
1 & \rho & \ldots & \rho \\
\rho & 1 & \rho \ldots & \\
\vdots & \ddots & \ddots & \ldots
\end{array}\right), \rho>0
$$

Maximum is obtained in dimension $n=1$ and

$$
f_{i}(x)=\left\{\begin{array}{ll}
1 & x<t . \\
2 & x \geq t .
\end{array}, \quad P[X>t]=m_{i, 2}\right.
$$

What else is known?
Nothing.

Proof Techniques

Borell's proof (1985)

Ehrhard symmetrization.

Isaksson-M approach (2011)

- Formulate a spherical statement.
- Prove Spherical Statement using Rearrangement Inequalities.
- Project to a small number of coordinates to obtain Gaussian results

Spherical Statement

Spherical Partition Problem

Given $n, \quad 0 \leq \Sigma \in \mathbb{R}^{k \times k}, \quad\left(m_{1}, \ldots, m_{k}\right) \in(0,1)^{k}$, Find $\sup P\left(X_{1} \in A_{1}, \ldots, X_{k} \in A_{k}\right)$ where

- $X_{1}^{\prime}, \ldots, X_{k}^{\prime}$ are jointly normal with $\operatorname{Cov}\left(X_{i}^{\prime}, X_{j}^{\prime}\right)=\Sigma_{i, j} I_{n}$
- $X_{i}=\frac{X_{i}^{\prime}}{\left\|X_{i}^{\prime}\right\|_{2}}$
- sup is over A_{i} with $\mu\left(X_{i} \in A_{i}\right)=m_{i}$ where μ is the Haar measure on the $(n-1)$-sphere.

Thm: Optimal Spherical Partition

If $\Sigma_{i, j}^{-1} \leq 0$ for all $i \neq j$ then:

$$
P\left(X_{1} \in A_{1}, \ldots, X_{k} \in A_{k}\right) \leq P\left(X_{1} \in H_{1}, \ldots, X_{k} \in H_{k}\right)
$$

where $H_{i}=\left\{x: x_{1} \leq a_{1}\right\}$ with $\mu\left(H_{i}\right)=\mu\left(A_{i}\right)=m_{i}$.

Optimal Spherical Partition - Proof Sketch

Express $P\left(X_{1} \in A_{1}, \ldots, X_{k} \in A_{k}\right)$ in terms of independent normals $Z_{i} \sim N\left(0, c_{i} I_{n}\right)$. Writing $W_{i}=Z_{i} /\left\|Z_{i}\right\|_{2}$ to obtain

$$
\begin{gathered}
C_{1} \mathbb{E}\left[1_{\left\{W_{1} \in A_{1}, \ldots, W_{k} \in A_{k}\right\}} \prod_{1 \leq i<j \leq k} e^{-\left(\Sigma^{-1}\right)_{i, j}\left\langle Z_{i}, Z_{j}\right\rangle}\right]= \\
C_{1} \mathbb{E}\left[1_{\left\{W_{1} \in A_{1}, \ldots, W_{k} \in A_{k}\right\}} \prod_{1 \leq i<j \leq k} e^{-\left(\Sigma^{-1}\right)_{i, j}\left\langle W_{i}, W_{j}\right\rangle\left\|Z_{i}\right\|_{2}\left\|Z_{j}\right\|_{2}}\right]
\end{gathered}
$$

Conditioned on $\left\|Z_{i}\right\|_{2}, W_{i}$ are uniformly distributed on the sphere and $\left\langle W_{i}, W_{j}\right\rangle$ decreases in $\left\|W_{i}-W_{j}\right\|$.
Therefore can apply extended Riesz Inequality (Burchard-01, Morpurgo-02) to conclude maximum is obtained for half-spaces H_{i}.

Optimal Gaussian Partitions

- Take $n \leq m \rightarrow \infty$.
- $X_{i} \in S^{m-1}, Y_{i} \in R^{n}$ with the same covariance structure Σ.
- $Z_{i}=$ first n coordinates of X_{i}.
- $\sqrt{m}\left(Z_{1}, \ldots, Z_{k}\right) \rightarrow_{m \rightarrow \infty}\left(Y_{1}, \ldots, Y_{k}\right)$ in distribution.
- Spherical bound implies Gaussian bound.
- Some approximation agruments needed when sets are not closed.

Open Problem 1 - Finite Dimensionality?

1. Finite dimensionality

Is the supremum $M(H, m, V)$ a maximum? Is it obtained in a finite dimension?
1.a Finite dimensionality variant

Same question assuming $f_{s}=f_{1}$ and $m_{s, j}=m_{1, j}$ for $1 \leq s \leq r$? (Conj. of O. Regev: $n=\infty$ for $r=2, q=2, H(a, b)=1(a \neq b)$).

Comment : Approximate Finite Dimensionality
Find explicit $n(\epsilon, H)$ or $n(\epsilon, H, m, V)$ such that sup in dimension n is ϵ close to $M(H, m, V)$? (Seems doable using dimension reduction ideas (see Raghavendra-Steurer-09)).

Open Problem 2 - Other Optimal partitions?

More Examples

Find other optimal Gaussian partitions!

The Standard Simplex Conjecture (Isaksson-M-11)

Suppose $X, Y \sim N\left(0, I_{n}\right)$ and $\operatorname{Cov}(X, Y)=\rho I_{n}$. Let $A_{1}, \ldots, A_{q} \subseteq \mathbb{R}^{n}$ be a partition of \mathbb{R}^{n} and $S_{1}, \ldots, S_{q} \subseteq \mathbb{R}^{n}$ a standard simplex partition. Then,
i) If $\rho \geq 0$ and A_{1}, \ldots, A_{q} is balanced, then

$$
\begin{equation*}
\mathbb{P}\left((X, Y) \in A_{1}^{2} \cup \cdots \cup A_{q}^{2}\right) \leq \mathbb{P}\left((X, Y) \in S_{1}^{2} \cup \cdots \cup S_{q}^{2}\right) \tag{1}
\end{equation*}
$$

ii) If $\rho<0$:

$$
\begin{equation*}
\mathbb{P}\left((X, Y) \in A_{1}^{2} \cup \cdots \cup A_{q}^{2}\right) \geq \mathbb{P}\left((X, Y) \in S_{1}^{2} \cup \cdots \cup S_{q}^{2}\right) \tag{2}
\end{equation*}
$$

The Standard Simplex Partition

definition

For $n+1 \geq q \geq 2, A_{1}, \ldots, A_{q}$ is a standard simplex partition of \mathbb{R}^{n} if for all i

$$
\begin{equation*}
A_{i} \supseteq\left\{x \in \mathbb{R}^{n} \mid x \cdot a_{i}>x \cdot a_{j}, \forall j \neq i\right\} \tag{3}
\end{equation*}
$$

where $a_{1}, \ldots a_{q} \in \mathbb{R}^{n}$ are q vectors satisfying

$$
a_{i} \cdot a_{j}= \begin{cases}1 & \text { if } i=j \tag{4}\\ -\frac{1}{q-1} & \text { if } i \neq j\end{cases}
$$

Isoperimetric context

- I. Ancient: Among all sets with v_{n} $(A)=1$ the minimizer of $v_{n-1}(\partial A)$ is $A=$ Ball.
- II. Recent (Borell, Sudakov-TsierIson 70' s) Among all sets with $\gamma_{n}(A)=a$ the minimizer of $\gamma_{n-1}(\partial A)$ is $A=$ Half-Space.
- III. More recent (Borell 85): For all ρ, among all sets with $\gamma(A)=a$ the maximizer of $E[A(N) A(M)]$ is given by $A=$ Half-Space.
- Thm1 ("Double-Bubble"):

Double bubbles

- Among all pairs of disjoint sets A, B with $v_{n}(A)=a v_{n}(B)=b$, the minimizer of $v_{v-1}(\partial A \cup \partial B)$ is a "Double Bubble"
- Thm2 ("Peace Sign"):
- Among all partitions A, B, C of R^{n} with γ $(A)=\gamma(B)=\gamma(C)=1 / 3$, the minimum of $\gamma(\partial A \cup \partial B \cup \partial C)$ is obtained for the "Peace Sign"
- 1. Hutchings, Morgan, Ritore, Ros. + Reichardt, Heilmann, Lai, Spielman 2. Corneli, Corwin, Hurder, Sesum, Xu, Adams, Dvais, Lee, Vissochi

Newer Isoperimetric Results

- Conj (Isaksson-M, Israel J. Math 2011): For all $0 \leq \rho \leq 1$: $\operatorname{argmax} E[A(X) A(Y)+B(X) B(Y)+C(X) C(Y)]$ = "Peace Sign" where max is over all partitions (A, B, C) of Peace sign R^{n} with $\gamma_{n}(A)=\gamma_{n}(B)=\gamma_{n}(C)=1 / 3$ is
- Challenges:

Later we'll see applications

- Can one extend the double bubble proof to the Gaussian setup?
- Develop symmetrisation techniques for partition into 3 parts.

Motivation

- Approximate Optimization
- Unique Games and Optimization.
- Quantitative Social choice
- Quantitative Arrow theorem.

Approximate Optimization

- Many optimization problems are NP-hard.
- Instead: Approximation algorithms
- These are algorithms that guarantee to give a solution which is at least
- α OPT or OPT - ε.
- S. Khot (2002) invented a new paradigm for analyzing approximation algorithms - called UGC (Unqiue Games Conjecture)

Other Approximation problems

- Work of KKMO04,MOO-05 gives best approximation factor for Max-Cut.
- Crucially uses Borell's optimal partition.
- A second result using Invariance of M 08;10
- Raghavendra 08: Duality between Algorithms and Hardness for Constraint Satisfaction Problems.
\Rightarrow Solution to Gaussian partition problem implies "best" approximation factor/ algorithm for the corresponding optimization problem.

Majority is Stablest

- Let $\left(X_{i}, Y_{i}\right) \in\{-1,1\}^{n} \& E\left[X_{i}\right]=E\left[Y_{i}\right]=0 ; E\left[X_{i} Y_{i}\right]=\rho$.
- Let $\operatorname{Maj}(x)=\operatorname{sgn}\left(\sum x_{i}\right)$.
- Thy (Sheffield 1899):
- $E[\operatorname{Maj}(X) \operatorname{Maj}(Y)] \rightarrow M(\rho):=(2 \arcsin \rho) / \pi$
- Thm (MOO; "Majority is Stablest"):
- Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ with $E[f]=0$.
- $I_{i}(f):=P\left[f\left(X_{1}, \ldots, X_{i}, \ldots, X_{n}\right) \neq f\left(X_{1}, \ldots,-X_{i}, \ldots, X_{n}\right)\right]$,
- I $=\max I_{i}(f)$
- Then: $E[f(X) f(Y)] \leq M(\rho)+C / \log ^{2}(1 / I)$
- Proof follows Borell's result and invariance.

Quantitative Social Choice

- Quantitative social choice studies different voting methods in a quantitative way.
- Standard assumption is of uniform voting probability.
- A "stress-test" distribution Bias distributions are not sensitive to errors/manipulation/paradoxes etc.
- Consider general voting rule $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ or $f:[q]^{n} \rightarrow[q]$ etc.

Errors in Voting

- Suppose each vote is re-randomized with probability \& (by voting machine):
- Majority is Stablest (MOO 05;10):
- Majority minimizes probability of error in outcome among low influence functions.
- Follows from Borll's partition result.
- Plurality is Stablest (IM) 11:
- The statement that
- Plurality minimizes probability of error in outcome among low influence functions is equivalent to
Peace-Sign conjecture.

Errors in Voting

- Majority is Most Predictable (M 08; 10):
- Suppose each voter is in a poll with prob. p independently.
- Majority is most predictable from poll among all low influence functions.
- Next Example - Arrow theorem
- Fundamental theorem of modern social choice.

Condorcet Paradox

- n voters are to choose between 3 options / candidates.
- Voter i ranks the three candidates A, B \& C via a permutation $\sigma_{i} \in S_{3}$
- Let $X{ }^{A B}{ }_{i}=+1$ if $\sigma_{i}(A)>\sigma_{i}(B)$

$$
X^{A B} i_{i}=-1 \text { if } \sigma_{i}(B)>\sigma_{i}(A)
$$

- Aggregate rankings via: $f, g, h:\{-1,1\}^{n} \rightarrow\{-1,1\}$.
- Thus: A is preferred over B if $f\left(x^{A B}\right)=1$.
- A Condorcet Paradox occurs if:

$$
f\left(x^{A B}\right)=g\left(x^{B C}\right)=h\left(x^{C A}\right) .
$$

- Defined by Marquis de Condorcet in 18 'th
 century.

Arrow's Impossibility Thm

- Thm (Condorecet): If $n>2$ and f is the majority function then there exists rankings $\sigma_{1}, \ldots, \sigma_{n}$ resulting in a Paradox
- Thm (Arrow's Impossibility): For all n >1, unless f is the dictator function, there exist rankings $\sigma_{1}, \ldots, \sigma_{n}$ resulting in a paradox.
- Arrow received the Nobel prize (72)

Probability of a Paradox

- What is the probability of a
- $\operatorname{PDX}(f)=\operatorname{P}\left[f\left(x^{A B}\right)=f\left(x^{B C}\right)=f\left(x^{C A}\right)\right]$?
- Arrow's: $f=$ dictator iff $\operatorname{PDX}(f)=0$.
- Thm(Kalai 02): Majority is Stablest for $\rho=1 / 3 \Rightarrow$ majority minimizes probability of paradox among low influences functions (7-8\%).
- Thm(Isacsson-M 11): Majority maximizes probability of a unique winner for any number of alternatives.
- (Proof uses invariance + Exchangble Gaussian Theorem)

Summary

- Prove the "Peace Sign Conjecture" (Isoperimetry)
- \Rightarrow "Plurality is Stablest" (Low Inf Bounds)
- \Rightarrow MAX-3-CUT hardness (CS) and voting.
$+\Rightarrow$ New isoperimetric results.

ARTIE.COM

Lindeberg \& Berry Esseen

$$
\text { Let } X_{i}=+/-w . p \frac{1}{2}, N_{i} \sim N(0,1) \text { ind. }
$$

- $f(x)=\sum_{i=1}^{n} c_{i} x_{i}$ with $\sum c_{i}^{2}=1$.
- Thm: (Berry Esseen CLT):
- $\sup _{\dagger}|P[f(X) \leq \dagger]-P[f(N) \leq \dagger]| \leq 3 \max \left|c_{i}\right|$
- Note that $f(N)=f\left(N_{1}, \ldots, N_{n}\right) \sim N(0,1)$.
- Lindeberg idea: can replace X_{i} with N_{i} as long as all coefficients are small.
- Q: can this be done for other functions f? e.g. polynomials?

Some Examples

Q: Is it possible to apply Lindeberg principle to other functions with small coefficients?

- Ex 1: $f(x)=\left(n^{3} / 6\right)^{-1 / 2} \sum_{i j j k} x_{i} x_{j} x_{k} \rightarrow$ Okay
- Limit is $\mathrm{N}^{3}-3 \mathrm{~N}$
- Ex 2: $f(x)=(2 n)^{-1 / 2}\left(x_{1}-x_{2}\right)\left(x_{1}+\ldots .+x_{n}\right) \rightarrow$ Not OK
- For $X: P[f(X)=0] \geq \frac{1}{2}$.

Invariance Principle

- Thm (MOO := M-O' DonnellOleszkiewicz; FOCS05, Ann. Math10):
- Let $Q(x)=\sum_{s} c_{s} X_{s}$ be a multi-linear polynomial of degree d with $\sum \mathrm{c}_{s^{2}}=1$.
- $\mathrm{I}_{\mathrm{i}}(\mathrm{Q}):=\sum_{\mathrm{s}: \mathrm{i} \in \mathrm{S}} \mathrm{C}^{2} \quad \mathrm{I}(\mathrm{Q})=\max _{\mathrm{i}} \mathrm{l}_{\mathrm{i}}(\mathrm{Q})$

- Then:
- $\sup _{\dagger}|P[f(X) \leq \dagger]-P[f(N) \leq \dagger]| \leq 3 d I^{1 / 8 d}$
- Works if X has $2+\varepsilon$ moments + other setups.

The Role of Hyper-Contraction

- Pf Ideas:

- Lindeberg trick (replace one variable at a time)
- Hyper-contraction allows to bound high moments in term of lower ones.
- X is $(2, q>2, a)$ Hyper-contractive if for all x :
- $|x+a X|_{q} \leq|x+X|_{2}$
- Key fact: A degree d polynomial of $(2, q, a)$ variables is $\left(2, q, a^{d}\right)$ hyper-contractive.
- Key fact 2: I $f|X|_{q}<\infty$ then it is $(2, q, a)$ hypercontractive for $a=|X|_{2} /(q-1)^{1 / 2}|X|_{q}$

Related Work

- Many works generalizing Lindeberg idea:
- Chatterjee 06: Lindeberg - worst case influence.
- Rotar 79: Similar result no Berry Esseen bounds.
- New in our work: use of hyper-contraction.
- Classical results for U,V statistics.
- M (FOCS 08, Geom. and Functional Analysis 10):
- Multi-function versions.
- General "noise".
- Bounds in terms of cross influences.

Majority is Stablest

- Let $\left(X_{i}, Y_{i}\right) \in\{-1,1\}^{n} \& E\left[X_{i}\right]=E\left[Y_{i}\right]=0 ; E\left[X_{i} Y_{i}\right]=\rho$.
- Let $\operatorname{Maj}(x)=\operatorname{sgn}\left(\sum x_{i}\right)$.
- Thm (Sheffield 1899):
- $E[\operatorname{Maj}(X) \operatorname{Maj}(Y)] \rightarrow M(\rho):=(2 \arcsin \rho) / \pi$
- Thm (MOO; "Majority is Stablest"):
- Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ with $E[f]=0$. $I_{i}(f):=P\left[f\left(X_{1}, \ldots, X_{i}, \ldots, X_{n}\right) \neq f\left(X_{1}, \ldots,-X_{i}, \ldots, X_{n}\right)\right]$,
- $I=\max I_{i}(f)$
- Then: $E[f(X) f(Y)] \leq M(\rho)+C / \log ^{2}(1 / I)$

Majority is Stablest - Pf Idea

- Pf Ideas: Use"non-linear invariance" +
- "noise truncation" (reduction to bd degree f's) equivalent to the following regarding normal vectors:
- Let N,M be two n-dim normal vectors
- where $\left(N_{i}, M_{i}\right)$ i.i.d. \& $E\left[N_{i}\right]=E\left[N_{i}\right]=0 ; E\left[N_{i} M_{i}\right]=\rho$.
- Then
- (*) Argmax $\{E[f(N) f(M)]: E[f]=0, f \in \pm 1\}$ is $f(x)=\operatorname{sgn}\left(x_{1}\right)$.
- (*) was proved by C. Borell 1985.

Majority is Stablest - Context

- Conext:
- Implies social choice conjecture by Kalai 2002.
- Proves the conjecture of Khot-Kindler-M-O' Donnell 2005 in the context of approximate optimization.
- Strengthen results of Bourgain 2001.
- More general versions proved in M-10
- M-10 allows truncation in general "noise" structure.
- E.g: In M-10: Majority is most predictable:
- Among low influence functions majority outcome is most predictable give a random sample of inputs. ${ }^{23}$

Motivation

- Approximate Optimization
- Unique Games and Optimization.
- Quantitative Social choice
- Quantitative Arrow theorem.

Approximate Optimization

- Many optimization problems are NP-hard.
- Instead: Approximation algorithms
- These are algorithms that guarantee to give a solution which is at least
- α OPT or OPT - ε.
- S. Khot (2002) invented a new paradigm for analyzing approximation algorithms - called UGC (Unqiue Games Conjecture)

Example 1: The MAX-CUT Problem

- $G=(V, E)$
- $\mathrm{C}=\left(\mathrm{S}^{c}, \mathrm{~S}\right)$, partition of V
- $w(C)=\left|\left(S x S^{c}\right) \cap E\right|$
- $w: E \longrightarrow R^{+}$
- $w(C)=\sum_{e \in E \cap S \times S^{c} W(e)}$

Example: The Max-Cut Problem

- OPT $=$ OPT(G) $=\max _{c}\{|C|\}$
- MAX-CUT problem:
find C with $w(C)=$ OPT
- α-approximation:
find C with $w(C) \geq \alpha \cdot$ OPT
- Goemans-Williamson-95:
- Rounding of

- Semi-Definite Program gives an $\alpha=.878567$ approximation algorithm.

MAX-Cut Approximation

- Thm (KKMO = Khot-Kindler-M-O' Donell, FOCS 2004, Siam J. Computing 2007):
- Under UGC, the problem of finding an $\alpha>a_{G W}=$ 0.87 ... approximation for MAX-CUT is NP-hard.
- Moral: Semi-definite program does the best.
- Thm (IM-2010): Same result for MAX-q-CUT assuming the Peace-Sign Conjecture.

Other Approximation problems

- Work of KKMO04,MOO-05 show gives best approximation factor for Max-Cut.
- Crucially uses Borell's optimal partition.
- A second result using Invariance of M 08;10
- Raghavendra 08: Duality between Algorithms and Hardness for Constraint Satisfaction Problems.
\Rightarrow Any optimal solution to
- Gaussian partition problem gives "best" approximation factor/algorithm for the corresponding optimization problem.

Quantitative Social Choice

- Quantitative social choice studies different voting methods in a quantitative way.
- Standard assumption is of uniform voting probability.
- A "stress-test" distribution Bias distributions are not sensitive to errors/manipulation/paradoxes etc.
- Consider general voting rule $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ or $f:[q]^{n} \rightarrow[q]$ etc.

Errors in Voting

- Suppose each vote is re-randomized with probability \& (by voting machine):
- Majority is Stablest (MOO 05;10):
- Majority minimizes probability of error in outcome among low influence functions.
- Plurality is Stablest (IM) 11:
- The statement that
- Plurality minimizes probability of error in outcome among low influence functions is equivalent to Peace-Sign conjecture.

Errors in Voting

- Majority is Most Predictable (M 08; 10):
- Suppose each voter is in a poll with prob. p independently.
- Majority is most predictable from poll among all low influence functions.
- Next Example - Arrow theorem
- Fundamental theorem of modern social choice.

Condorcet Paradox

- n voters are to choose between 3 options / candidates.
- Voter i ranks the three candidates A, B \& C via a permutation $\sigma_{i} \in S_{3}$
- Let $X{ }^{A B}{ }_{i}=+1$ if $\sigma_{i}(A)>\sigma_{i}(B)$

$$
X^{A B} i_{i}=-1 \text { if } \sigma_{i}(B)>\sigma_{i}(A)
$$

- Aggregate rankings via: $f, g, h:\{-1,1\}^{n} \rightarrow\{-1,1\}$.
- Thus: A is preferred over B if $f\left(x^{A B}\right)=1$.
- A Condorcet Paradox occurs if:

$$
f\left(x^{A B}\right)=g\left(x^{B C}\right)=h\left(x^{C A}\right) .
$$

- Defined by Marquis de Condorcet in 18 'th
 century.

Arrow's Impossibility Thm

- Thm (Condorecet): If $n>2$ and f is the majority function then there exists rankings $\sigma_{1}, \ldots, \sigma_{n}$ resulting in a Paradox
- Thm (Arrow's Impossibility): For all n >1, unless f is the dictator function, there exist rankings $\sigma_{1}, \ldots, \sigma_{n}$ resulting in a paradox.
- Arrow received the Nobel prize (72)

Probability of a Paradox

- What is the probability of a
- $\operatorname{PDX}(f)=\operatorname{P}\left[f\left(x^{A B}\right)=f\left(x^{B C}\right)=f\left(x^{C A}\right)\right]$?
- Arrow's: $f=$ dictator iff $\operatorname{PDX}(f)=0$.
- Thm(Kalai 02): Borell's optimal partition is Stablest for $\rho=1 / 3 \rightarrow$ majority minimizes probability of paradox among low influences functions (7-8\%).
- Thm(Isacsson-M 11): Majority maximizes probability of a unique winner for any number of alternatives.
- (Proof uses invariance + Exchangble Gaussian Theorem)

Probability of a Paradox

- Arrow's: $f=$ dictator iff $\operatorname{PDX}(f)=0$.
- Kalai 02: Is it true that $\forall \varepsilon \exists \delta$ such that
- if PDX(f) < δ
- then f is ε close to dictator?
- Kalai 02: Yes if there are 3 alternatives under technical condition.
- M-11: True for any number of alternatives.
- Pf uses Majority is stablest and inverse hypercontractive inequalities.

Summary

- Prove the "Peace Sign Conjecture" (Isoperimetry) - \Rightarrow "Plurality is Stablest" (Low Inf Bounds)
\Rightarrow MAX-3-CUT hardness (CS) and voting.
$+\Rightarrow$ Results in Geometry.

ARTIE.COM

