Title: Near-Linear Lower Bound for Dimension Reduction in L1 Speaker: Alexandr Andoni

Abstract: Given a set of \$n\$ points in \$\ell_1\$, how many dimensions are needed to represent all pairwise distances within a specific distortion ?

This dimension-distortion tradeoff question is well understood for the $\left|\frac{2}{n}\right|$ norm, where $O((\log n)/\exp(3))$ dimensions suffice to achieve $1+\exp(1)$ distortion. In sharp contrast, there is a significant gap between upper and lower bounds for dimension reduction in $\left|\frac{1}{2}\right|$. A recent result shows that distortion $1+\exp(1)$ can be achieved with $n/\exp(1)$ dimensions.

On the other hand, the only lower bounds known are that distortion \$\delta\$ requires \$\n^{\Omega(1/\delta^2)}\$ dimensions and that distortion \$1+\epsilon\$ requires \$\n^{1/2-O(\epsilon \log(1/\epsilon))}\$ dimensions. In this work, we show the first near linear lower bounds for dimension reduction in \$\ell_1\$. In particular, we show that \$1+\epsilon\$ distortion requires at least \$\n^{1-O(1/\log(1/\epsilon))}\$ dimensions.

Joint work with Moses Charikar, Ofer Neiman, and Huy L. Nguyen.