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The Brunn-Minkowski Inequality

> Let K, T C R" be convex bodies. The dimension n is
generally assumed to be larger than some constant.

» The Minkowski sum of K and T is defined by,
K+T={x+y ;xeK,ye T}

» The Brunn Minkowski inequality (mainly due to Brunn and
Minkowski) states that
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If both bodies are convex and closed, equality is attained if
and only if K and T are homothetic to each other (up to
measure zero).

What if there is almost an equality in the above? Does that
mean that K and T are, in some sense, almost homothetic?
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> Let us try to understand what these inequalities look like.

» For simplicity, we assume from now on that |K| =|T| = 1.
Define,

CK+T
‘T

A stability result is therefore of the following form:

‘_1

d(K,T) < c(n,e)

where d is a certain distance between the two bodies and
c(n, €) should be small when € is small.
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fK p(x)dx
J7 p(x)dx

» The quantity sup,

— 1‘ where p belongs to a certain
class of functions.
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The F-M-P result

» As an example, let us review the (relatively recent) result by
Figalli-Maggi-Pratelli. Their result reads,

(K +X0)AT|2 < n7(

K+ T
Ty

for some choice of xg.

» Unfortunately, the above inequality is essentially applicable
only when ‘%‘ —1=0(n"").

> The goal of this lecture will be to demonstrate some results
which are already applicable when, for example, %‘ < 10.
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Let us review some of the ideas behind the proof of the result by
F-M-P.

» According to a theorem due to Briener, between each two unit
volume convex bodies K and T there exists a unique
volume-preserving transformation F : K — T which satisfies
F = V¢ for some convex function ¢ : K — R.

> Clearly, L := {X+F(X | x € K} C KiT.

Denote by A1(x), ..., An(x) the elgenvalues of
VF(x) = Hessp. One has,

F(x ld
|L|:/det(v( dx—/H Lk <14e
K

while TT; Aj(x) =
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» A simple computation shows that for some ¢ > 0,
n
/ > min{c(Aj(x) —1)%,c} <e

» The above roughly means that VF is close to the identity in
the Ly metric. Poincare’s inequality on K then shows us that
F itself must be close to the identity.

This proof has some obstructions from giving a tight result:

> The best known spectral gap known for general convex bodies
is probably far from the optimal one (KLS conjectured
spectral gap which is n'/* times better than what is currently
known, due to Bobkov).

» This method does not give a good bound for large values of
A, so even if we knew the KLS spectral gap conjecture to be
true, we would still lose a power of n in our best bound.
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> Recall that this method gives the bound,
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> Suppose |XET| < 10. What really happens as n — 00?

» Considering the example of products of low dimensional bodies
shows that the behavior of | KA T| necessarily can’t become
better as the dimension grows, since in any dimension one
can construct example which are essentially two-dimensional.

» What about other distance functions? Can dimensionality, in
fact, be a blessing?
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» Let K be a convex body with barycenter at the origin, and
X = Xk be a random vector uniformly distributed on K.
There exists a matrix M(K) which satisfies,

Var[(6, X)] = (0, M(K)#), VO e S"1

M(K) is called the Covariance matrix of K.

> We would like to say something about the matrix
M(K)M~1(T) under the assumption ‘%‘ < 100.

» In case both M(K) and M(T) are multiples of the identity,
S p(x)dx _1

Trotaax — 1| for

this is reduced to bounding the quantity
p(x) = IxI2.
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» A convex body K is said to be isotropic if |K| =1 and
M(K) = a?ld. In that case, « is called the isotropic
constant of K. The hyperplane conjecture states that « is
smaller than some universal constant, independent of the
dimension.

» The thin shell conjecture states that for any isotropic convex
body K, one has Var[[%]] < C for some universal constant C.

> Let us normalize X such that @ = 1. The latter becomes
equivalent to Var[|X|?] < Cn.

Var[|X|2] = Z E[X?|X|?] — E[XAIE[|1X?]

i

This shows that it is enough to show that for all 1 </ < n,

COV(X2,IXP) < Cy/
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» It follows that the density of X is bounded and has an
exponentially-decreasing tail.
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> Recall that the marginals of convex bodies are log-concave
measures. A useful fact about the space of isotropic
one-dimensional log-concave measures is the fact it's
compact. Moreover, log-concave measures have a
sub-exponential tail.

» It follows that the density of X is bounded and has an
exponentially-decreasing tail.

» Denote Ky = KN {x; = t}. For most 1, ty,

‘K“ + K, < 10

2

(we're cheating a bit because the volumes are not equal, but
this can be easily overcome via rescaling).



Stability of the second moment implies the thin shell
conjecture

Theorem: Let K, T be unit volume convex bodies such that
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Stability of the second moment implies the thin shell
conjecture

Theorem: Let K, T be unit volume convex bodies such that
‘%‘ < A. One has

P |x|?dx
J7 |x|2dx

c(A)

n%

1 <

where ¢(A) depends only on A and does not depend on the
dimension.
> The thin shell conjecture will follow from the above theorem
with a = %

> We prove the theorem with o = 1 in the unconditional case.

An unconditional convex body is a body for which
(X1 o0y Xn) € K & (Ex1, ..., £x5) € K for all (xq, ..., xp) € R™.
> In the general case our methods only yield o = %.



Formulation of the results - the general case

Theorem 1: There exists a constant C > 0 such that the following
holds. Let 7, K C R" be two unit volume convex bodies. Denote
A= |E£T| and denote,

M = M(K)M~Y(T)

and let Ay, ...\, be the eigenvalues of M in increasing order. Then,
A\ 10
#{i, (Ni—-1>6}<C (5)

In particular, if M = ald, then |a — 1] < C,,?;So



Formulation of the results - the unconditional case

Theorem 2: Let K, T C R” be unconditional convex bodies of
volume one. Denote,

A:Vol,,(K:T> > 1.

Then,
IM(K) "' M(T) = Id||ns < CA®

where C > 0 is a universal constant. In particular, when M(K) is
proportional to the identity,

where C > 0 is a universal constant.
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The main tool for the unconditional case will the Knothe map.
The Knothe map between two unit volume convex bodies, K and
T, is the unique map F : K — T satisfying:
» F is a bijection and det(VF) =1, hence F is
volume-preserving.
» Define F(x1,...;xn) = (F1(X15 sy Xn), ooy Fn(X1, ooy Xn))-
Forall 1 <j < n, Fj depends only on the variables x, .., x;.

» F;j is increasing in x; (when keeping the other coordinates
fixed).
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The unconditional case

» Define \j = (VF);;. Note that det(VF) =[]\ = 1.
> The fact |[X37| < A implies that,

n
/ H 1 +;‘J(X) <A
K i
» The latter inequality gives,

/ exp(c > min{(Aj(x) —1)%,1}) < A
K =

» Fix 1 < < n. We would like to show that
Var[mj(K1)] = Var[mj(K2)]. To this end, let pu,v be the
projection of K, T respectively onto the subspace
E = sp{x1, ..., xj}. By the definition of the knothe map, the
restriction of F onto E is well defined.
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The unconditional case - continued

» Consider a single "fiber” £ by fixing the coordinates
X1,...,Xj—1. The restriction of £ onto such a fiber is a
measure-preserving transformation, satisfying F'(x) = A;(x).
The poincare inequality yields,

/ IF(x) — xPPdu(x) < C / IF(x) — 1[2du(x)
V4

» So,
Wl 1) < /F (1 - X)) dp(x)

» Using Fubini’s theorem (by transporting each fiber separately)
gives,

Wa (i (K), 73(T)) < / (1— A(x))%dx

K
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The unconditional case - continued

» A small W, distance implies that the variances are
approximately the same. Namely,

Var(ue) — Var(ve) < € [ () = 17d()

» Recall that,
| exp(e 3 min{(y(x) - V1)) < A
K1 -
j=1

from this point it is reasonable that with some extra work
we'll be able to bound the expression,

> Var[mj(K)] = Var[r;( T)]?

J

which is exactly the Hilbert-Schmidt distance between M(K)
and M(T).
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» The main component here will be the central limit theorem
for convex sets, initially proven by B. Klartag, which states
roughly that a typical low dimensional marginal of the uniform
distribution over a convex body is approximately gaussian.

> We will use a pointwise version formulated as follows:
Theorem (E., Klartag 2008): Let X be an isotropic random
vector in R” with a log-concave density. Let 1 < £ < n! be
an integer. Then there exists a subset £ of the ¢-dimensional
Grassmanian with measure 1 — C exp(—n<) such that for any
E € &, the following holds: Denote by fg the density of the
random vector Projg(X). Then,

fe(x)
7(x)
for all x € E with |x| < n®. Here,

v(x) = (27) 7t/ exp(—|x|?/2) is the standard gaussian density
in E, and C, ¢y, ¢, 3, ¢4 > 0 are universal constants.

C
-1 <5 (1)
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The general case - continued

» Consider the body L C R™! which is defined as the minimal
convex body satisfying,

{(x1s s xn) | (X1y0eesxmy,—=1) €L} =K

and,
{(x1yee,%n) | (x1yeeyxmy1) €LY =T

> Let us try to understand the projection, p, of the uniform
measure on L onto a random subspace of dimension roughly
n%1 which contains the direction Xn41-

» If we suppose K and T are isotropic, then the restriction of p
to xp,4+1 € {—1,1} should be approximately gaussian. Denote
the densities of these restrictions by f, g : R” — R.

_d
> What about h= ¢, ;.7
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which means that,

h(x) > sup \/f(x +y)g(x — y)
y€eRn
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on the other hand,

2
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The general case - continued

» According to the Prekopa-Leindler theorem, p is log-concave,
which means that,

h(x) > sup \/f(x +y)g(x — y)

ycR"
on the other hand,

K+ T
/h(x)dx<‘ ; ‘

» A calculation shows that the supremum convolution two
gaussian densities is close to 1 only if their variances are
roughly the same. Namely,

(1) > |l o

For some C,k > 0.
» In order to finish the proof, we still have to overcome the fact
that K and T are not necessarily isotropic.
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» Assume that K is isotropic. Project K and T onto the
subspace spanned by vectors satisfying (6, M(T)0) — 1| > 4.

» Use Dvoretzky’s theorem to show that further projecting onto
a slightly smaller subspace gives almost-isotropic measures.

» Now continue as above and project to a smaller subspace.
Recall that the estimate we obtained,

(o) = izt -

For some C,k > 0.

n® > on®

Al/C

nk

» This implies that § <
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Some comments and further research

» The proof of the unconditional case may be generalized to a
wider class of functionals, and specifically to higher order
moments.

> The proof of the general case may be generalized to the class
of lipschitz functions defined on the Radon transforms of
K, T.

» What is the best dependence of funcitonal |[KAT]| on
dimension? And of the Wasserstein distance?



Thank you. It’s been a lovely conference.



