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The Brunn-Minkowski Inequality

I Let K ;T � R
n be convex bodies. The dimension n is

generally assumed to be larger than some constant.

I The Minkowski sum of K and T is de�ned by,

K + T = fx + y ; x 2 K ; y 2 Tg
I The Brunn Minkowski inequality (mainly due to Brunn and

Minkowski) states that

����K + T

2

����
1=n

� jK j1=n + jT j1=n
2

I If both bodies are convex and closed, equality is attained if
and only if K and T are homothetic to each other (up to
measure zero).

I What if there is almost an equality in the above? Does that
mean that K and T are, in some sense, almost homothetic?



The Brunn-Minkowski Inequality

I Let K ;T � R
n be convex bodies. The dimension n is

generally assumed to be larger than some constant.

I The Minkowski sum of K and T is de�ned by,

K + T = fx + y ; x 2 K ; y 2 Tg
I The Brunn Minkowski inequality (mainly due to Brunn and

Minkowski) states that

����K + T

2

����
1=n

� jK j1=n + jT j1=n
2

I If both bodies are convex and closed, equality is attained if
and only if K and T are homothetic to each other (up to
measure zero).

I What if there is almost an equality in the above? Does that
mean that K and T are, in some sense, almost homothetic?



The Brunn-Minkowski Inequality

I Let K ;T � R
n be convex bodies. The dimension n is

generally assumed to be larger than some constant.

I The Minkowski sum of K and T is de�ned by,

K + T = fx + y ; x 2 K ; y 2 Tg
I The Brunn Minkowski inequality (mainly due to Brunn and

Minkowski) states that

����K + T

2

����
1=n

� jK j1=n + jT j1=n
2

I If both bodies are convex and closed, equality is attained if
and only if K and T are homothetic to each other (up to
measure zero).

I What if there is almost an equality in the above? Does that
mean that K and T are, in some sense, almost homothetic?



Stability results

I The �rst stability results appeared in the early 70's due to
Diskant. Some later results are due to Bourgain-Lindenstrauss,
Groemer, Schneider, Figalli-Maggi-Pratelli, Ball and Boroczky.

I Let us try to understand what these inequalities look like.

I For simplicity, we assume from now on that jK j = jT j = 1.
De�ne,

� =

����K + T

2

����� 1

A stability result is therefore of the following form:

d(K ;T ) < c(n; �)

where d is a certain distance between the two bodies and
c(n; �) should be small when � is small.
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Stability results - continued

Some examples of possible metrics are:

I The Hausdor� metric, de�ned by

dH(K ;T ) = maxfmax
x2K

d(x ;T );max
x2T

d(x ;K )g

I The symmetric di�erence between K and a certain translate
of T (F-M-P),

min
x2Rn

jK�(T + x)j:

I The Wasserstein distance between the uniform measures on K

and T .

I A certain distance between the support functions or the norms
induced by K and T (Diskant, Schneider).

I The quantity sup�

���
R
K
�(x)dxR

T
�(x)dx

� 1
��� where � belongs to a certain

class of functions.
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The F-M-P result

I As an example, let us review the (relatively recent) result by
Figalli-Maggi-Pratelli. Their result reads,

j(K + x0)�T j2 � n7(

����K + T

2

����� 1)

for some choice of x0.

I Unfortunately, the above inequality is essentially applicable
only when

��K+T
2

��� 1 = O(n�7).

I The goal of this lecture will be to demonstrate some results
which are already applicable when, for example,

��K+T
2

�� < 10.
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Using transportation of measure to prove stability

Let us review some of the ideas behind the proof of the result by
F-M-P.

I According to a theorem due to Briener, between each two unit
volume convex bodies K and T there exists a unique
volume-preserving transformation F : K ! T which satis�es
F = r' for some convex function ' : K ! R.

I Clearly, L :=
n
x+F (x)

2 j x 2 K
o
� K+T

2 .

Denote by �1(x); :::; �n(x) the eigenvalues of
rF (x) = Hess'. One has,

jLj =
Z
K

det(
rF (x) + Id

2
)dx =

Z
K

Y
j

�j(x) + 1

2
dx < 1 + �

while
Q

j �j(x) = 1.
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Using transportation of measure to prove stability -

continued

I A simple computation shows that for some c > 0,
Z
K

nX
j=1

minfc(�j(x)� 1)2; cg � �

I The above roughly means that rF is close to the identity in
the L2 metric. Poincare's inequality on K then shows us that
F itself must be close to the identity.

This proof has some obstructions from giving a tight result:
I The best known spectral gap known for general convex bodies

is probably far from the optimal one (KLS conjectured
spectral gap which is n1=4 times better than what is currently
known, due to Bobkov).

I This method does not give a good bound for large values of
�, so even if we knew the KLS spectral gap conjecture to be
true, we would still lose a power of n in our best bound.
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Dimensionality

I Recall that this method gives the bound,

j(K + x0)�T j2 � n7(

����K + T

2

����� 1)

I Suppose
��K+T

2

�� < 10. What really happens as n!1?

I Considering the example of products of low dimensional bodies
shows that the behavior of jK�T j necessarily can't become
better as the dimension grows, since in any dimension one
can construct example which are essentially two-dimensional.

I What about other distance functions? Can dimensionality, in
fact, be a blessing?
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Stability of the Covariance Matrix

I Let K be a convex body with barycenter at the origin, and
X = XK be a random vector uniformly distributed on K .
There exists a matrix M(K ) which satis�es,

Var [h�;X i] = h�;M(K )�i; 8� 2 Sn�1

M(K ) is called the Covariance matrix of K .

I We would like to say something about the matrix
M(K )M�1(T ) under the assumption

��K+T
2

�� < 100.

I In case both M(K ) and M(T ) are multiples of the identity,

this is reduced to bounding the quantity
���
R
K
�(x)dxR

T
�(x)dx

� 1
��� for

�(x) = jx j2.



Stability of the Covariance Matrix

I Let K be a convex body with barycenter at the origin, and
X = XK be a random vector uniformly distributed on K .
There exists a matrix M(K ) which satis�es,

Var [h�;X i] = h�;M(K )�i; 8� 2 Sn�1

M(K ) is called the Covariance matrix of K .

I We would like to say something about the matrix
M(K )M�1(T ) under the assumption

��K+T
2

�� < 100.

I In case both M(K ) and M(T ) are multiples of the identity,

this is reduced to bounding the quantity
���
R
K
�(x)dxR

T
�(x)dx

� 1
��� for

�(x) = jx j2.



Stability of the Covariance Matrix

I Let K be a convex body with barycenter at the origin, and
X = XK be a random vector uniformly distributed on K .
There exists a matrix M(K ) which satis�es,

Var [h�;X i] = h�;M(K )�i; 8� 2 Sn�1

M(K ) is called the Covariance matrix of K .

I We would like to say something about the matrix
M(K )M�1(T ) under the assumption

��K+T
2

�� < 100.

I In case both M(K ) and M(T ) are multiples of the identity,

this is reduced to bounding the quantity
���
R
K
�(x)dxR

T
�(x)dx

� 1
��� for

�(x) = jx j2.



Motivation - relation to the Thin Shell conjecture and to

the Slicing Problem

I A convex body K is said to be isotropic if jK j = 1 and
M(K ) = �2Id . In that case, � is called the isotropic
constant of K . The hyperplane conjecture states that � is
smaller than some universal constant, independent of the
dimension.

I The thin shell conjecture states that for any isotropic convex
body K , one has Var [jXk� j] < C for some universal constant C .

I Let us normalize X such that � = 1. The latter becomes
equivalent to Var [jX j2] < Cn.

Var [jX j2] =
X
i

E[X 2
i jX j2]� E[X 2

i ]E[jX j2]

This shows that it is enough to show that for all 1 � i � n,

COV (X 2
i ; jX j2) < C

p
n
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Motivation - relation to the Thin Shell conjecture and to

the Slicing Problem

I Recall that the marginals of convex bodies are log-concave
measures. A useful fact about the space of isotropic
one-dimensional log-concave measures is the fact it's
compact. Moreover, log-concave measures have a
sub-exponential tail.

I It follows that the density of X is bounded and has an
exponentially-decreasing tail.

I Denote Kt = K \ fx1 = tg. For most t1; t2,����Kt1 + Kt2

2

���� < 10

(we're cheating a bit because the volumes are not equal, but
this can be easily overcome via rescaling).
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Stability of the second moment implies the thin shell

conjecture

Theorem: Let K ;T be unit volume convex bodies such that��K+T
2

�� < A. One has

�����
R
K
jx j2dxR

T
jx j2dx � 1

����� <
c(A)

n�

where c(A) depends only on A and does not depend on the
dimension.

I The thin shell conjecture will follow from the above theorem
with � = 1

2

I We prove the theorem with � = 1
2 in the unconditional case.

An unconditional convex body is a body for which
(x1; :::; xn) 2 K , (�x1; :::;�xn) 2 K for all (x1; :::; xn) 2 Rn.

I In the general case our methods only yield � = 1
10 .
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Formulation of the results - the general case

Theorem 1: There exists a constant C > 0 such that the following
holds. Let T ;K � R

n be two unit volume convex bodies. Denote
A =

��K+T
2

�� and denote,

M = M(K )M�1(T )

and let �1; :::�n be the eigenvalues of M in increasing order. Then,

#fi ; j�i � 1j > �g < C

�
A

�

�10

In particular, if M = �Id , then j�� 1j < C A10

n1=10



Formulation of the results - the unconditional case

Theorem 2: Let K ;T � R
n be unconditional convex bodies of

volume one. Denote,

A = Voln

�
K + T

2

�
� 1:

Then,
kM(K )�1M(T )� IdkHS � CA5

where C > 0 is a universal constant. In particular, when M(K ) is
proportional to the identity,

���� I (K )

I (T )
� 1

���� �
~CA5

p
n
;

where ~C > 0 is a universal constant.



The Knothe Map

The main tool for the unconditional case will the Knothe map.
The Knothe map between two unit volume convex bodies, K and
T , is the unique map F : K ! T satisfying:

I F is a bijection and det(rF ) = 1, hence F is
volume-preserving.

I De�ne F (x1; :::; xn) = (F1(x1; :::; xn); :::;Fn(x1; :::; xn)).
For all 1 � j � n, Fj depends only on the variables x1; ::; xj .

I Fj is increasing in xj (when keeping the other coordinates
�xed).
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The unconditional case

I De�ne �j = (rF )j ;j . Note that det(rF ) =Q�j = 1.

I The fact
��K+T

2

�� < A implies that,

Z
K
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1 + �j(x)

2
� A

I The latter inequality gives,

Z
K

exp(c
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j=1

minf(�j(x)� 1)2; 1g) � A

I Fix 1 � j � n. We would like to show that
Var [�j(K1)] � Var [�j(K2)]. To this end, let �; � be the
projection of K ;T respectively onto the subspace
E = spfx1; :::; xjg. By the de�nition of the knothe map, the
restriction of F onto E is well de�ned.
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The unconditional case - continued

I Consider a single "�ber" ` by �xing the coordinates
x1; :::; xj�1. The restriction of ` onto such a �ber is a
measure-preserving transformation, satisfying F 0(x) = �j(x).
The poincare inequality yields,

Z
`
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Z
jF 0(x)� 1j2d�(x)

I So,

W2(�j`; �j`) <

Z
F
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I Using Fubini's theorem (by transporting each �ber separately)
gives,

W2(�j(K ); �j(T )) <

Z
K

(1� �j(x))
2dx
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The unconditional case - continued

I A small W2 distance implies that the variances are
approximately the same. Namely,

Var(�jF )� Var(�jF ) < C

Z
F

(�j(x)� 1)2d�(x)

I Recall that,

Z
K1

exp(c
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minf(�j(x)� 1)2; 1g) � A

from this point it is reasonable that with some extra work
we'll be able to bound the expression,X

j

jVar [�j(K )]� Var [�j(T )]j2

which is exactly the Hilbert-Schmidt distance between M(K )
and M(T ).
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The general case

I The main component here will be the central limit theorem

for convex sets, initially proven by B. Klartag, which states
roughly that a typical low dimensional marginal of the uniform
distribution over a convex body is approximately gaussian.

I We will use a pointwise version formulated as follows:
Theorem (E., Klartag 2008): Let X be an isotropic random
vector in Rn with a log-concave density. Let 1 � ` � nc1 be
an integer. Then there exists a subset E of the `-dimensional
Grassmanian with measure 1� C exp(�nc2) such that for any
E 2 E , the following holds: Denote by fE the density of the
random vector ProjE (X ). Then,���� fE (x)(x)

� 1

���� � C

nc3
(1)

for all x 2 E with jx j � nc4 . Here,
(x) = (2�)�`=2 exp(�jx j2=2) is the standard gaussian density
in E , and C ; c1; c2; c3; c4 > 0 are universal constants.
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The general case - continued

I Consider the body L � R
n+1 which is de�ned as the minimal

convex body satisfying,

f(x1; :::; xn) j (x1; :::; xn;�1) 2 Lg = K

and,
f(x1; :::; xn) j (x1; :::; xn; 1) 2 Lg = T

I Let us try to understand the projection, �, of the uniform
measure on L onto a random subspace of dimension roughly
n0:1 which contains the direction xn+1.

I If we suppose K and T are isotropic, then the restriction of �
to xn+1 2 f�1; 1g should be approximately gaussian. Denote
the densities of these restrictions by f ; g : Rn ! R.

I What about h = d�
dx jfxn+1=0g

?
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The general case - continued

I According to the Prekopa-Leindler theorem, � is log-concave,
which means that,

h(x) � sup
y2Rn

p
f (x + y)g(x � y)

on the other hand, Z
h(x)dx <

����K + T

2

����

I A calculation shows that the supremum convolution two
gaussian densities is close to 1 only if their variances are
roughly the same. Namely,�Z

h(x)

�C

>

����Var(K )

Var(T )
� 1

���� n�
For some C ; � > 0.

I In order to �nish the proof, we still have to overcome the fact
that K and T are not necessarily isotropic.
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The general case - continued

I Assume that K is isotropic. Project K and T onto the
subspace spanned by vectors satisfying jh�;M(T )�i � 1j > �.

I Use Dvoretzky's theorem to show that further projecting onto
a slightly smaller subspace gives almost-isotropic measures.

I Now continue as above and project to a smaller subspace.
Recall that the estimate we obtained,

�Z
h(x)
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>

����Var [�(K )]

Var [�(T )]
� 1

���� n� > �n�

For some C ; � > 0.

I This implies that � < A1=C
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Some comments and further research

I The proof of the unconditional case may be generalized to a
wider class of functionals, and speci�cally to higher order
moments.

I The proof of the general case may be generalized to the class
of lipschitz functions de�ned on the Radon transforms of
K ;T .

I What is the best dependence of funcitonal jK�T j on
dimension? And of the Wasserstein distance?
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Thank you. It's been a lovely conference.


