
Sparsity and non-Euclidean
embeddings

Omer Friedland and Olivier Guédon
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The Euclidean case.
• Dvoretzky [’61]
Let X be a Banach space of infinite dimension,
∀n ∈ N,∀ε > 0, `n

2
1+ε
↪→ X.

• Milman [’71] and Figiel Lindenstrauss Milman [’77]
∀n, ∀ε ∈ (0, 1),

`n
2

1+ε
↪→ `

c(ε)n
1

where c(ε) ' C log(3/ε)/ε2.

• Kashin [’77] ∀n, ∀η > 0, `n
2

c(η)
↪→ `

n(1+η)
1 where

c(η) ' (c/η)a.
Proofs : random methods that can be described through
the use of Gaussian operators,

G = (gij) : `n
2 → `N

1 where gij ∼ N (0, 1).
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θ is p-stable iff E exp itθ = exp(−σtp)
θ is standard p-stable when σ = 1.

Main properties :
1) if θ, θ1, . . . , θn are i.i.d. standard p-stable then for every
α1, . . . , αn, ∑

αiθi ∼
(∑

|αi|p
)1/p

θ

2) If θ is p-stable then θ ∈ Lr for all r < p.

Consequence : for every p > 1, `n
p

1
↪→ L1
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∀n, ∀η, `n
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c(η)
↪→ `
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1

Explicit definition of a random operator and c(η) ' c1/η
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More generally,

∀n, ∀η, `n
p
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r with 0 < r < p < 2 and r ≤ 1.
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α 7→ σp
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1) |E|Tα|1 − |α|p| ≤ Dp

(
n
N

)1/q |α|p → P[’83]
2) Concentration of |Tα|1 around its mean

P
{∣∣∣∣|Tα|1 − E|Tα|1

∣∣∣∣ ≥ t
}
≤ 2 exp(−bpNtq)

where 1/p + 1/q = 1.→ J-S [’82]
3) New ingredient : delicate small ball estimates.
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Mendelson, Pajor, Tomczak-Jaegermann
independent log-concave columns, rows ....
Adamczak, Litvak, Pajor, Tomczak-Jaegermann



Sparsity and compressed sensing
Reconstruction of a signal.
Let Φ be an n× N matrix. You receive Φx := y where
x ∈ RN is the unknown signal.
How to recover x ? Assumption on the signal : it is an
m-sparse signal with m� n.

Restricted Isometry Property with constant δ ∈ (0, 1) :
an n× N matrix Φ such that for all m-sparse vectors
x ∈ RN,

(1− δ)|x|2 ≤ |Φx|2 ≤ (1 + δ)|x|2.

How to give an explicit construction of such a matrix ?



Sparsity and compressed sensing

• Donoho [’06] Connection with the study of Gelfand
widths.

ck(Id : `N
1 → `N

2 )

is the infimum over all subspaces S of codimension strictly
less than k of the value of K such that

∀x ∈ S, |x|2 ≤ K|x|1
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Sparsity and compressed sensing

• Donoho [’06] Connection with the study of Gelfand
widths.
New proof of the result of Garnaev-Gluskin [’84]

ck(Id : `N
1 → `N

2 ) ≤ C

√
log(1 + N

k )

k

Let Φ : RN → Rn, Φ = (gi,j) and take S = ker Φ, k = n + 1.
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Property P1(m, α, β) : A : `n
p → `ηn

1 ,
∀x ∈ sparse(m) α|x|p ≤ |Ax|1 ≤ β|x|p.

Decomposition of x ∈ Rn according to the size m of
sparsity : xI1 the m first largest coordinates of x and so
on...

x =
M∑

k=1

xIk with M = [
n
m

].

Property P2(κ,m) : B : `n
p → `n

1

∀x ∈ Rn,
∑
k≥2

|xIk |p ≤ |Bx|1 ≤ (κn)1/q |x|p

where 1
p + 1

q = 1.
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Deterministic Theorem, 1 < p < 2
Property P1(m, α, β) : A : `n

p → `ηn
1 ,

∀x ∈ sparse(m) α|x|p ≤ |Ax|1 ≤ β|x|p.

Property P2(κ,m) : B : `n
p → `n

1,
1
p + 1

q = 1

∀x ∈ Rn,
∑
k≥2

|xIk |p ≤ |Bx|1 ≤ (κn)1/q |x|p

Theorem. [Friedland-Guédon ’11]
Denote U = 1

β

(
m
n

)1/q A and V = 1
(κn)1/q B.

Then for any x ∈ Rn, W =

(
V
U

)
: `n

p → `
(1+η)n
1 satisfies

(
α

4β

)(
min(m, 1/κ)

n

)1/q

|x|p ≤ |Ux|1 + |Vx|1 ≤ 3|x|p.



The two main properties
Property P1(m, α, β) : A : `n

p → `ηn
1 ,

∀x ∈ sparse(m) α|x|p ≤ |Ax|1 ≤ β|x|p.

Property P2(κ,m) : B : `n
p → `n

1,
1
p + 1

q = 1

∀x ∈ Rn,
∑
k≥2

|xIk |p ≤ |Bx|1 ≤ (κn)1/q |x|p



The two main properties
Property P1(m, α, β) : A : `n

p → `ηn
1 ,

∀x ∈ sparse(m) α|x|p ≤ |Ax|1 ≤ β|x|p.



Following Pisier [’83]
Y = ±ei with probability 1/2ηn, Yij independent copies of Y

T : `n
p → `ηn

1

α 7→ σp

(ηn)1/q

n∑
i=1

∑
j≥1

αi j−1/p Yij



Following Pisier [’83]
Y = ±ei with probability 1/2ηn, Yij independent copies of Y

T : `n
p → `ηn

1

α 7→ σp

(ηn)1/q

n∑
i=1

∑
j≥1

αi j−1/p Yij

Key properties :

1) ∀α ∈ sparse(m) ∩ Sn−1
p , |E|Tα|1 − 1| ≤ Dp

(
m
ηn

)1/q

2) Concentration of |Tα|1 around its mean

P
{∣∣∣∣|Tα|1 − E|Tα|1

∣∣∣∣ ≥ t
}
≤ 2 exp(−bpηntq)

where 1/p + 1/q = 1.



Following Pisier [’83]
Y = ±ei with probability 1/2ηn, Yij independent copies of Y

T : `n
p → `ηn

1

α 7→ σp

(ηn)1/q

n∑
i=1

∑
j≥1

αi j−1/p Yij

Key properties :

1) ∀α ∈ sparse(m) ∩ Sn−1
p , |E|Tα|1 − 1| ≤ Dp

(
m
ηn

)1/q

2) Concentration of |Tα|1 around its mean

P
{∣∣∣∣|Tα|1 − E|Tα|1

∣∣∣∣ ≥ t
}
≤ 2 exp(−bpηntq)

where 1/p + 1/q = 1.
Classical Union Bound gives

P
{
∃α ∈ sparsep(m),

∣∣∣∣|Tα|1 − 1
∣∣∣∣ ≥ 3

8

}
≤ 2
(

n
m

)
exp(−cpηn)



Following Pisier [’83]
Y = ±ei with probability 1/2ηn, Yij independent copies of Y

T : `n
p → `ηn

1

α 7→ σp

(ηn)1/q

n∑
i=1

∑
j≥1

αi j−1/p Yij

Classical Union Bound gives

P
{
∃α ∈ sparsep(m),

∣∣∣∣|Tα|1 − 1
∣∣∣∣ ≥ 3

8

}
≤ 2
(

n
m

)
exp(−cpηn)

≤ 2 exp
(

m log
(en

m

)
− cpηn

)



Following Pisier [’83]
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Take m of the order of
η

log
(

1 + 1
η

) n.



Following Pisier [’83]
Y = ±ei with probability 1/2ηn, Yij independent copies of Y

T : `n
p → `ηn

1

α 7→ σp

(ηn)1/q

n∑
i=1

∑
j≥1

αi j−1/p Yij

Conclusion.
It satisfies Property P1(m, 5

8 ,
11
8 ) with m of the order of

cp
η

log
(

1 + 1
η

) n :

The random operator T : `n
p → `ηn

1 satisfies with
overwhelming probability

∀x ∈ sparse(m)
5
8
|x|p ≤ |Tx|1 ≤

11
8
|x|p.
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q = 1
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k≥2

|xIk |p ≤ |Bx|1 ≤ (κn)1/q |x|p
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The two main properties
Property P2(κ,m) : B : `n

p → `n
1,

1
p + 1

q = 1

∀x ∈ Rn,
∑
k≥2

|xIk |p ≤ |Bx|1 ≤ (κn)1/q |x|p

The operator 1
m1/q Idn : `n

p → `n
1 satisfies property P2(

1
m ,m),

that is for any x ∈ Rn,

M∑
k=2

|xIk |p ≤
1

m1/q |x|1 ≤
( n

m

)1/q
|x|p
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8 ,

11
8 ) with m = cp

η

log(1+ 1
η )

n

The deterministic operator 1
m1/q Idn : `n

p → `n
1 satisfies

Property P2(
1
m ,m)

Theorem. [Friedland-Guédon ’11]

Denote U = 1
β

(
m
n

)1/q A and V = 1
(κn)1/q B.

Then for any x ∈ Rn, W =

(
V
U

)
: `n

p → `
(1+η)n
1 satisfies

(
α

4β

)(
min(m, 1/κ)

n

)1/q

|x|p ≤ |Ux|1 + |Vx|1 ≤ 3|x|p.
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Conclusion : tight isomorphic embedding
Theorem. [Friedland-Guédon ’11]

Denote U =
(
cp

η

log(1+ 1
η )

)1/qT and V =
(
cp

η

log(1+ 1
η )

)1/q Idn
m1/q .

Then for any x ∈ Rn, W =

(
V
U

)
: `n

p → `
(1+η)n
1 satisfies(

cp
η

log
(

1 + 1
η

))1/q

|x|p ≤ |Wx|1 = |Ux|1 + |Vx|1 ≤ 3|x|p.

• Tightness. Take η = 1/n→ Banach Mazur distance
between `n

p and `n+1
1 .

It is tight when η ≥ log n
n → connection with the study of

Gelfand width.
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• Mixture of random and deterministic method - Old story.
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and also r-Banach spaces like in Bastero, Bernués [’93]



Conclusion : tight isomorphic embedding
Theorem. [Friedland-Guédon ’11]

Denote U =
(
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η
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)1/qT and V =
(
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log(1+ 1
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)1/q Idn
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Then for any x ∈ Rn, W =

(
V
U

)
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p → `
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1 satisfies(
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|x|p ≤ |Wx|1 = |Ux|1 + |Vx|1 ≤ 3|x|p.

• Valid for several new operators.
The random operator defined by Johnson and
Schechtman satisfies the same property P1.
Property P2 is just an algebraic property and is satisfied
for example when B : `n

p → `n
1 is such that

|x|1 ≤ |Bx|1 ≤ (Cn)1/q|x|p



Conclusion : tight isomorphic embedding
Theorem. [Friedland-Guédon ’11]

Denote U =
(
cp

η

log(1+ 1
η )

)1/qT and V =
(
cp

η

log(1+ 1
η )

)1/q Idn
m1/q .

Then for any x ∈ Rn, W =

(
V
U

)
: `n

p → `
(1+η)n
1 satisfies(

cp
η

log
(

1 + 1
η

))1/q

|x|p ≤ |Wx|1 = |Ux|1 + |Vx|1 ≤ 3|x|p.

• Optimality of P1(m, α, β)→ Application to Gelfand width

ck(Id : `N
1 → `N

p )

which gives optimal results.
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The random operator T : `n
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Other consequences of the properties - I
The random operator T : `n

p → `ηn
1 satisfies Property

P1(m, 5
8 ,

11
8 ) with m = cp

η

log(1+ 1
η )

n that is,

∀x ∈ sparse(m)
5
8
|x|p ≤ |Tx|1 ≤

11
8
|x|p.

• By property P1

|hI1|p ≤
8
5
|ThI1|1 =

8
5

∣∣∣∣∣T
(

M∑
k=2

hIk

)∣∣∣∣∣
1

≤ 8
5

M∑
k=2

|ThIk |1

Using again property P1, we get

|hI1|p ≤
11
5

M∑
k=2

|hIk |p

And by the simple algebraic property P2,

|hI1|p ≤
11
5

1
m1/q |h|1.



Other consequences of the properties - I
The random operator T : `n

p → `ηn
1 satisfies Property

P1(m, 5
8 ,

11
8 ) with m = cp

η

log(1+ 1
η )

n that is,

∀x ∈ sparse(m)
5
8
|x|p ≤ |Tx|1 ≤

11
8
|x|p.

• For the other part

|h− hI1|pp =

∣∣∣∣∣
M∑

k=2

hIk

∣∣∣∣∣
p

p

=

(
M∑

k=2

|hIk |pp

)1/p

≤

(
M∑

k=2

|hIk |p

)p

and by the simple algebraic property P2, we get that

|h− hI1|pp ≤
1

mp/q |x|
p
1
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In conlusion, for any h ∈ ker T,

|h|p ≤ Cp
1

m1/q |h|1 = C′p

(
log
(
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k

)
k
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Other consequences of the properties - I

In conlusion, for any h ∈ ker T,

|h|p ≤ Cp
1

m1/q |h|1 = C′p

(
log
(
1 + n

k

)
k

)1/q

|h|1

since
m = cp

η

log
(

1 + 1
η

) n and k = ηn

This means that

ck(Id : `n
1 → `n

p) ≤ C′p

(
log
(
1 + n

k

)
k

)1/q

and it is known to be optimal for k ≥ log n.
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Other consequences of the properties - II
Let W : `n

p → `N
1 such that

1
D
|x|p ≤ |Wx|1 ≤ |x|p.

We have proved that

∀y ∈ S, |y|p ≤ D |y|1
which means that

ck(Id : `N
1 → `N

p ) ≤ D =

(
log
(
1 + N

k

)
k

)1/q

(here n ' N) and this is known to be optimal for k ≥ log N
i.e. η ≥ log N

n

• Optimality of the Theorem [FG].
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Other consequences of the properties - III
The random operator T : `n

p → `ηn
1 satisfies Property

P1(m, 5
8 ,

11
8 ) with m = cp

η

log(1+ 1
η )

n that is,

∀x ∈ sparse(m)
5
8
|x|p ≤ |Tx|1 ≤

11
8
|x|p.

Reconstruction via `1-minimization

∆(y) = argmin |z|1, subject to Tz = Ty

If s > 0 satisfies
s ≤ cp

k
log(1 + n

k )

then with probability greater than 1− exp(−bpk), every
s-sparse vectors y, is exactly reconstructed : y = ∆(y).

∀y, |y−∆(y)|1 ≤ 4 inf
|I|≤s
|y− yI|1
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October 17-21, 2011
Embedding problems in Banach spaces and group

theory
MSRI - Berkeley


