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Banach Mazur distance :
d(X,Y) = inf {||T|[|IT""||l, T:X — Y isomorphism}

Embedding of finite dimensional space E in a Banach

space X : E < X
In other words,

. b
dT : E — X,Vx € E, al||x||g < ||Tx||x < b||x||g with P <K

What kind of finite dimensional spaces can we embed in
some Banach space ?

The Euclidean space 5 ?
Any other one ?
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The Euclidean case.
e Dvoretzky ['61]
Let X be a Banach space of infinite dimension,
VneN,Ve >0, 5 X.
e Milman ['71] and Figiel Lindenstrauss Milman [77]
Vn, Ve € (0, 1), o I+e p('(s)n
where c(g) ~ Clog(3/¢) /&>

e Kashin ['77] Vn, ¥ > 0, (2 — &) ¢ where
c(n) = (c¢/n)".

Proofs : random methods that can be described through
the use of Gaussian operators,

G= (g,,) : f; — gl]\’ where 8ij ~ N(O, 1)
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What can we say about /) — X for0 <p <27

0 is p-stable iff E exp itd = exp(—ot’)
0 is standard p-stable when o = 1.

Main properties :
1)if0,0y,...,0, are i.i.d. standard p-stable then for every
Ay, ..., Oy,

2) If 0 is p-stable then 0 € L, for all r < p.

Consequence : for every p > 1, 4 L
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X is of stable type p iff for some (every) r < p, there exists
C > 0 such that for every finite collection of vectors

X1y Xy
(&S o) < e (X))

e Maurey-Pisier ['76] Let X be a Banach space of infinite

dimension, Vn € N,Ve > 0, (] < X iff X is not of stable
type p.
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ALMOST ISOMETRIC RESULTS

4

fyfor1 <p<2

e Dvoretzky ['61]
VneN,Ve>0, 05X

e Maurey-Pisier ['76]

VneN,Ve>0, <5 x

) ‘17

iff X is not of stable type p

e Milman ['71]

I4+e c(e)n

e Johnson-Schechtman ['82]
1+e )n

Vn, Ve € (0,1), 04 — (|~ Vn, Ve € (0,1), () — R
ISOMORPHIC RESULT

e Kashin [’77]
Vn, W > 0, 02 < g 29
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The results

« Naor-Zvavitch [01] Va, vy, 2 &7 g1+
Explicit definition of a random operator.

e Johnson-Schechtman [03] Vn, Vn, £ — <) €n(1+n)
The existence of such operator.

o Friedland Guédon ['10] (to appear in Math. Ann.)
Vn, i, 0 < &) g

Explicit definition of a random operator and ¢(n) ~ c,i/”.

More generally,
Vn, vn,en” 0 l+’7)with0<r<p<2andr§ 1.
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Definition of the random operator

Following Pisier ['83]
Y = +e; with probability 1/2N, Y; independent copies of Y

T:€Z — €N

o — Nl/qZZQ‘ 1/pY

i=1 j>1
Key properties :
1) [E[Tal, — [a],| < D, (§)"""|al, — PL83]
2) Concentration of |T«|; around its mean

]P’{‘|Toz\1 —E|Tal,

> t} < 2exp(—b,Nt)

where 1/p+1/g=1. — J-S[82]
3) New ingredient : delicate small ball estimates.
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Sparsity and compressed sensing

Reconstruction of a signal.

Let ® be an n x N matrix. You receive ®x := y where
x € R is the unknown signal.

How to recover x ? Assumption on the signal : it is an
m-sparse signal with m < n.

Restricted Isometry Property with constant 6 € (0,1) :
an n x N matrix ® such that for all m-sparse vectors
x € RY,

(1 =0)[xf> < |®x[> < (14 6)[x]2.

Random matrices are good !

® = (g;)/VN satisfies RIP with m =~ ¢(0) /575
The same if ® = (+£1/+/N), independent 1, entries,
Mendelson, Pajor, Tomczak-Jaegermann
independent log-concave columns, rows ....
Adamczak, Litvak, Pajor, Tomczak-Jaegermann



Sparsity and compressed sensing

Reconstruction of a signal.

Let ® be an n x N matrix. You receive ®x := y where
x € R is the unknown signal.

How to recover x ? Assumption on the signal : it is an
m-sparse signal with m < n.

Restricted Isometry Property with constant 6 € (0,1) :
an n x N matrix ® such that for all m-sparse vectors
x € RY,

(1 =0)[xf> < |®x[> < (14 6)[x]2.

How to give an explicit construction of such a matrix ?



Sparsity and compressed sensing

e Donoho ['06] Connection with the study of Gelfand
widths.
cr(Id : ) — 05)

is the infimum over all subspaces S of codimension strictly
less than k of the value of K such that

VxesS, |xl» <Klx|
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Sparsity and compressed sensing

e Donoho ['06] Connection with the study of Gelfand
widths.
New proof of the result of Garnaev-Gluskin ['84]

log(1 + %)
k

Let  : RY — R", & = (g;;) and take S = ker®, k =n + 1.

ad: f — )y <c
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Sparsity and non Euclidean embeddings, the
case (2 — (""" with 1 < p < 2
Property Py (m,a, 3) 1 A : £y — L],
Vx € sparse(m) alx|, < |Ax|; < Blx|,.

Decomposition of x € R" according to the size m of
sparsity : x;, the m first largest coordinates of x and so
on...
M
x= Zx,k with M = [2
k=1
Property Py(k,m) : B : &) — £}

]

m

Vx€R", Y lwl, < [Bxli < (kn)' 7 Ix|,
k>2

1 1 _
where;+5_1.
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Deterministic Theorem, 1 <p <2
Property Py (m,a, 3) : A : £y — L],
Vx € sparse(m) alx|, < |Ax|; < Blx],.
Property P,(rx,m) : B : £, — ¢, 117 + é =1

Vx € R", Z x|, < [Bx|; < (’fn)l/q |x[,

k>2
Theorem. [Friedland-Guédon ’'11]
m\1/4
Denote U = 5 (%) ""A andV = (_57B.
Vv
U

a min(m, 1/r)\ /4
w)\— x|, < |Ux|; + | Vx| < 3x|,.

Then for any x e R", W = < ) Oy — £§1+’7)” satisfies



The two main properties
Property Py (m,a, 3) : A : £y — L],
Vx € sparse(m) alx|, < |Ax|; < Blx],.
Property Py(x,m) : B : £ — 1, 1% + é =1
Vx € R, Z [xz.]p < |Bx|y < (“n)l/q [,

>2



The two main properties

Property Py (m,a, 3) : A : £y — L],
Vx € sparse(m) alx|, < |Ax|; < Blx],.



Following Pisier ['83]
Y = +e; with probability 1/27n, Y; independent copies of Y

T —

@~ U"uqizw”” Yy

()4 = <




Following Pisier ['83]
Y = +e; with probability 1/27n, Y; independent copies of Y

T 0
-1/
. e S e
. i=1 j>1
Key properties : =
1/q
1) Va € sparse(m) N S;~", [E|Tal, — 1| < D, (nn)

2) Concentration of |T«/|; around its mean

]P’{‘]Tah —E|Ta|,

> t} < 2exp(—bynnt?)
where 1/p +1/q = 1.



Following Pisier ['83]
Y = +e; with probability 1/27n, Y; independent copies of Y

T:0, — "
-1/,
@ (nn) l/q Z Za, R
. i=1 j>1
Key properties :
1/
1) Va € sparse(m) N S;~", [E|Tal, — 1| < D, (7}11) '

2) Concentration of |T«/|; around its mean

]P’{‘]Tah —E|Ta|,

> t} < 2exp(—bynnt?)

where 1/p +1/q = 1.
Classical Union Bound gives

oo | W

P {Ha € sparse, (m),

1—1'2

} < 2(:1) exp(—cy )



Following Pisier ['83]
Y = +e; with probability 1/27n, Y; independent copies of Y

T: 0 —

@ = U"uqizw”” Yy

()4 = <

Classical Union Bound gives

P {Ela € sparse, (m),

3 n
|Tal; — 1‘ > §} < Z(m) exp(—c,nn)

< 2exp <m log (en) — cpr}n>

m



Following Pisier ['83]
Y = +e; with probability 1/27n, Y; independent copies of Y

T —
-1/
. i >SSty
i=1 j>1
Classical Union Bound gives
3 n
P { 3a € sparse, (m), ||[Tal; — 1] > 3 <2 exp(—cpnn)
< 2exp (m log — c,,r;n) 2 exp(—c,nn)

Take m of the order of
n

log (1 + %)

n.



Following Pisier ['83]
Y = +e; with probability 1/27n, Y; independent copies of Y

T:00 — (]
%p iy,
“ (/r)n)l/qzza’] Yy
i=1 j>1
Conclusion.

It satisfies Property Py (m, 2, %) with m of the order of

n:

n
Cp
1

log( —i—?l;)

The random operator 7 : (;, — (" satisfies with
overwhelming probability

5 11
Vx € sparse(m) §|x|p < |Tx|; < §|x|p.
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The two main properties
Property Ps(r,m) 1B : ly — £, L+ =1

Vx €R", Y, < |Bxli < (kn)' 7 Ix,
k>2

The operator —-1d, : (2 — (} satisfies property P,(=.,m),
that is for any x € R”,

u 1 n\ 4
> lly < s < (=)



Conclusion : tight isomorphic embedding

The random operator T : £; — (" satisfies Property
Pi(m, 2, ) withm = ¢, mn

The deterministic operator —-1d, : 2 — ¢} satisfies
Property P»(-,m)
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The random operator T : £; — (" satisfies Property
Pi(m, 2, ) withm = ¢, mn

The deterministic operator —-1d, : 2 — ¢} satisfies
Property P»(-,m)

Theorem. [Friedland-Guédon '11]

Denote U = (& )14 and v = G B-
Then for any x € R", W = < l‘; ) 02— (177" satisfies

e min(m, 1/k 1/q
(%> <%) x|, < [Ux[y + |Vx[1 < 3]x]p.



Conclusion : tight isomorphic embedding

The random operator T : £; — (" satisfies Property
Pi(m, 2, 3) withm = ¢, mn

The deterministic operator —-1d, : 2 — ¢} satisfies
Property P»(-,m)
Theorem. [Friedland-Guédon '11]

B , 1/q " 1/4 14,
Denote U = (c, m) TandV = (c, log(liz-i-)) mi/a
\%4

U ) L0 — (" satisfies

Then for any x € R", W = (

1/q
T
(0 )l = Il = [0+ (vl < 30
log(l —)



Conclusion : tight isomorphic embedding
Theorem. [Friedland-Guédon ’11]

o n 1/q o 7] 1/q 1d,
Denote U = (c, 170%(1%,)) TandV = (c, 1og(1]+g])> .
Then for any x € R", W = ( Z ) Ll — 65”’”" satisfies

1/q
Ui
(CP ) [xl, < [Wxl|y = [Ux]i + |Vx|i < 3|x]p.
1
log (1 + 7)



Conclusion : tight isomorphic embedding
Theorem. [Friedland-Guédon *11]

. n 1/q - n 1/q 14,
Denote U = (c, ]70};(1%)) TandV = (c, 1og(1+g])) .
Then for any x € R", W = ( Z ) Ll — 65”’”" satisfies

, 1/q
( ”) x|y < [Waly = [Uxly + [Valy < 3Jxd,.
1
log (1 + 7)

T

e Tightness. Take n = 1/n — Banach Mazur distance
between ¢ and ¢}+'.

It is tight when 7 > 2" — connection with the study of
Gelfand width.



Conclusion : tight isomorphic embedding
Theorem. [Friedland-Guédon ’11]

B n \l/a B n 1/q 14,
Denote U = (Cp 10g<1+%})) T andV = (CP 1Og(]+rl])> ml/a*
\%

Then for any x € R", W = ( " ) Ll — 65”’”" satisfies

Ui

1/q
(4 )l = Il = 0+ IVl < 3
log (1 + 7)

T

e Mixture of random and deterministic method - Old story.



Conclusion : tight isomorphic embedding
Theorem. [Friedland-Guédon *11]

. n 1/q - n 1/q 14,
Denote U = (c, 170%(”%,)) TandV = (c, 1Og(]%})) .
Then for any x € R", W = ( Z ) Ll — Eﬁ”’”" satisfies

, 1/q
(e ) el < Wl = (Ul + Vil < 30,
log (1 + l)

T

¢ Valid in a more general setting — arrival space is of
stable type p, like in Pisier ['83],
and also r-Banach spaces like in Bastero, Bernués ['93]



Conclusion : tight isomorphic embedding
Theorem. [Friedland-Guédon *11]

1/ 1/4 1d,
Denote U = (c, m) ‘T andV = (c, 1og(1"+i)) e
n n

Then for any x € R", W = ( Z ) Ll — Eﬁ”’”" satisfies

, 1/q
(e ) el < Wl = (Ul + Vil < 30,
log (1 + ,l)

¢ Valid for several new operators.
The random operator defined by Johnson and
Schechtman satisfies the same property P;.
Property P, is just an algebraic property and is satisfied
for example when B : £ — ¢} is such that

x| < [Bx|; < (Cn)/4lx],



Conclusion : tight isomorphic embedding
Theorem. [Friedland-Guédon ’11]

. n 1/q - n 1/q 14,
Denote U = (c, 17%‘(1%)) TandV = (c, 1og(1+g])> .
Then for any x € R", W = ( Z ) Ll — 65”’”" satisfies

T

1/q
,,
! )) ], < [Wal, = [Usly + [Vxls < 3.

C),——F———
< / log (1 +1
e Optimality of P, (m, «, ) — Application to Gelfand width

ce(Id: 6 — £)
which gives optimal results.
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The random operator T : £; — (" satisfies Property
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11
Vx € sparse(m) §|x|,, <|Tx|; < §|x|p.
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Other consequences of the properties - |

The random operator T : £; — (" satisfies Property
Pi(m, 2, ) withm = kK that is,

n
C —_—
p ]og(lJr%

5 11
Vx € sparse(m) §|x|,, < |Tx|; < §|x|p.

Gelfand width of Id : ¢} — .
Find a subspace S of codimension less than & such that

you control the diameter (in the £)-norm) of the section of
the octahedron by S i.e.
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Other consequences of the properties - |

The random operator T : £; — (" satisfies Property
Pi(m, 2, ) withm = kK that is,

n
C —_—
p ]og(lJr%

5 11
Vx € sparse(m) §|x|,, < |Tx|; < §|x|p.

Gelfand width of Id : ¢} — .
Find a subspace S of codimension less than & such that

you control the diameter (in the £)-norm) of the section of
the octahedron by S i.e.

VxeS, |x|, <Dlx|

We take k = nnand S = ker T
Let i € ker T with 4 # 0 then

(2l = V= b [5 + [P, [}



Other consequences of the properties - |

The random operator T : £; — (" satisfies Property
Pi(m, 2, ) withm = ¢, m n that is,

11
Vx € sparse(m) §|x|,, <|Tx|; < §|x|p.

0

Using again property P;, we get

M
11
|h11 |p < ? Z |h1k|p
k=2

And by the simple algebraic property P,,

11 1
<= 5 ml/a

e By property P,

8
|, | Tha |1 = %

‘P—S
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< - Th
—5;’ Ik‘l
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Other consequences of the properties - |

The random operator T : £; — (" satisfies Property
Pi(m, 2, ) withm = ¢, m n that is,

11
Vx € sparse(m) §|x|,, <|Tx|; < §|x|p.

e For the other part
M 1/p M P
() = ()
k=2 k=2

|h hll |p

Z hfk

and by the simple algebraic property 7., we get that

1
b=ty < — ey
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Other consequences of the properties - |

In conlusion, for any h € ker T,

1/q
1 log (1+1%)
A, < Cpm\hh =G, (kk Al

since

m=c il nand k =nn

QL S
log (1 + %)

This means that

1/q
1 14+ 7
cp(Id : 07 — gz) < C; (M)

and it is known to be optimal for £ > logn.
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Other consequences of the properties - Il
Let W : (2 — ¢V such that

1
D |x|,, < |Wx|, < ’x’p'

Let S=ImW, S C ¢ and codimS = N — rank W = nn = k.
Then forany y € S, y = Wx with x € ¢; and

1
) = [Wxl|; > D X,

|x|p > |Wx|, > |Wx|p = |y|p



Other consequences of the properties - Il
Let W : (2 — ¢V such that

1
D |x|,, < |Wx|, < ’x’p'

Let S=ImW, S C ¢ and codimS = N — rank W = nn = k.
Then forany y € S, y = Wx with x € ¢; and

1
) = [Wxl|; > D X,

|x|p > |Wxl|; > |Wx|p |y|p

This proves that

Vyes, Iyl <DL



Other consequences of the properties - Il
Let W : (2 — ¢V such that
1
D x|, < [Waxl|i < [x],.
We have proved that

VyeS, |y, <Dyl
which means that

1/4
10g(1+%’) !

k

(here n ~ N) and this is known to be optimal for k£ > log N
i.e.n > IO%N

Ck(Id:EIIV—>€g) <D=



Other consequences of the properties - Il
Let W : (2 — ¢V such that
1
D x|, < [Waxl|i < [x],.
We have proved that

VyeS, |y, <Dyl

which means that
1/q

1 14+
e(1d: 0¥ — ¥y < D = Og(kﬂ)
(here n ~ N) and this is known to be optimal for k£ > log N

i.e.n > IO%N
e Optimality of the Theorem [FG].
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The random operator T : £; — (" satisfies Property
7)] (m ° *) W|th m=cp m n that IS,

11
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A(y) = argmin |z|,, subject to Tz = Ty



Other consequences of the properties - Il
The random operator T : £; — (" satisfies Property
Pi(m, 2, 3) withm = ¢, m n that is,

5 11
Vx € sparse(m) §|x|p < |Tx|; < §|x|p.

Reconstruction via ¢;-minimization

A(y) = argmin |z|;, subjectto Tz = Ty

If s > 0 satisfies k

< o=
s _cplog(l + 19

then with probability greater than 1 — exp(—b,k), every
s-sparse vectors y, is exactly reconstructed : y = A(y).

Yy, ly = A@)], < 4|}‘n<fs v —yih
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