Sparsity and non-Euclidean embeddings

Omer Friedland and Olivier Guédon

Université Pierre et Marie Curie and Université Paris-Est Marne-la-Vallée

October 17-21, 2011 Embedding problems in Banach spaces and group theory MSRI - Berkeley

Banach Mazur distance :

 $d(X,Y) = \inf \left\{ \|T\| \|T^{-1}\|, \quad T: X \to Y \text{ isomorphism} \right\}$

Embedding of finite dimensional space *E* in a Banach ${\bf space} \ X : E \stackrel{K}{\hookrightarrow} X$

Banach Mazur distance :

 $d(X,Y) = \inf \left\{ \|T\| \|T^{-1}\|, \quad T: X \to Y \text{ isomorphism} \right\}$

Embedding of finite dimensional space *E* in a Banach ${\bf space} \ X : E \stackrel{K}{\hookrightarrow} X$

$$
\exists T: E \to X \text{ with } ||T|| ||T^{-1}|| \leq K.
$$

Banach Mazur distance :

 $d(X,Y) = \inf \left\{ \|T\| \|T^{-1}\|, \quad T: X \to Y \text{ isomorphism} \right\}$

Embedding of finite dimensional space *E* in a Banach ${\bf space} \ X : E \stackrel{K}{\hookrightarrow} X$ In other words,

$$
\exists T: E \to X, \forall x \in E, \ a||x||_E \le ||Tx||_X \le b||x||_E \text{ with } \frac{b}{a} \le K
$$

What kind of finite dimensional spaces can we embed in some Banach space ?

Banach Mazur distance :

 $d(X,Y) = \inf \left\{ \|T\| \|T^{-1}\|, \quad T: X \to Y \text{ isomorphism} \right\}$

Embedding of finite dimensional space *E* in a Banach ${\bf space} \ X : E \stackrel{K}{\hookrightarrow} X$ In other words,

$$
\exists T: E \to X, \forall x \in E, \ a||x||_E \le ||Tx||_X \le b||x||_E \text{ with } \frac{b}{a} \le K
$$

What kind of finite dimensional spaces can we embed in some Banach space ?

The Euclidean space ℓ_2^n ?

Any other one ?

• Dvoretzky ['61] *Let X be a Banach space of infinite dimension,* $\forall n \in \mathbb{N}, \forall \varepsilon > 0, \quad \ell_2^n$ $\stackrel{1+\varepsilon}{\hookrightarrow} X$.

• Dvoretzky ['61] *Let X be a Banach space of infinite dimension,* $\forall n \in \mathbb{N}, \forall \varepsilon > 0, \quad \ell_2^n$ $\stackrel{1+\varepsilon}{\hookrightarrow} X$.

• Milman ['71] and Figiel Lindenstrauss Milman ['77] $\forall n, \forall \varepsilon \in (0,1),$ ℓ_2^n 2 $\stackrel{1+\varepsilon}{\hookrightarrow} \ell_1^{c(\varepsilon)n}$ 1

where $c(\varepsilon) \simeq C \log(3/\varepsilon)/\varepsilon^2$.

• Dvoretzky ['61] *Let X be a Banach space of infinite dimension,* $\forall n \in \mathbb{N}, \forall \varepsilon > 0, \quad \ell_2^n$ $\stackrel{1+\varepsilon}{\hookrightarrow} X$.

• Milman ['71] and Figiel Lindenstrauss Milman ['77] $\forall n, \forall \varepsilon \in (0,1),$ ℓ_2^n 2 $\stackrel{1+\varepsilon}{\hookrightarrow} \ell_1^{c(\varepsilon)n}$ 1

where $c(\varepsilon) \simeq C \log(3/\varepsilon)/\varepsilon^2$.

• Kashin ['77] $\forall n, \forall \eta > 0, \ell_2^n$ $\stackrel{c(\eta)}{\hookrightarrow} \ell_1^{n(1+\eta)}$ where $c(\eta) \simeq (c/\eta)^a$.

• Dvoretzky ['61] *Let X be a Banach space of infinite dimension,* $\forall n \in \mathbb{N}, \forall \varepsilon > 0, \quad \ell_2^n$ $\stackrel{1+\varepsilon}{\hookrightarrow} X$.

• Milman ['71] and Figiel Lindenstrauss Milman ['77] $\forall n, \forall \varepsilon \in (0,1),$ ℓ_2^n 2 $\stackrel{1+\varepsilon}{\hookrightarrow} \ell_1^{c(\varepsilon)n}$ 1

where $c(\varepsilon) \simeq C \log(3/\varepsilon)/\varepsilon^2$.

• Kashin ['77] $\forall n, \forall \eta > 0, \ell_2^n$ $\stackrel{c(\eta)}{\hookrightarrow} \ell_1^{n(1+\eta)}$ where $c(\eta) \simeq (c/\eta)^a$.

Proofs : random methods that can be described through the use of Gaussian operators,

$$
G = (g_{ij}) : \ell_2^n \to \ell_1^N \text{ where } g_{ij} \sim \mathcal{N}(0,1).
$$

What can we say about $\ell_p^n \hookrightarrow X$ for $0 < p < 2$?

What can we say about $\ell_p^n \hookrightarrow X$ for $0 < p < 2$?

- θ is *p*-stable iff $\mathbb{E} \exp(i t \theta) = \exp(-\sigma t^p)$
- θ is standard *p*-stable when $\sigma = 1$.

What can we say about $\ell_p^n \hookrightarrow X$ for $0 < p < 2$?

 θ is *p*-stable iff $\mathbb{E} \exp(i t \theta) = \exp(-\sigma t^p)$ θ is standard *p*-stable when $\sigma = 1$.

Main properties :

1) if θ , θ ₁, ..., θ _n are i.i.d. standard *p*-stable then for every $\alpha_1, \ldots, \alpha_n$

$$
\sum \alpha_i \theta_i \sim \left(\sum |\alpha_i|^p\right)^{1/p} \theta
$$

2) If θ is p -stable then $\theta \in L_r$ for all $r < p.$

What can we say about $\ell_p^n \hookrightarrow X$ for $0 < p < 2$?

 θ is *p*-stable iff $\mathbb{E} \exp(i t \theta) = \exp(-\sigma t^p)$ θ is standard *p*-stable when $\sigma = 1$.

Main properties :

1) if θ , θ ₁, ..., θ _n are i.i.d. standard *p*-stable then for every $\alpha_1, \ldots, \alpha_n$

$$
\sum \alpha_i \theta_i \sim \left(\sum |\alpha_i|^p\right)^{1/p} \theta
$$

2) If θ is p -stable then $\theta \in L_r$ for all $r < p.$

Consequence : for every $p > 1$, ℓ_p^p $\stackrel{1}{\hookrightarrow} L_1$

X is of stable type p iff for some (every) $r < p$, there exists $C > 0$ such that for every finite collection of vectors x_1, \ldots, x_n

$$
\left(\mathbb{E}\left\|\sum \theta_i x_i\right\|^r\right)^{1/r} \leq C \left(\sum \|x_i\|^p\right)^{1/p}
$$

.

X is of stable type p iff for some (every) $r < p$, there exists $C > 0$ such that for every finite collection of vectors x_1, \ldots, x_n

$$
\left(\mathbb{E}\left\|\sum \theta_i x_i\right\|^r\right)^{1/r} \leq C \left(\sum \|x_i\|^p\right)^{1/p}
$$

.

• Maurey-Pisier ['76] *Let X be a Banach space of infinite dimension,* $\forall n \in \mathbb{N}, \forall \varepsilon > 0, \ell_p^n$ 1+ε ,→ *X iff X is not of stable type p.*

ALMOST ISOMETRIC RESULTS

ISOMORPHIC RESULT

ALMOST ISOMETRIC RESULTS

ISOMORPHIC RESULT

• Naor-Zvavitch [01]
$$
\forall n, \forall \eta, \ell_p^n \stackrel{C(\log n, \eta)}{\hookrightarrow} \ell_1^{n(1+\eta)}
$$

Explicit definition of a random operator.

• Naor-Zvavitch ['01] $\forall n, \forall \eta, \ell_p^n$ $\bigoplus_{n=1}^{C(\log n,\eta)} \ell_1^{n(1+\eta)}$ 1

Explicit definition of a random operator.

 \bullet Johnson-Schechtman ['03] $\forall n, \, \forall \eta, \, \ell_p^n$ $\stackrel{c(\eta)}{\hookrightarrow} \ell_1^{n(1+\eta)}$ 1

The existence of such operator.

- Naor-Zvavitch ['01] $\forall n, \forall \eta, \ell_p^n$ $\bigoplus_{n=1}^{C(\log n,\eta)} \ell_1^{n(1+\eta)}$ 1 Explicit definition of a random operator.
- \bullet Johnson-Schechtman ['03] $\forall n, \, \forall \eta, \, \ell_p^n$ $\stackrel{c(\eta)}{\hookrightarrow} \ell_1^{n(1+\eta)}$ 1

The existence of such operator.

• Friedland-Guédon ['10] (to appear in Math. Ann.) $\forall n, \, \forall \eta, \, \ell_p^n$ $\stackrel{c(\eta)}{\hookrightarrow} \ell_1^{n(1+\eta)}$ 1

Explicit definition of a random operator and $c(\eta) \simeq c_p^{1/\eta}$.

- Naor-Zvavitch ['01] $\forall n, \forall \eta, \ell_p^n$ $\bigoplus_{n=1}^{C(\log n,\eta)} \ell_1^{n(1+\eta)}$ 1 Explicit definition of a random operator.
- \bullet Johnson-Schechtman ['03] $\forall n, \, \forall \eta, \, \ell_p^n$ $\stackrel{c(\eta)}{\hookrightarrow} \ell_1^{n(1+\eta)}$ 1 The existence of such operator.
- Friedland-Guédon ['10] (to appear in Math. Ann.) $\forall n, \, \forall \eta, \, \ell_p^n$ $\stackrel{c(\eta)}{\hookrightarrow} \ell_1^{n(1+\eta)}$ 1

Explicit definition of a random operator and $c(\eta) \simeq c_p^{1/\eta}$. More generally,

 $\forall n, \, \forall \eta, \, \ell_p^n$ $\stackrel{c(\eta)}{\hookrightarrow} \ell_r^{n(1+\eta)}$ with $0 < r < p < 2$ and $r \leq 1$.

Definition of the random operator

Following Pisier ['83]

 $Y = \pm e_i$ with probability 1/2*N*, Y_{ii} independent copies of *Y*

$$
T: \ell_p^n \rightarrow \ell_1^N
$$

$$
\alpha \mapsto \frac{\sigma_p}{N^{1/q}} \sum_{i=1}^n \sum_{j\geq 1} \alpha_i j^{-1/p} Y_{ij}
$$

Definition of the random operator

Following Pisier ['83]

 $Y = \pm e_i$ with probability 1/2*N*, Y_{ii} independent copies of *Y*

$$
T: \ell_p^n \rightarrow \ell_1^N
$$

$$
\alpha \mapsto \frac{\sigma_p}{N^{1/q}} \sum_{i=1}^n \sum_{j\geq 1} \alpha_i j^{-1/p} Y_{ij}
$$

Key properties :

1) $|\mathbb{E}|T\alpha|_1 - |\alpha|_p| \le D_p \left(\frac{n}{N}\right)$ $\frac{n}{N}$) $^{1/q}$ $|\alpha|_p$ $\;\rightarrow$ **P['83]**

2) Concentration of $|T\alpha|_1$ around its mean

$$
\mathbb{P}\left\{\bigg||T\alpha|_1 - \mathbb{E}|T\alpha|_1\bigg| \geq t\right\} \leq 2\exp(-b_p N t^q)
$$

where $1/p + 1/q = 1. \rightarrow J-S$ ['82]

Definition of the random operator

Following Pisier ['83]

 $Y = \pm e_i$ with probability 1/2*N*, Y_{ii} independent copies of *Y*

$$
T: \ell_p^n \rightarrow \ell_1^N
$$

$$
\alpha \mapsto \frac{\sigma_p}{N^{1/q}} \sum_{i=1}^n \sum_{j\geq 1} \alpha_i j^{-1/p} Y_{ij}
$$

Key properties :

1) $|\mathbb{E}|T\alpha|_1 - |\alpha|_p| \le D_p \left(\frac{n}{N}\right)$ $\frac{n}{N}$) $^{1/q}$ $|\alpha|_p$ $\;\rightarrow$ **P['83]**

2) Concentration of $|T\alpha|_1$ around its mean

$$
\mathbb{P}\left\{\bigg||T\alpha|_1 - \mathbb{E}|T\alpha|_1\bigg| \geq t\right\} \leq 2\exp(-b_p N t^q)
$$

where $1/p + 1/q = 1. \rightarrow J-S$ ['82] 3) New ingredient : delicate small ball estimates.

Reconstruction of a signal.

Let Φ be an $n \times N$ matrix. You receive $\Phi x := y$ where $x \in \mathbb{R}^N$ is the unknown signal.

Reconstruction of a signal.

Let Φ be an $n \times N$ matrix. You receive $\Phi x := y$ where $x \in \mathbb{R}^N$ is the unknown signal. How to recover *x* ?

Reconstruction of a signal.

Let Φ be an $n \times N$ matrix. You receive $\Phi x := y$ where $x \in \mathbb{R}^N$ is the unknown signal.

How to recover *x* ? Assumption on the signal : it is an *m*-sparse signal with $m \ll n$.

Reconstruction of a signal.

Let Φ be an $n \times N$ matrix. You receive $\Phi x := y$ where $x \in \mathbb{R}^N$ is the unknown signal.

How to recover *x* ? Assumption on the signal : it is an *m*-sparse signal with $m \ll n$.

Restricted Isometry Property with constant $\delta \in (0,1)$: an $n \times N$ matrix Φ such that for all *m*-sparse vectors $x \in \mathbb{R}^N$,

$$
(1 - \delta)|x|_2 \le |\Phi x|_2 \le (1 + \delta)|x|_2.
$$

Reconstruction of a signal.

Let Φ be an $n \times N$ matrix. You receive $\Phi x := y$ where $x \in \mathbb{R}^N$ is the unknown signal. How to recover *x* ? Assumption on the signal : it is an

m-sparse signal with $m \ll n$.

Restricted Isometry Property with constant $\delta \in (0,1)$: an $n \times N$ matrix Φ such that for all *m*-sparse vectors $x \in \mathbb{R}^N$,

$$
(1 - \delta)|x|_2 \le |\Phi x|_2 \le (1 + \delta)|x|_2.
$$

Candès, Romberg, Tao ['06]

For such matrices, if δ is small enough, any *m*-sparse vectors is uniquely defined by

```
\min\{|t|_1 subject to \Phi t = y\}
```
Reconstruction of a signal.

Let Φ be an $n \times N$ matrix. You receive $\Phi x := y$ where $x \in \mathbb{R}^N$ is the unknown signal. How to recover *x* ? Assumption on the signal : it is an

m-sparse signal with $m \ll n$.

Restricted Isometry Property with constant $\delta \in (0,1)$: an $n \times N$ matrix Φ such that for all *m*-sparse vectors $x \in \mathbb{R}^N$,

$$
(1 - \delta)|x|_2 \le |\Phi x|_2 \le (1 + \delta)|x|_2.
$$

Random matrices are good ! $\Phi = (g_{ij})/\sqrt{N}$ satisfies RIP with $m \simeq c(\delta) \frac{n}{\log(e)}$ $\frac{n}{\log(eN/n)}$. The same if $\Phi = (\pm 1/3)$ √ $N)$, independent ψ_2 entries, Mendelson, Pajor, Tomczak-Jaegermann independent log-concave columns, rows Adamczak, Litvak, Pajor, Tomczak-Jaegermann

Reconstruction of a signal.

Let Φ be an $n \times N$ matrix. You receive $\Phi x := y$ where $x \in \mathbb{R}^N$ is the unknown signal. How to recover *x* ? Assumption on the signal : it is an

m-sparse signal with $m \ll n$.

Restricted Isometry Property with constant $\delta \in (0,1)$: an $n \times N$ matrix Φ such that for all *m*-sparse vectors $x \in \mathbb{R}^N$,

$$
(1 - \delta)|x|_2 \le |\Phi x|_2 \le (1 + \delta)|x|_2.
$$

How to give an explicit construction of such a matrix ?
Sparsity and compressed sensing

• Donoho ['06] Connection with the study of Gelfand widths.

$$
c_k(\mathrm{Id}:\ell_1^N\to\ell_2^N)
$$

is the infimum over all subspaces *S* of codimension strictly less than *k* of the value of *K* such that

$$
\forall x \in S, \quad |x|_2 \le K|x|_1
$$

Sparsity and compressed sensing

• Donoho ['06] Connection with the study of Gelfand widths.

New proof of the result of Garnaev-Gluskin ['84]

$$
c_k(\text{Id}: \ell_1^N \to \ell_2^N) \leq C \sqrt{\frac{\log(1+\frac{N}{k})}{k}}
$$

Sparsity and compressed sensing

• Donoho ['06] Connection with the study of Gelfand widths.

New proof of the result of Garnaev-Gluskin ['84]

$$
c_k(\text{Id}: \ell_1^N \to \ell_2^N) \leq C \sqrt{\frac{\log(1 + \frac{N}{k})}{k}}
$$

Let $\Phi : \mathbb{R}^N \to \mathbb{R}^n$, $\Phi = (g_{i,j})$ and take $S = \ker \Phi$, $k = n + 1$.

Property $\mathcal{P}_1(m, \alpha, \beta) : A : \ell_p^n \to \ell_1^{\eta n}$ $\frac{\eta n}{1}$, $\forall x \in \text{sparse}(m) \quad \alpha |x|_p \leq |Ax|_1 \leq \beta |x|_p.$

Property $\mathcal{P}_1(m, \alpha, \beta) : A : \ell_p^n \to \ell_1^{\eta n}$ $\frac{\eta n}{1}$, $\forall x \in \text{sparse}(m) \quad \alpha |x|_p \leq |Ax|_1 \leq \beta |x|_p.$

Foucart-Lei ['10] in the case $p = 2$

Property $\mathcal{P}_1(m, \alpha, \beta) : A : \ell_p^n \to \ell_1^{\eta n}$ $\frac{\eta n}{1}$, $\forall x \in \text{sparse}(m) \quad \alpha |x|_p \leq |Ax|_1 \leq \beta |x|_p.$

Decomposition of $x \in \mathbb{R}^n$ according to the size *m* of sparsity : x_{I_1} the m first largest coordinates of x and so on...

$$
x=\sum_{k=1}^M x_{I_k} \text{ with } M=[\frac{n}{m}].
$$

Property
$$
\mathcal{P}_1(m, \alpha, \beta) : A : \ell_p^n \to \ell_1^{ \eta n},
$$

\n $\forall x \in sparse(m) \quad \alpha |x|_p \le |Ax|_1 \le \beta |x|_p.$

Decomposition of $x \in \mathbb{R}^n$ according to the size *m* of sparsity : x_{I_1} the m first largest coordinates of x and so on... *M*

$$
x = \sum_{k=1}^{M} x_{I_k} \text{ with } M = \left[\frac{n}{m}\right].
$$

Property $\mathcal{P}_2(\kappa, m) : B : \ell_p^n \to \ell_1^n$

$$
\forall x \in \mathbb{R}^n, \quad \sum_{k \geq 2} |x_{I_k}|_p \leq |Bx|_1 \leq (\kappa n)^{1/q} |x|_p
$$

where $\frac{1}{p} + \frac{1}{q} = 1$.

Deterministic Theorem, 1 < *p* < 2

Property $\mathcal{P}_1(m, \alpha, \beta) : A : \ell_p^n \to \ell_1^{\eta n}$ $\frac{\eta n}{1}$, $\forall x \in \text{sparse}(m) \quad \alpha |x|_p \leq |Ax|_1 \leq \beta |x|_p.$ Property $\mathcal{P}_2(\kappa,m):B:\ell_p^n\to \ell_1^n, \frac{1}{p}+\frac{1}{q}=1$

$$
\forall x \in \mathbb{R}^n, \quad \sum_{k \geq 2} |x_{I_k}|_p \leq |Bx|_1 \leq (\kappa n)^{1/q} |x|_p
$$

Deterministic Theorem, 1 < *p* < 2

Property
$$
\mathcal{P}_1(m, \alpha, \beta) : A : \ell_p^n \to \ell_1^{nn}
$$
,
\n $\forall x \in sparse(m) \quad \alpha |x|_p \le |Ax|_1 \le \beta |x|_p$.
\nProperty $\mathcal{P}_2(\kappa, m) : B : \ell_p^n \to \ell_1^n, \frac{1}{p} + \frac{1}{q} = 1$

$$
\forall x \in \mathbb{R}^n, \quad \sum_{k \geq 2} |x_{I_k}|_p \leq |Bx|_1 \leq (\kappa n)^{1/q} |x|_p
$$

Theorem. [Friedland-Guédon '11]
Denote
$$
U = \frac{1}{\beta} \left(\frac{m}{n}\right)^{1/q} A
$$
 and $V = \frac{1}{(\kappa n)^{1/q}} B$.
Then for any $x \in \mathbb{R}^n$, $W = \begin{pmatrix} V \\ U \end{pmatrix} : \ell_p^n \to \ell_1^{(1+\eta)n}$ satisfies

$$
\left(\frac{\alpha}{4\beta}\right)\left(\frac{\min(m,1/\kappa)}{n}\right)^{1/q}|x|_p\leq |Ux|_1+|Vx|_1\leq 3|x|_p.
$$

Property
$$
\mathcal{P}_1(m, \alpha, \beta) : A : \ell_p^n \to \ell_1^{nn}
$$
,
\n $\forall x \in sparse(m) \quad \alpha |x|_p \le |Ax|_1 \le \beta |x|_p$.
\nProperty $\mathcal{P}_2(\kappa, m) : B : \ell_p^n \to \ell_1^n, \frac{1}{p} + \frac{1}{q} = 1$

$$
\forall x \in \mathbb{R}^n, \quad \sum_{k \geq 2} |x_{I_k}|_p \leq |Bx|_1 \leq (\kappa n)^{1/q} |x|_p
$$

Property $\mathcal{P}_1(m, \alpha, \beta) : A : \ell_p^n \to \ell_1^{\eta n}$ $\frac{\eta n}{1}$, $\forall x \in \text{sparse}(m) \quad \alpha |x|_p \leq |Ax|_1 \leq \beta |x|_p.$

 $Y = \pm e_i$ with probability $1/2\eta n$, Y_{ij} independent copies of *Y*

$$
T: \ell_p^n \rightarrow \ell_1^{ \eta n} \newline \alpha \mapsto \frac{\sigma_p}{(\eta n)^{1/q}} \sum_{i=1}^n \sum_{j \geq 1} \alpha_i j^{-1/p} Y_{ij}
$$

 $Y = \pm e_i$ with probability $1/2\eta n$, Y_{ii} independent copies of *Y*

$$
T: \ell_p^n \rightarrow \ell_1^{\eta n}
$$

\n
$$
\alpha \mapsto \frac{\sigma_p}{(\eta n)^{1/q}} \sum_{i=1}^n \sum_{j\geq 1} \alpha_i j^{-1/p} Y_{ij}
$$

Key properties :

1) $\forall \alpha \in \text{sparse}(m) \cap S_p^{n-1}, \, |\mathbb{E}|T\alpha|_1 - 1 \leq D_p \left(\frac{m}{\eta}, \frac{m}{\eta}\right)$ $\left(\frac{m}{\eta n}\right)^{1/q}$

2) Concentration of $|T\alpha|_1$ around its mean

$$
\mathbb{P}\left\{\left||T\alpha|_1 - \mathbb{E}|T\alpha|_1\right| \ge t\right\} \le 2\exp(-b_p\eta nt^q)
$$

where $1/p + 1/q = 1$.

 $Y = \pm e_i$ with probability $1/2\eta n$, Y_{ii} independent copies of *Y*

$$
T: \ell_p^n \to \ell_1^{\eta n}
$$

\n
$$
\alpha \mapsto \frac{\sigma_p}{(\eta n)^{1/q}} \sum_{i=1}^n \sum_{j\geq 1} \alpha_i j^{-1/p} Y_{ij}
$$

Key properties :

1) $\forall \alpha \in \text{sparse}(m) \cap S_p^{n-1}, \, |\mathbb{E}|T\alpha|_1 - 1 \leq D_p \left(\frac{m}{\eta}, \frac{m}{\eta}\right)$ $\left(\frac{m}{\eta n}\right)^{1/q}$

2) Concentration of $|T\alpha|_1$ around its mean

$$
\mathbb{P}\left\{\left||T\alpha|_1 - \mathbb{E}|T\alpha|_1\right| \ge t\right\} \le 2\exp(-b_p\eta nt^q)
$$

where $1/p + 1/q = 1$.
Classical Union Bound gives

$$
\mathbb{P}\left\{\exists \alpha \in \text{sparse}_p(m), \left| |T\alpha|_1 - 1 \right| \ge \frac{3}{8} \right\} \le 2\binom{n}{m} \exp(-c_p \eta n)
$$

 $Y = \pm e_i$ with probability $1/2\eta n$, Y_{ij} independent copies of *Y*

$$
T: \ell_p^n \longrightarrow \ell_1^{ \eta n} \newline \alpha \longmapsto \frac{\sigma_p}{(\eta n)^{1/q}} \sum_{i=1}^n \sum_{j\geq 1} \alpha_i j^{-1/p} Y_{ij}
$$

Classical Union Bound gives

$$
\mathbb{P}\left\{\exists \alpha \in \text{sparse}_p(m), \left| |T\alpha|_1 - 1 \right| \ge \frac{3}{8} \right\} \le 2 {n \choose m} \exp(-c_p \eta n)
$$

$$
\le 2 \exp\left(m \log\left(\frac{en}{m}\right) - c_p \eta n\right)
$$

 $Y = \pm e_i$ with probability $1/2\eta n$, Y_{ij} independent copies of *Y*

$$
T: \ell_p^n \longrightarrow \ell_1^{ \eta n} \newline \alpha \longmapsto \frac{\sigma_p}{(\eta n)^{1/q}} \sum_{i=1}^n \sum_{j\geq 1} \alpha_i j^{-1/p} Y_{ij}
$$

Classical Union Bound gives

$$
\mathbb{P}\left\{\exists \alpha \in \text{sparse}_p(m), \left| |T\alpha|_1 - 1 \right| \ge \frac{3}{8} \right\} \le 2 {n \choose m} \exp(-c_p \eta n)
$$

$$
\le 2 \exp\left(m \log\left(\frac{en}{m}\right) - c_p \eta n\right) \le 2 \exp(-c'_p \eta n)
$$

Take *m* of the order of

$$
\frac{\eta}{\log\left(1+\frac{1}{\eta}\right)}\,n.
$$

 $Y = \pm e_i$ with probability $1/2\eta n$, Y_{ii} independent copies of *Y*

$$
T: \ell_p^n \longrightarrow \ell_1^{ \eta n} \newline \alpha \longmapsto \frac{\sigma_p}{(\eta n)^{1/q}} \sum_{i=1}^n \sum_{j\geq 1} \alpha_i j^{-1/p} Y_{ij}
$$

Conclusion.

It satisfies Property $\mathcal{P}_1(m,\frac{5}{8})$ $\frac{5}{8}, \frac{11}{8}$ $\frac{11}{8}$) with *m* of the order of

$$
c_p\,\frac{\eta}{\log\left(1+\frac{1}{\eta}\right)}\,n:
$$

The random operator $T : \ell_p^n \to \ell_1^{\eta n}$ $\frac{\eta n}{1}$ satisfies with overwhelming probability

$$
\forall x \in \text{sparse}(m) \quad \frac{5}{8}|x|_p \le |Tx|_1 \le \frac{11}{8}|x|_p.
$$

Property
$$
\mathcal{P}_1(m, \alpha, \beta) : A : \ell_p^n \to \ell_1^{nn}
$$
,
\n $\forall x \in sparse(m) \quad \alpha |x|_p \le |Ax|_1 \le \beta |x|_p$.
\nProperty $\mathcal{P}_2(\kappa, m) : B : \ell_p^n \to \ell_1^n, \frac{1}{p} + \frac{1}{q} = 1$

$$
\forall x \in \mathbb{R}^n, \quad \sum_{k \geq 2} |x_{I_k}|_p \leq |Bx|_1 \leq (\kappa n)^{1/q} |x|_p
$$

Property $\mathcal{P}_2(\kappa, m): B: \ell_p^n \to \ell_1^n, \frac{1}{p} + \frac{1}{q} = 1$

$$
\forall x \in \mathbb{R}^n, \quad \sum_{k \geq 2} |x_{I_k}|_p \leq |Bx|_1 \leq (\kappa n)^{1/q} |x|_p
$$

Property $\mathcal{P}_2(\kappa, m): B: \ell_p^n \to \ell_1^n, \frac{1}{p} + \frac{1}{q} = 1$

$$
\forall x \in \mathbb{R}^n, \quad \sum_{k \geq 2} |x_{I_k}|_p \leq |Bx|_1 \leq (\kappa n)^{1/q} |x|_p
$$

The operator $\frac{1}{m^{1/q}}\mathrm{Id}_n:\ell_p^n\to \ell_1^n$ satisfies property $\mathcal{P}_2(\frac{1}{m})$ $\frac{1}{m}, m$, that is for any $x \in \mathbb{R}^n$,

$$
\sum_{k=2}^{M} |x_{I_k}|_p \le \frac{1}{m^{1/q}} |x|_1 \le \left(\frac{m}{m}\right)^{1/q} |x|_p
$$

The random operator $T : \ell_p^n \to \ell_1^{\eta n}$ $\frac{\eta n}{1}$ satisfies Property $\mathcal{P}_1(m,\frac{5}{8})$ $\frac{5}{8}, \frac{11}{8}$ $\frac{11}{8}$) with $m = c_p \, \frac{\eta}{\log(1+\eta)}$ $\frac{\eta}{\log\left(1+\frac{1}{\eta}\right)}$ n

The deterministic operator $\frac{1}{m^{1/q}}\mathrm{Id}_n:\ell_p^n\to \ell_1^n$ satisfies Property $\mathcal{P}_2(\frac{1}{m})$ $\frac{1}{m}$, *m*)

The random operator $T : \ell_p^n \to \ell_1^{\eta n}$ $\frac{\eta n}{1}$ satisfies Property $\mathcal{P}_1(m,\frac{5}{8})$ $\frac{5}{8}, \frac{11}{8}$ $\frac{11}{8}$) with $m = c_p \, \frac{\eta}{\log(1+\eta)}$ $\frac{\eta}{\log\left(1+\frac{1}{\eta}\right)}$ n

The deterministic operator $\frac{1}{m^{1/q}}\mathrm{Id}_n:\ell_p^n\to \ell_1^n$ satisfies Property $\mathcal{P}_2(\frac{1}{m})$ $\frac{1}{m}$, *m*)

Theorem. [Friedland-Guédon '11] *Denote* $U = \frac{1}{\beta}$ $rac{1}{\beta}$ $\left(\frac{m}{n}\right)$ $\left(\frac{m}{n}\right)^{1/q}A$ and $V=\frac{1}{(\kappa n)}$ $\frac{1}{(\kappa n)^{1/q}}B$. *Then for any* $x \in \mathbb{R}^n$, $W =$ $\left(V\right)$ *U* \setminus : $\ell_p^n \to \ell_1^{(1+\eta)n}$ $\int_1^{(1+\eta)n}$ satisfies

$$
\left(\frac{\alpha}{4\beta}\right)\left(\frac{\min(m,1/\kappa)}{n}\right)^{1/q}|x|_p\leq |Ux|_1+|Vx|_1\leq 3|x|_p.
$$

The random operator $T : \ell_p^n \to \ell_1^{\eta n}$ $\frac{\eta n}{1}$ satisfies Property $\mathcal{P}_1(m,\frac{5}{8})$ $\frac{5}{8}, \frac{11}{8}$ $\frac{11}{8}$) with $m=c_p\,\frac{\eta}{\log(1+\eta)}$ $\frac{\eta}{\log\left(1+\frac{1}{\eta}\right)}$ n

The deterministic operator $\frac{1}{m^{1/q}}\mathrm{Id}_n:\ell_p^n\to \ell_1^n$ satisfies Property $\mathcal{P}_2(\frac{1}{m})$ $\frac{1}{m}$, *m*)

Theorem. [Friedland-Guédon '11] *Denote* $U = \left(c_p \frac{\eta}{\log(1)}\right)$ $\log\left(1+\frac{1}{\eta}\right)$ $\int_0^{1/q} T$ and $V = \left(c_p \frac{\eta}{\log(1)}\right)$ $\log\left(1+\frac{1}{\eta}\right)$ $\int_0^{1/q} \frac{Id_n}{m^{1/q}}$. *Then for any* $x \in \mathbb{R}^n$, $W =$ $\left(V\right)$ *U* \setminus : $\ell_p^n \to \ell_1^{(1+\eta)n}$ $\int_1^{(1+\eta)n}$ satisfies

$$
\left(c_p \frac{\eta}{\log\left(1+\frac{1}{\eta}\right)}\right)^{1/q} |x|_p \leq |Wx|_1 = |Ux|_1 + |Vx|_1 \leq 3|x|_p.
$$

Theorem. [Friedland-Guédon '11]

Denote $U = \left(c_p \frac{\eta}{\log(1)}\right)$ $\log\left(1+\frac{1}{\eta}\right)$ $\int_0^{1/q} T$ and $V = \left(c_p \frac{\eta}{\log(1/\eta)}\right)$ $\log\left(1+\frac{1}{\eta}\right)$ $\int_0^{1/q} \frac{Id_n}{m^{1/q}}$. *Then for any* $x \in \mathbb{R}^n$, $W =$ *V U* \setminus : $\ell_p^n \to \ell_1^{(1+\eta)n}$ 1 *satisfies*

$$
\left(c_p \frac{\eta}{\log\left(1+\frac{1}{\eta}\right)}\right)^{1/q} |x|_p \leq |Wx|_1 = |Ux|_1 + |Vx|_1 \leq 3|x|_p.
$$

Theorem. [Friedland-Guédon '11]

Denote $U = \left(c_p \frac{\eta}{\log(1)}\right)$ $\log\left(1+\frac{1}{\eta}\right)$ $\int_0^{1/q} T$ and $V = \left(c_p \frac{\eta}{\log(1/\eta)}\right)$ $\log\left(1+\frac{1}{\eta}\right)$ $\int_0^{1/q} \frac{Id_n}{m^{1/q}}$. *Then for any* $x \in \mathbb{R}^n$, $W =$ *V U* \setminus : $\ell_p^n \to \ell_1^{(1+\eta)n}$ 1 *satisfies*

$$
\left(c_p \frac{\eta}{\log\left(1+\frac{1}{\eta}\right)}\right)^{1/q} |x|_p \leq |Wx|_1 = |Ux|_1 + |Vx|_1 \leq 3|x|_p.
$$

• Tightness. Take $\eta = 1/n \rightarrow$ Banach Mazur distance between ℓ_p^n and ℓ_1^{n+1} $\frac{n+1}{1}$. It is tight when $\eta \geq \frac{\log n}{n} \to$ connection with the study of Gelfand width.

Theorem. [Friedland-Guédon '11]

Denote $U = \left(c_p \frac{\eta}{\log(1)}\right)$ $\log\left(1+\frac{1}{\eta}\right)$ $\int_0^{1/q} T$ and $V = \left(c_p \frac{\eta}{\log(1/\eta)}\right)$ $\log\left(1+\frac{1}{\eta}\right)$ $\int_0^{1/q} \frac{Id_n}{m^{1/q}}$. *Then for any* $x \in \mathbb{R}^n$, $W =$ *V U* \setminus : $\ell_p^n \to \ell_1^{(1+\eta)n}$ 1 *satisfies*

$$
\left(c_p \frac{\eta}{\log\left(1+\frac{1}{\eta}\right)}\right)^{1/q} |x|_p \leq |Wx|_1 = |Ux|_1 + |Vx|_1 \leq 3|x|_p.
$$

• Mixture of random and deterministic method - Old story.

Theorem. [Friedland-Guédon '11]

Denote $U = \left(c_p \frac{\eta}{\log(1)}\right)$ $\log\left(1+\frac{1}{\eta}\right)$ $\int_0^{1/q} T$ and $V = \left(c_p \frac{\eta}{\log(1/\eta)}\right)$ $\log\left(1+\frac{1}{\eta}\right)$ $\int_0^{1/q} \frac{Id_n}{m^{1/q}}$. *Then for any* $x \in \mathbb{R}^n$, $W =$ *V U* \setminus : $\ell_p^n \to \ell_1^{(1+\eta)n}$ 1 *satisfies*

$$
\left(c_p \frac{\eta}{\log\left(1+\frac{1}{\eta}\right)}\right)^{1/q} |x|_p \leq |Wx|_1 = |Ux|_1 + |Vx|_1 \leq 3|x|_p.
$$

• Valid in a more general setting \rightarrow arrival space is of stable type *p*, like in Pisier ['83], and also r-Banach spaces like in Bastero, Bernués ['93]

Theorem. [Friedland-Guédon '11]

Denote $U = \left(c_p \frac{\eta}{\log(1)}\right)$ $\log\left(1+\frac{1}{\eta}\right)$ $\int_0^{1/q} T$ and $V = \left(c_p \frac{\eta}{\log(1/\eta)}\right)$ $\log\left(1+\frac{1}{\eta}\right)$ $\int_0^{1/q} \frac{Id_n}{m^{1/q}}$. *Then for any* $x \in \mathbb{R}^n$, $W =$ *V U* \setminus : $\ell_p^n \to \ell_1^{(1+\eta)n}$ 1 *satisfies*

$$
\left(c_p \frac{\eta}{\log\left(1+\frac{1}{\eta}\right)}\right)^{1/q} |x|_p \leq |Wx|_1 = |Ux|_1 + |Vx|_1 \leq 3|x|_p.
$$

• Valid for several new operators. The random operator defined by Johnson and Schechtman satisfies the same property P_1 . Property P_2 is just an algebraic property and is satisfied for example when $B : \ell_p^n \to \ell_1^n$ is such that $|x|_1 \leq |Bx|_1 \leq (Cn)^{1/q} |x|_p$

Theorem. [Friedland-Guédon '11]

Denote $U = \left(c_p \frac{\eta}{\log(1)}\right)$ $\log\left(1+\frac{1}{\eta}\right)$ $\int_0^{1/q} T$ and $V = \left(c_p \frac{\eta}{\log(1/\eta)}\right)$ $\log\left(1+\frac{1}{\eta}\right)$ $\int_0^{1/q} \frac{Id_n}{m^{1/q}}$. *Then for any* $x \in \mathbb{R}^n$, $W =$ *V U* \setminus : $\ell_p^n \to \ell_1^{(1+\eta)n}$ 1 *satisfies*

$$
\left(c_p \frac{\eta}{\log\left(1+\frac{1}{\eta}\right)}\right)^{1/q} |x|_p \leq |Wx|_1 = |Ux|_1 + |Vx|_1 \leq 3|x|_p.
$$

• Optimality of $P_1(m, \alpha, \beta) \rightarrow$ Application to Gelfand width

$$
c_k(\mathrm{Id}:\ell_1^N\to \ell_p^N)
$$

which gives optimal results.

The random operator $T : \ell_p^n \to \ell_1^{\eta n}$ $\frac{\eta n}{1}$ satisfies Property $\mathcal{P}_1(m,\frac{5}{8}$ $\frac{5}{8}, \frac{11}{8}$ $\frac{11}{8}$) with $m=c_p\,\frac{\eta}{\log(1+\eta)}$ $\frac{\eta}{\log\left(1+\frac{1}{\eta}\right)}\,n$ that is, $\forall x \in \text{sparse}(m)$ 5 $\frac{5}{8}|x|_p \le |Tx|_1 \le \frac{11}{8}$ $\frac{1}{8}$ |x|_p.

The random operator $T : \ell_p^n \to \ell_1^{\eta n}$ $\frac{\eta n}{1}$ satisfies Property $\mathcal{P}_1(m,\frac{5}{8}$ $\frac{5}{8}, \frac{11}{8}$ $\frac{11}{8}$) with $m=c_p\,\frac{\eta}{\log(1+\eta)}$ $\frac{\eta}{\log\left(1+\frac{1}{\eta}\right)}\,n$ that is, $\forall x \in \text{sparse}(m)$ 5 $\frac{5}{8}|x|_p \le |Tx|_1 \le \frac{11}{8}$ $\frac{1}{8}$ |x|_p.

Gelfand width of Id : $\ell_1^n \to \ell_p^n$.

Find a subspace *S* of codimension less than *k* such that you control the diameter (in the ℓ_p^n -norm) of the section of the octahedron by *S* i.e.

 $\forall x \in S$, $|x|_p \le D|x|_1$

The random operator $T : \ell_p^n \to \ell_1^{\eta n}$ $\frac{\eta n}{1}$ satisfies Property $\mathcal{P}_1(m,\frac{5}{8}$ $\frac{5}{8}, \frac{11}{8}$ $\frac{11}{8}$) with $m=c_p\,\frac{\eta}{\log(1+\eta)}$ $\frac{\eta}{\log\left(1+\frac{1}{\eta}\right)}\,n$ that is, $\forall x \in \text{sparse}(m)$ 5 $\frac{5}{8}|x|_p \le |Tx|_1 \le \frac{11}{8}$ $\frac{1}{8}$ |x|_p.

Gelfand width of Id : $\ell_1^n \to \ell_p^n$.

Find a subspace *S* of codimension less than *k* such that you control the diameter (in the ℓ_p^n -norm) of the section of the octahedron by *S* i.e.

$$
\forall x \in S, \quad |x|_p \le D|x|_1
$$

We take $k = \eta n$ and $S = \ker T$

The random operator $T : \ell_p^n \to \ell_1^{\eta n}$ $\frac{\eta n}{1}$ satisfies Property $\mathcal{P}_1(m,\frac{5}{8}$ $\frac{5}{8}, \frac{11}{8}$ $\frac{11}{8}$) with $m=c_p\,\frac{\eta}{\log(1+\eta)}$ $\frac{\eta}{\log\left(1+\frac{1}{\eta}\right)}\,n$ that is, $\forall x \in \text{sparse}(m)$ 5 $\frac{5}{8}|x|_p \le |Tx|_1 \le \frac{11}{8}$ $\frac{1}{8}$ |x|_p.

Gelfand width of Id : $\ell_1^n \to \ell_p^n$.

Find a subspace *S* of codimension less than *k* such that you control the diameter (in the ℓ_p^n -norm) of the section of the octahedron by *S* i.e.

$$
\forall x \in S, \quad |x|_p \le D|x|_1
$$

We take $k = \eta n$ and $S = \ker T$ Let $h \in \text{ker } T$ with $h \neq 0$ then $|h|_p^p = |h - h_{I_1}|_p^p + |h_{I_1}|_p^p$

The random operator $T : \ell_p^n \to \ell_1^{\eta n}$ $\frac{\eta n}{1}$ satisfies Property $\mathcal{P}_1(m,\frac{5}{8}$ $\frac{5}{8}, \frac{11}{8}$ $\frac{11}{8}$) with $m=c_p\,\frac{\eta}{\log(1+\eta)}$ $\frac{\eta}{\log\left(1+\frac{1}{\eta}\right)}\,n$ that is, $\forall x \in \text{sparse}(m)$ 5 $\frac{5}{8}|x|_p \le |Tx|_1 \le \frac{11}{8}$ $\frac{1}{8}$ |x|_p.

• By property P_1

$$
|h_{I_1}|_p \leq \frac{8}{5} |Th_{I_1}|_1 = \frac{8}{5} \left| T \left(\sum_{k=2}^M h_{I_k} \right) \right|_1 \leq \frac{8}{5} \sum_{k=2}^M |Th_{I_k}|_1
$$

Using again property P_1 , we get

$$
|h_{I_1}|_p \leq \frac{11}{5}\sum_{k=2}^M |h_{I_k}|_p
$$

And by the simple algebraic property P_2 ,

$$
|h_{I_1}|_p\leq \frac{11}{5}\frac{1}{m^{1/q}}|h|_1.
$$

The random operator $T : \ell_p^n \to \ell_1^{\eta n}$ $\frac{\eta n}{1}$ satisfies Property $\mathcal{P}_1(m,\frac{5}{8}$ $\frac{5}{8}, \frac{11}{8}$ $\frac{11}{8}$) with $m=c_p\,\frac{\eta}{\log(1+\eta)}$ $\frac{\eta}{\log\left(1+\frac{1}{\eta}\right)}\,n$ that is, $\forall x \in \text{sparse}(m)$ 5 $\frac{5}{8}|x|_p \le |Tx|_1 \le \frac{11}{8}$ $\frac{1}{8}$ |x|_p.

• For the other part

$$
|h - h_{I_1}|_p^p = \left| \sum_{k=2}^M h_{I_k} \right|_p^p = \left(\sum_{k=2}^M |h_{I_k}|_p^p \right)^{1/p} \le \left(\sum_{k=2}^M |h_{I_k}|_p \right)^p
$$

and by the simple algebraic property P_2 , we get that

$$
|h-h_{I_1}|_p^p \leq \frac{1}{m^{p/q}}|x|_1^p
$$

In conlusion, for any $h \in \text{ker } T$,

$$
|h|_p \leq C_p \frac{1}{m^{1/q}} |h|_1 = C'_p \left(\frac{\log \left(1 + \frac{n}{k}\right)}{k} \right)^{1/q} |h|_1
$$

since

$$
m = c_p \frac{\eta}{\log\left(1 + \frac{1}{\eta}\right)} n \text{ and } k = \eta n
$$
In conlusion, for any $h \in \text{ker } T$,

$$
|h|_p \leq C_p \frac{1}{m^{1/q}} |h|_1 = C'_p \left(\frac{\log \left(1 + \frac{n}{k}\right)}{k} \right)^{1/q} |h|_1
$$

since

$$
m = c_p \frac{\eta}{\log\left(1 + \frac{1}{\eta}\right)} n \text{ and } k = \eta n
$$

This means that

$$
c_k(\text{Id}: \ell_1^n \to \ell_p^n) \leq C_p' \left(\frac{\log\left(1 + \frac{n}{k}\right)}{k}\right)^{1/q}
$$

and it is known to be optimal for $k > \log n$.

Let $W: \ell_p^n \to \ell_1^N$ such that 1 $\frac{1}{D}$ $|x|_p \le |Wx|_1 \le |x|_p.$

Let $W: \ell_p^n \to \ell_1^N$ such that 1 $\frac{1}{D}$ $|x|_p \le |Wx|_1 \le |x|_p.$

Let $S = \text{Im } W$, $S \subset \ell_1^N$ and $\text{codim } S = N - \text{rank } W = \eta n = k$. Then for any $y \in S$, $y = Wx$ with $x \in \ell_p^n$ and

$$
|y|_1 = |Wx|_1 \ge \frac{1}{D} |x|_p
$$

$$
|x|_p \ge |Wx|_1 \ge |Wx|_p = |y|_p
$$

Let $W: \ell_p^n \to \ell_1^N$ such that 1 $\frac{1}{D}$ $|x|_p \le |Wx|_1 \le |x|_p.$

Let $S = \text{Im } W$, $S \subset \ell_1^N$ and $\text{codim } S = N - \text{rank } W = \eta n = k$. Then for any $y \in S$, $y = Wx$ with $x \in \ell_p^n$ and

$$
|y|_1 = |Wx|_1 \ge \frac{1}{D} |x|_p
$$

$$
|x|_p \geq |Wx|_1 \geq |Wx|_p = |y|_p
$$

This proves that

$$
\forall y \in S, \quad |y|_p \le D \, |y|_1
$$

Let $W: \ell_p^n \to \ell_1^N$ such that 1 $\frac{1}{D}$ $|x|_p \le |Wx|_1 \le |x|_p.$

We have proved that

$$
\forall y \in S, \quad |y|_p \le D \, |y|_1
$$

which means that

$$
c_k(\mathrm{Id}:\ell_1^N\to \ell_p^N)\leq D=\left(\frac{\log\left(1+\frac{N}{k}\right)}{k}\right)^{1/q}
$$

(here $n \simeq N$) and this is known to be optimal for $k \ge \log N$ i.e. $\eta \geq \frac{\log N}{n}$ *n*

Let $W: \ell_p^n \to \ell_1^N$ such that 1 $\frac{1}{D}$ $|x|_p \le |Wx|_1 \le |x|_p.$

We have proved that

$$
\forall y \in S, \quad |y|_p \le D \, |y|_1
$$

which means that

$$
c_k(\mathrm{Id}: \ell_1^N \to \ell_p^N) \le D = \left(\frac{\log\left(1 + \frac{N}{k}\right)}{k}\right)^{1/q}
$$

(here $n \simeq N$) and this is known to be optimal for $k \ge \log N$ i.e. $\eta \geq \frac{\log N}{n}$ *n*

• Optimality of the Theorem [FG].

The random operator $T : \ell_p^n \to \ell_1^{\eta n}$ $\frac{\eta n}{1}$ satisfies Property $\mathcal{P}_1(m,\frac{5}{8})$ $\frac{5}{8}, \frac{11}{8}$ $\frac{11}{8}$) with $m = c_p \, \frac{\eta}{\log(1+\eta)}$ $\frac{\eta}{\log\left(1+\frac{1}{\eta}\right)}\,n$ that is, $\forall x \in \text{sparse}(m)$ 5 $\frac{5}{8}|x|_p \le |Tx|_1 \le \frac{11}{8}$ $\frac{1}{8}$ |x|_p.

The random operator $T : \ell_p^n \to \ell_1^{\eta n}$ $\frac{\eta n}{1}$ satisfies Property $\mathcal{P}_1(m,\frac{5}{8})$ $\frac{5}{8}, \frac{11}{8}$ $\frac{11}{8}$) with $m = c_p \, \frac{\eta}{\log(1+\eta)}$ $\frac{\eta}{\log\left(1+\frac{1}{\eta}\right)}\,n$ that is, $\forall x \in \text{sparse}(m)$ 5 $\frac{5}{8}|x|_p \le |Tx|_1 \le \frac{11}{8}$ $\frac{1}{8}$ |x|_p.

Reconstruction via ℓ_1 -minimization

$$
\Delta(y) = \text{argmin } |z|_1, \text{ subject to } T_z = Ty
$$

The random operator $T : \ell_p^n \to \ell_1^{\eta n}$ $\frac{\eta n}{1}$ satisfies Property $\mathcal{P}_1(m,\frac{5}{8})$ $\frac{5}{8}, \frac{11}{8}$ $\frac{11}{8}$) with $m = c_p \, \frac{\eta}{\log(1+\eta)}$ $\frac{\eta}{\log\left(1+\frac{1}{\eta}\right)}\,n$ that is, $\forall x \in \text{sparse}(m)$ 5 $\frac{5}{8}|x|_p \le |Tx|_1 \le \frac{11}{8}$ $\frac{1}{8}$ |x|_p.

Reconstruction via ℓ_1 -minimization

$$
\Delta(y) = \text{argmin } |z|_1, \text{ subject to } T_z = Ty
$$

If *s* > 0 satisfies $s \leq c_p \frac{k}{\log(1)}$ $log(1 + \frac{n}{k})$ $\frac{n}{k}$

then with probability greater than $1 - \exp(-b_p k)$, every *s*-sparse vectors y, is exactly reconstructed : $y = \Delta(y)$.

$$
\forall y, |y - \Delta(y)|_1 \le 4 \inf_{|I| \le s} |y - y_I|_1
$$

Sparsity and non-Euclidean embeddings

Omer Friedland and Olivier Guédon

Université Pierre et Marie Curie and Université Paris-Est Marne-la-Vallée

October 17-21, 2011 Embedding problems in Banach spaces and group theory MSRI - Berkeley