Sparsity and non-Euclidean embeddings

Omer Friedland and Olivier Guédon

Université Pierre et Marie Curie and Université Paris-Est Marne-la-Vallée

October 17-21, 2011
Embedding problems in Banach spaces and group theory
MSRI - Berkeley

Banach Mazur distance:

$$d(X, Y) = \inf \left\{ ||T|| ||T^{-1}||, \quad T: X \to Y \text{ isomorphism} \right\}$$

Embedding of finite dimensional space E in a Banach space $X: E \stackrel{K}{\hookrightarrow} X$

Banach Mazur distance:

$$d(X,Y) = \inf \left\{ \|T\| \|T^{-1}\|, \quad T: X \to Y \text{ isomorphism} \right\}$$

Embedding of finite dimensional space E in a Banach space $X: E \stackrel{K}{\hookrightarrow} X$

$$\exists T : E \to X \text{ with } ||T|||T^{-1}|| \leq K.$$

Banach Mazur distance:

$$d(X, Y) = \inf \left\{ ||T|| ||T^{-1}||, \quad T: X \to Y \text{ isomorphism} \right\}$$

Embedding of finite dimensional space E in a Banach space $X: E \stackrel{K}{\hookrightarrow} X$ In other words,

$$\exists T: E \to X, \forall x \in E, \ a\|x\|_E \leq \|Tx\|_X \leq b\|x\|_E \text{ with } \frac{b}{a} \leq K$$

What kind of finite dimensional spaces can we embed in some Banach space?

Banach Mazur distance:

$$d(X, Y) = \inf \{ ||T|| ||T^{-1}||, \quad T: X \to Y \text{ isomorphism} \}$$

Embedding of finite dimensional space E in a Banach space $X: E \stackrel{K}{\hookrightarrow} X$ In other words,

$$\exists T: E \to X, \forall x \in E, \ a\|x\|_E \leq \|Tx\|_X \leq b\|x\|_E \text{ with } \frac{b}{a} \leq K$$

What kind of finite dimensional spaces can we embed in some Banach space?

The Euclidean space ℓ_2^n ?

Any other one?

Dvoretzky ['61]
 Let X be a Banach space of infinite dimension,

$$\forall n \in \mathbb{N}, \forall \varepsilon > 0, \quad \ell_2^n \stackrel{1+\varepsilon}{\hookrightarrow} X.$$

Dvoretzky ['61]
 Let X be a Banach space of infinite dimension,

$$\forall n \in \mathbb{N}, \forall \varepsilon > 0, \quad \ell_2^n \stackrel{1+\varepsilon}{\hookrightarrow} X.$$

• Milman ['71] and Figiel Lindenstrauss Milman ['77] $\forall n, \forall \varepsilon \in (0,1), \qquad \qquad \ell_2^n \overset{1+\varepsilon}{\overset{1+\varepsilon}{\longrightarrow}} \ell_1^{c(\varepsilon)n}$

where
$$c(\varepsilon) \simeq C \log(3/\varepsilon)/\varepsilon^2$$
.

Dvoretzky ['61]
 Let X be a Banach space of infinite dimension,

$$\forall n \in \mathbb{N}, \forall \varepsilon > 0, \quad \ell_2^n \stackrel{1+\varepsilon}{\hookrightarrow} X.$$

• Milman ['71] and Figiel Lindenstrauss Milman ['77] $\forall n, \forall \varepsilon \in (0,1), \qquad \qquad \ell_2^n \stackrel{1+\varepsilon}{\hookrightarrow} \ell_1^{c(\varepsilon)n}$

where
$$c(\varepsilon) \simeq C \log(3/\varepsilon)/\varepsilon^2$$
.

• Kashin ['77] $\forall n, \forall \eta > 0, \ell_2^n \stackrel{c(\eta)}{\hookrightarrow} \ell_1^{n(1+\eta)}$ where $c(\eta) \simeq (c/\eta)^a$.

Dvoretzky ['61]
 Let X be a Banach space of infinite dimension,

$$\forall n \in \mathbb{N}, \forall \varepsilon > 0, \quad \ell_2^n \stackrel{1+\varepsilon}{\hookrightarrow} X.$$

• Milman ['71] and Figiel Lindenstrauss Milman ['77] $\forall n, \forall \varepsilon \in (0,1), \qquad \qquad \ell_2^n \stackrel{1+\varepsilon}{\hookrightarrow} \ell_1^{c(\varepsilon)n}$

where
$$c(\varepsilon) \simeq C \log(3/\varepsilon)/\varepsilon^2$$
.

• Kashin ['77] $\forall n, \forall \eta > 0, \ell_2^n \stackrel{c(\eta)}{\hookrightarrow} \ell_1^{n(1+\eta)}$ where $c(\eta) \simeq (c/\eta)^a$.

Proofs: random methods that can be described through the use of Gaussian operators,

$$G = (g_{ij}): \ell_2^n \to \ell_1^N \text{ where } g_{ij} \sim \mathcal{N}(0,1).$$

What can we say about $\ell_p^n \hookrightarrow X$ for 0 ?

What can we say about $\ell_p^n \hookrightarrow X$ for 0 ?

 θ is *p*-stable iff $\mathbb{E} \exp it\theta = \exp(-\sigma t^p)$ θ is standard *p*-stable when $\sigma = 1$.

What can we say about $\ell_p^n \hookrightarrow X$ for 0 ?

 θ is *p*-stable iff $\mathbb{E} \exp it\theta = \exp(-\sigma t^p)$ θ is standard *p*-stable when $\sigma = 1$.

Main properties:

1) if θ , θ ₁, . . . , θ _n are i.i.d. standard p-stable then for every α ₁, . . . , α _n,

$$\sum \alpha_i \theta_i \sim \left(\sum |\alpha_i|^p\right)^{1/p} \theta$$

2) If θ is p-stable then $\theta \in L_r$ for all r < p.

What can we say about $\ell_p^n \hookrightarrow X$ for 0 ?

 θ is p-stable iff $\mathbb{E} \exp it\theta = \exp(-\sigma t^p)$ θ is standard p-stable when $\sigma = 1$.

Main properties:

1) if θ , θ ₁, . . . , θ _n are i.i.d. standard p-stable then for every α ₁, . . . , α _n,

$$\sum \alpha_i \theta_i \sim \left(\sum |\alpha_i|^p\right)^{1/p} \theta$$

2) If θ is p-stable then $\theta \in L_r$ for all r < p.

Consequence : for every p > 1, $\ell_p^n \stackrel{1}{\hookrightarrow} L_1$

X is of stable type p iff for some (every) r < p, there exists C > 0 such that for every finite collection of vectors x_1, \ldots, x_n

$$\left(\mathbb{E}\left\|\sum \theta_i x_i\right\|^r\right)^{1/r} \leq C \left(\sum \|x_i\|^p\right)^{1/p}.$$

X is of stable type p iff for some (every) r < p, there exists C > 0 such that for every finite collection of vectors x_1, \ldots, x_n

$$\left(\mathbb{E}\left\|\sum \theta_i x_i\right\|^r\right)^{1/r} \leq C \left(\sum \|x_i\|^p\right)^{1/p}.$$

• Maurey-Pisier ['76] Let X be a Banach space of infinite dimension, $\forall n \in \mathbb{N}, \forall \varepsilon > 0, \ \ell_p^n \overset{1+\varepsilon}{\hookrightarrow} X$ iff X is not of stable type p.

ℓ_2^n	ℓ_p^n for 1
Dvoretzky ['61]	• Maurey-Pisier ['76]
$\forall n \in \mathbb{N}, \forall \varepsilon > 0, \ell_2^n \stackrel{1+\varepsilon}{\hookrightarrow} X$	$\forall n \in \mathbb{N}, \forall \varepsilon > 0, \ell_p^n \stackrel{1+\varepsilon}{\hookrightarrow} X$
	iff X is not of stable type p

ℓ_2^n	ℓ_p^n for 1
Dvoretzky ['61]	Maurey-Pisier ['76]
$\forall n \in \mathbb{N}, \forall \varepsilon > 0, \ell_2^n \stackrel{1+\varepsilon}{\hookrightarrow} X$	$\forall n \in \mathbb{N}, \forall \varepsilon > 0, \ell_p^n \stackrel{1+\varepsilon}{\hookrightarrow} X$
	iff X is not of stable type p
• Milman ['71], FLM ['77]	
$\forall n, \forall \varepsilon \in (0,1), \ell_2^n \stackrel{1+\varepsilon}{\hookrightarrow} \ell_1^{c(\varepsilon)n}$	

ℓ_2^n	ℓ_p^n for 1
Dvoretzky ['61]	• Maurey-Pisier ['76]
$\forall n \in \mathbb{N}, \forall \varepsilon > 0, \ell_2^n \stackrel{1+\varepsilon}{\hookrightarrow} X$	$\forall n \in \mathbb{N}, \forall \varepsilon > 0, \ell_p^n \stackrel{1+\varepsilon}{\hookrightarrow} X$
	iff X is not of stable type p
• Milman ['71], FLM ['77]	• Johnson-Schechtman ['82]
$\forall n, \forall \varepsilon \in (0,1), \ell_2^n \stackrel{1+\varepsilon}{\hookrightarrow} \ell_1^{c(\varepsilon)n}$	$\forall n, \forall \varepsilon \in (0,1), \ell_p^n \stackrel{1+\varepsilon}{\hookrightarrow} \ell_1^{c(\varepsilon)n}$

ℓ_2^n	ℓ_p^n for 1
Dvoretzky ['61]	• Maurey-Pisier ['76]
$\forall n \in \mathbb{N}, \forall \varepsilon > 0, \ell_2^n \stackrel{1+\varepsilon}{\hookrightarrow} X$	$\forall n \in \mathbb{N}, \forall \varepsilon > 0, \ell_p^n \stackrel{1+\varepsilon}{\hookrightarrow} X$
	iff X is not of stable type p
• Milman ['71], FLM ['77]	• Johnson-Schechtman ['82]
$\forall n, \forall \varepsilon \in (0,1), \ell_2^n \stackrel{1+\varepsilon}{\hookrightarrow} \ell_1^{c(\varepsilon)n}$	$\forall n, \forall \varepsilon \in (0,1), \ell_p^n \stackrel{1+\varepsilon}{\hookrightarrow} \ell_r^{c(\varepsilon)n}$
	for $0 < r \le 1$

ℓ_2^n	ℓ_p^n for 1
Dvoretzky ['61]	• Maurey-Pisier ['76]
$\forall n \in \mathbb{N}, \forall \varepsilon > 0, \ell_2^n \stackrel{1+\varepsilon}{\hookrightarrow} X$	$\forall n \in \mathbb{N}, \forall \varepsilon > 0, \ell_p^n \overset{1+\varepsilon}{\hookrightarrow} X$
	iff X is not of stable type p
• Milman ['71], FLM ['77]	• Johnson-Schechtman ['82]
$\forall n, \forall \varepsilon \in (0,1), \ell_2^n \stackrel{1+\varepsilon}{\hookrightarrow} \ell_1^{c(\varepsilon)n}$	$\forall n, \forall \varepsilon \in (0,1), \ell_p^n \stackrel{1+\varepsilon}{\hookrightarrow} \ell_1^{c(\varepsilon)n}$
• Milman ['71]	• Pisier ['83]
$\forall \varepsilon \in (0,1), \ell_2^n \stackrel{1+\varepsilon}{\hookrightarrow} E_N$	$\forall \varepsilon \in (0,1), \ \ell_p^n \stackrel{1+\varepsilon}{\hookrightarrow} E_N$
where $n = n(\varepsilon, N, M)$	where $n = n(\varepsilon, N, ST_p(E_N))$

ALMOST ISOMETRIC RESULTS

ℓ_2^n	ℓ_p^n for 1
• Dvoretzky ['61]	• Maurey-Pisier ['76]
$\forall n \in \mathbb{N}, \forall \varepsilon > 0, \ell_2^n \stackrel{1+\varepsilon}{\hookrightarrow} X$	$\forall n \in \mathbb{N}, \forall \varepsilon > 0, \ell_p^n \stackrel{1+\varepsilon}{\hookrightarrow} X$
	iff X is not of stable type p
• Milman ['71]	• Johnson-Schechtman ['82]
$\forall n, \forall \varepsilon \in (0,1), \ell_2^n \stackrel{1+\varepsilon}{\hookrightarrow} \ell_1^{c(\varepsilon)n}$	$\forall n, \forall \varepsilon \in (0,1), \ell_p^n \stackrel{1+\varepsilon}{\hookrightarrow} \ell_1^{c(\varepsilon)n}$

ISOMORPHIC RESULT

• Kashin ['77]
$$\forall n, \forall \eta > 0, \, \ell_2^n \stackrel{c(\eta)}{\hookrightarrow} \ell_1^{n(1+\eta)} \quad .$$

ALMOST ISOMETRIC RESULTS

ℓ_2^n	ℓ_p^n for 1
• Dvoretzky ['61]	• Maurey-Pisier ['76]
$\forall n \in \mathbb{N}, \forall \varepsilon > 0, \ell_2^n \stackrel{1+\varepsilon}{\hookrightarrow} X$	$\forall n \in \mathbb{N}, \forall \varepsilon > 0, \ell_p^n \stackrel{1+\varepsilon}{\hookrightarrow} X$
	iff X is not of stable type p
• Milman ['71]	• Johnson-Schechtman ['82]
$\forall n, \forall \varepsilon \in (0,1), \ell_2^n \stackrel{1+\varepsilon}{\hookrightarrow} \ell_1^{c(\varepsilon)n}$	$\forall n, \forall \varepsilon \in (0,1), \ell_p^n \stackrel{1+\varepsilon}{\hookrightarrow} \ell_1^{c(\varepsilon)n}$

ISOMORPHIC RESULT

• Kashin ['77]
$$\forall n, \forall \eta > 0, \, \ell_2^n \stackrel{c(\eta)}{\hookrightarrow} \ell_1^{n(1+\eta)} \quad ?? \qquad .$$

• Naor-Zvavitch ['01] $\forall n, \forall \eta, \ell_p^n \overset{C(\log n, \eta)}{\hookrightarrow} \ell_1^{n(1+\eta)}$ Explicit definition of a random operator.

- Naor-Zvavitch ['01] $\forall n, \forall \eta, \ell_p^n \overset{C(\log n, \eta)}{\hookrightarrow} \ell_1^{n(1+\eta)}$ Explicit definition of a random operator.
- Explicit definition of a random operator.
- Johnson-Schechtman ['03] $\forall n, \forall \eta, \ell_p^n \stackrel{c(\eta)}{\hookrightarrow} \ell_1^{n(1+\eta)}$ The existence of such operator.

• Naor-Zvavitch ['01] $\forall n, \forall \eta, \ell_p^n \stackrel{C(\log n, \eta)}{\hookrightarrow} \ell_1^{n(1+\eta)}$

Explicit definition of a random operator.

• Johnson-Schechtman ['03] $\forall n, \forall \eta, \ell_p^n \stackrel{c(\eta)}{\hookrightarrow} \ell_1^{n(1+\eta)}$

The existence of such operator.

• Friedland-Guédon ['10] (to appear in Math. Ann.) $\forall n, \forall \eta, \ell_p^n \overset{c(\eta)}{\hookrightarrow} \ell_1^{n(1+\eta)}$

Explicit definition of a random operator and $c(\eta) \simeq c_p^{1/\eta}$.

• Naor-Zvavitch ['01] $\forall n, \forall \eta, \ell_p^n \overset{C(\log n, \eta)}{\hookrightarrow} \ell_1^{n(1+\eta)}$

Explicit definition of a random operator.

• Johnson-Schechtman ['03] $\forall n, \forall \eta, \ell_p^n \stackrel{c(\eta)}{\hookrightarrow} \ell_1^{n(1+\eta)}$

The existence of such operator.

• Friedland-Guédon ['10] (to appear in Math. Ann.)

$$\forall n, \, \forall \eta, \, \ell_p^n \stackrel{c(\eta)}{\hookrightarrow} \ell_1^{n(1+\eta)}$$

Explicit definition of a random operator and $c(\eta) \simeq c_p^{1/\eta}$.

More generally,

$$\forall n, \, \forall \eta, \, \ell_p^n \stackrel{c(\eta)}{\hookrightarrow} \ell_r^{n(1+\eta)} \text{ with } 0 < r < p < 2 \text{ and } r \leq 1.$$

Definition of the random operator

Following Pisier ['83]

 $Y=\pm e_i$ with probability $1/2N,\ Y_{ij}$ independent copies of Y

$$T: \ell_p^n \rightarrow \ell_1^N$$

$$\alpha \mapsto \frac{\sigma_p}{N^{1/q}} \sum_{i=1}^n \sum_{j \geq 1} \alpha_i j^{-1/p} Y_{ij}$$

Definition of the random operator

Following Pisier ['83]

 $Y = \pm e_i$ with probability 1/2N, Y_{ij} independent copies of Y

$$T: \ell_p^n \to \ell_1^N$$

$$\alpha \mapsto \frac{\sigma_p}{N^{1/q}} \sum_{i=1}^n \sum_{j>1} \alpha_i j^{-1/p} Y_{ij}$$

Key properties:

- 1) $|\mathbb{E}|T\alpha|_1 |\alpha|_p| \leq D_p \left(\frac{n}{N}\right)^{1/q} |\alpha|_p \rightarrow \mathsf{P['83]}$
- 2) Concentration of $|T\alpha|_1$ around its mean

$$\mathbb{P}\left\{\left||T\alpha|_{1} - \mathbb{E}|T\alpha|_{1}\right| \geq t\right\} \leq 2\exp(-b_{p}Nt^{q})$$

where $1/p + 1/q = 1. \rightarrow \text{J-S}$ ['82]

Definition of the random operator

Following Pisier ['83]

 $Y = \pm e_i$ with probability 1/2N, Y_{ij} independent copies of Y

$$T: \ell_p^n \to \ell_1^N$$

$$\alpha \mapsto \frac{\sigma_p}{N^{1/q}} \sum_{i=1}^n \sum_{j>1} \alpha_i j^{-1/p} Y_{ij}$$

Key properties:

- 1) $|\mathbb{E}|T\alpha|_1 |\alpha|_p| \leq D_p \left(\frac{n}{N}\right)^{1/q} |\alpha|_p \rightarrow \mathsf{P['83]}$
- 2) Concentration of $|T\alpha|_1$ around its mean

$$\mathbb{P}\left\{\left||T\alpha|_{1} - \mathbb{E}|T\alpha|_{1}\right| \geq t\right\} \leq 2\exp(-b_{p}Nt^{q})$$

- where 1/p + 1/q = 1. \rightarrow J-S ['82]
- 3) New ingredient : delicate small ball estimates.

Reconstruction of a signal.

Let Φ be an $n \times N$ matrix. You receive $\Phi x := y$ where $x \in \mathbb{R}^N$ is the unknown signal.

Reconstruction of a signal.

Let Φ be an $n \times N$ matrix. You receive $\Phi x := y$ where $x \in \mathbb{R}^N$ is the unknown signal.

How to recover x?

Reconstruction of a signal.

Let Φ be an $n \times N$ matrix. You receive $\Phi x := y$ where $x \in \mathbb{R}^N$ is the unknown signal.

How to recover x? Assumption on the signal : it is an m-sparse signal with $m \ll n$.

Reconstruction of a signal.

Let Φ be an $n \times N$ matrix. You receive $\Phi x := y$ where $x \in \mathbb{R}^N$ is the unknown signal.

How to recover x? Assumption on the signal : it is an m-sparse signal with $m \ll n$.

Restricted Isometry Property with constant $\delta \in (0,1)$: an $n \times N$ matrix Φ such that for all m-sparse vectors $x \in \mathbb{R}^N$,

$$(1 - \delta)|x|_2 \le |\Phi x|_2 \le (1 + \delta)|x|_2.$$

Reconstruction of a signal.

Let Φ be an $n \times N$ matrix. You receive $\Phi x := y$ where $x \in \mathbb{R}^N$ is the unknown signal.

How to recover x? Assumption on the signal : it is an m-sparse signal with $m \ll n$.

Restricted Isometry Property with constant $\delta \in (0,1)$: an $n \times N$ matrix Φ such that for all m-sparse vectors $x \in \mathbb{R}^N$,

$$(1 - \delta)|x|_2 \le |\Phi x|_2 \le (1 + \delta)|x|_2.$$

Candès, Romberg, Tao ['06]

For such matrices, if δ is small enough, any m-sparse vectors is uniquely defined by

$$\min\{|t|_1 \text{ subject to } \Phi t = y\}$$

Reconstruction of a signal.

Let Φ be an $n \times N$ matrix. You receive $\Phi x := y$ where $x \in \mathbb{R}^N$ is the unknown signal.

How to recover x? Assumption on the signal : it is an m-sparse signal with $m \ll n$.

Restricted Isometry Property with constant $\delta \in (0,1)$: an $n \times N$ matrix Φ such that for all m-sparse vectors $x \in \mathbb{R}^N$,

$$(1 - \delta)|x|_2 \le |\Phi x|_2 \le (1 + \delta)|x|_2.$$

Random matrices are good!

$$\Phi = (g_{ij})/\sqrt{N}$$
 satisfies RIP with $m \simeq c(\delta) \frac{n}{\log(eN/n)}$.

The same if $\Phi = (\pm 1/\sqrt{N})$, independent ψ_2 entries, Mendelson, Pajor, Tomczak-Jaegermann independent log-concave columns, rows Adamczak, Litvak, Pajor, Tomczak-Jaegermann

Reconstruction of a signal.

Let Φ be an $n \times N$ matrix. You receive $\Phi x := y$ where $x \in \mathbb{R}^N$ is the unknown signal.

How to recover x? Assumption on the signal : it is an m-sparse signal with $m \ll n$.

Restricted Isometry Property with constant $\delta \in (0,1)$: an $n \times N$ matrix Φ such that for all m-sparse vectors $x \in \mathbb{R}^N$,

$$(1 - \delta)|x|_2 \le |\Phi x|_2 \le (1 + \delta)|x|_2.$$

How to give an explicit construction of such a matrix?

Sparsity and compressed sensing

• Donoho ['06] Connection with the study of Gelfand widths.

$$c_k(\mathrm{Id}:\ell_1^N\to\ell_2^N)$$

is the infimum over all subspaces S of codimension strictly less than k of the value of K such that

$$\forall x \in S, \quad |x|_2 \le K|x|_1$$

Sparsity and compressed sensing

• Donoho ['06] Connection with the study of Gelfand widths.

New proof of the result of Garnaev-Gluskin ['84]

$$c_k(\operatorname{Id}:\ell_1^N \to \ell_2^N) \le C\sqrt{\frac{\log(1+\frac{N}{k})}{k}}$$

Sparsity and compressed sensing

• Donoho ['06] Connection with the study of Gelfand widths.

New proof of the result of Garnaev-Gluskin ['84]

$$c_k(\operatorname{Id}:\ell_1^N \to \ell_2^N) \le C\sqrt{\dfrac{\log(1+\frac{N}{k})}{k}}$$

Let $\Phi : \mathbb{R}^N \to \mathbb{R}^n$, $\Phi = (g_{i,j})$ and take $S = \ker \Phi$, k = n + 1.

Property
$$\mathcal{P}_1(m, \alpha, \beta)$$
: $A : \ell_p^n \to \ell_1^{\eta n}$,
 $\forall x \in \operatorname{sparse}(m) \quad \alpha |x|_p \leq |Ax|_1 \leq \beta |x|_p$.

Property
$$\mathcal{P}_1(m, \alpha, \beta) : A : \ell_p^n \to \ell_1^{\eta n},$$

 $\forall x \in \operatorname{sparse}(m) \quad \alpha |x|_p \leq |Ax|_1 \leq \beta |x|_p.$

Foucart-Lei ['10] in the case p = 2

Property
$$\mathcal{P}_1(m, \alpha, \beta) : A : \ell_p^n \to \ell_1^{\eta n},$$

 $\forall x \in \operatorname{sparse}(m) \quad \alpha |x|_p \le |Ax|_1 \le \beta |x|_p.$

Decomposition of $x \in \mathbb{R}^n$ according to the size m of sparsity : x_{I_1} the m first largest coordinates of x and so on...

$$x = \sum_{k=1}^{M} x_{I_k}$$
 with $M = \left[\frac{n}{m}\right]$.

Property
$$\mathcal{P}_1(m, \alpha, \beta) : A : \ell_p^n \to \ell_1^{\eta n},$$

 $\forall x \in \operatorname{sparse}(m) \quad \alpha |x|_p \le |Ax|_1 \le \beta |x|_p.$

Decomposition of $x \in \mathbb{R}^n$ according to the size m of sparsity : x_{I_1} the m first largest coordinates of x and so on...

$$x = \sum_{i=1}^{M} x_{I_k}$$
 with $M = \left[\frac{n}{m}\right]$.

Property $\mathcal{P}_2(\kappa,m):B:\ell_p^n\to\ell_1^n$

$$\forall x \in \mathbb{R}^n, \quad \sum_{k \in \mathbb{R}} |x_{I_k}|_p \le |Bx|_1 \le (\kappa n)^{1/q} |x|_p$$

where
$$\frac{1}{p} + \frac{1}{a} = 1$$
.

Deterministic Theorem, 1

Property
$$\mathcal{P}_1(m, \alpha, \beta)$$
: $A : \ell_p^n \to \ell_1^{\eta n}$,
 $\forall x \in \operatorname{sparse}(m) \quad \alpha |x|_p \le |Ax|_1 \le \beta |x|_p$.

Property
$$\mathcal{P}_2(\kappa, m)$$
: $B: \ell_p^n \to \ell_1^n, \frac{1}{p} + \frac{1}{q} = 1$

$$\forall x \in \mathbb{R}^n, \quad \sum |x_{I_k}|_p \le |Bx|_1 \le (\kappa n)^{1/q} |x|_p$$

Deterministic Theorem, 1

Property $\mathcal{P}_1(m, \alpha, \beta)$: $A : \ell_p^n \to \ell_1^{\eta n}$, $\forall x \in \operatorname{sparse}(m) \quad \alpha |x|_p \le |Ax|_1 \le \beta |x|_p$.

Property $\mathcal{P}_2(\kappa, m)$: $B: \ell_p^n \to \ell_1^n, \frac{1}{p} + \frac{1}{q} = 1$

$$\forall x \in \mathbb{R}^n$$
, $\sum_{k>2} |x_{I_k}|_p \le |Bx|_1 \le (\kappa n)^{1/q} |x|_p$

Theorem. [Friedland-Guédon '11]

Denote
$$U = \frac{1}{\beta} \left(\frac{m}{n} \right)^{1/q} A$$
 and $V = \frac{1}{(\kappa n)^{1/q}} B$.

Then for any $x\in\mathbb{R}^n$, $W=\left(egin{array}{c}V\\U\end{array}
ight):\ell_p^n o\ell_1^{(1+\eta)n}$ satisfies

$$\left(\frac{\alpha}{4\beta}\right) \left(\frac{\min(m, 1/\kappa)}{n}\right)^{1/q} |x|_p \le |Ux|_1 + |Vx|_1 \le 3|x|_p.$$

Property
$$\mathcal{P}_1(m, \alpha, \beta)$$
: $A : \ell_p^n \to \ell_1^{\eta n}$,
 $\forall x \in \operatorname{sparse}(m) \quad \alpha |x|_p \le |Ax|_1 \le \beta |x|_p$.

Property
$$\mathcal{P}_2(\kappa, m)$$
: $B: \ell_p^n \to \ell_1^n$, $\frac{1}{p} + \frac{1}{q} = 1$

$$\forall x \in \mathbb{R}^n, \quad \sum |x_{I_k}|_p \le |Bx|_1 \le (\kappa n)^{1/q} |x|_p$$

Property
$$\mathcal{P}_1(m, \alpha, \beta) : A : \ell_p^n \to \ell_1^{\eta n},$$

 $\forall x \in \operatorname{sparse}(m) \quad \alpha |x|_p \le |Ax|_1 \le \beta |x|_p.$

 $Y = \pm e_i$ with probability $1/2\eta n$, Y_{ij} independent copies of Y

$$T: \ell_p^n \to \ell_1^{\eta n}$$

$$\alpha \mapsto \frac{\sigma_p}{(\eta n)^{1/q}} \sum_{i=1}^n \sum_{j>1} \alpha_i j^{-1/p} Y_{ij}$$

 $Y=\pm e_i$ with probability $1/2\eta n$, Y_{ij} independent copies of Y

$$T: \ell_p^n \rightarrow \ell_1^{\eta n}$$

$$\alpha \mapsto \frac{\sigma_p}{(\eta n)^{1/q}} \sum_{i=1}^n \sum_{j>1} \alpha_i j^{-1/p} Y_{ij}$$

Key properties:

- 1) $\forall \alpha \in \operatorname{sparse}(m) \cap S_p^{n-1}, |\mathbb{E}|T\alpha|_1 1| \leq D_p \left(\frac{m}{\eta n}\right)^{1/q}$
- 2) Concentration of $|T\alpha|_1$ around its mean

$$\mathbb{P}\left\{\left||T\alpha|_{1} - \mathbb{E}|T\alpha|_{1}\right| \geq t\right\} \leq 2\exp(-b_{p}\eta nt^{q})$$

$$1/p + 1/q = 1$$

where 1/p + 1/q = 1.

 $Y = \pm e_i$ with probability $1/2\eta n$, Y_{ij} independent copies of Y

$$T: \ell_p^n \to \ell_1^{\eta n}$$

$$\alpha \mapsto \frac{\sigma_p}{(\eta n)^{1/q}} \sum_{i=1}^n \sum_{i>1} \alpha_i j^{-1/p} Y_{ij}$$

Key properties:

- 1) $\forall \alpha \in \operatorname{sparse}(m) \cap S_p^{n-1}, |\mathbb{E}|T\alpha|_1 1| \leq D_p \left(\frac{m}{nn}\right)^{1/q}$
- 2) Concentration of $|T\alpha|_1$ around its mean

$$\mathbb{P}\left\{\left||T\alpha|_{1} - \mathbb{E}|T\alpha|_{1}\right| \geq t\right\} \leq 2\exp(-b_{p}\eta nt^{q})$$

where 1/p + 1/q = 1.

Classical Union Bound gives

$$\mathbb{P}\left\{\exists \alpha \in \operatorname{sparse}_p(m), \left| |T\alpha|_1 - 1 \right| \ge \frac{3}{8} \right\} \le 2 \binom{n}{m} \exp(-c_p \eta n)$$

 $Y=\pm e_i$ with probability $1/2\eta n$, Y_{ij} independent copies of Y

$$T: \ell_p^n \to \ell_1^{\eta n}$$

$$\alpha \mapsto \frac{\sigma_p}{(\eta n)^{1/q}} \sum_{i=1}^n \sum_{j>1} \alpha_i j^{-1/p} Y_{ij}$$

Classical Union Bound gives

$$\mathbb{P}\left\{\exists \alpha \in \operatorname{sparse}_{p}(m), \left| |T\alpha|_{1} - 1 \right| \geq \frac{3}{8} \right\} \leq 2 \binom{n}{m} \exp(-c_{p} \eta n)$$

$$\leq 2 \exp\left(m \log\left(\frac{en}{m}\right) - c_{p} \eta n\right)$$

 $Y = \pm e_i$ with probability $1/2\eta n$, Y_{ij} independent copies of Y

$$T: \ell_p^n \to \ell_1^{\eta n}$$

$$\alpha \mapsto \frac{\sigma_p}{(\eta n)^{1/q}} \sum_{i=1}^n \sum_{i>1} \alpha_i j^{-1/p} Y_{ij}$$

Classical Union Bound gives

$$\mathbb{P}\left\{\exists \alpha \in \operatorname{sparse}_{p}(m), \left| |T\alpha|_{1} - 1 \right| \geq \frac{3}{8} \right\} \leq 2 \binom{n}{m} \exp(-c_{p} \eta n)$$

$$\leq 2 \exp\left(m \log\left(\frac{en}{m}\right) - c_{p} \eta n\right) \leq 2 \exp(-c'_{p} \eta n)$$

Take *m* of the order of

$$\frac{\eta}{\log\left(1+\frac{1}{\eta}\right)} n.$$

 $Y = \pm e_i$ with probability $1/2\eta n$, Y_{ij} independent copies of Y

$$T: \ell_p^n \to \ell_1^{\eta n}$$

$$\alpha \mapsto \frac{\sigma_p}{(\eta n)^{1/q}} \sum_{i=1}^n \sum_{i \ge 1} \alpha_i j^{-1/p} Y_{ij}$$

Conclusion.

It satisfies Property $\mathcal{P}_1(m, \frac{5}{8}, \frac{11}{8})$ with m of the order of

$$c_p \frac{\eta}{\log\left(1+\frac{1}{\eta}\right)} n$$
:

The random operator $T:\ell_p^n\to\ell_1^{\eta n}$ satisfies with overwhelming probability

$$\forall x \in \operatorname{sparse}(m) \quad \frac{5}{8}|x|_p \le |Tx|_1 \le \frac{11}{8}|x|_p.$$

Property
$$\mathcal{P}_1(m, \alpha, \beta)$$
: $A : \ell_p^n \to \ell_1^{\eta n}$,
 $\forall x \in \operatorname{sparse}(m) \quad \alpha |x|_p \le |Ax|_1 \le \beta |x|_p$.

Property
$$\mathcal{P}_2(\kappa, m)$$
: $B: \ell_p^n \to \ell_1^n$, $\frac{1}{p} + \frac{1}{q} = 1$

$$\forall x \in \mathbb{R}^n, \quad \sum |x_{I_k}|_p \le |Bx|_1 \le (\kappa n)^{1/q} |x|_p$$

Property $\mathcal{P}_2(\kappa, m)$: $B: \ell_p^n \to \ell_1^n, \frac{1}{p} + \frac{1}{q} = 1$

$$\forall x \in \mathbb{R}^n, \quad \sum_{k \ge 2} |x_{I_k}|_p \le |Bx|_1 \le (\kappa n)^{1/q} |x|_p$$

Property
$$\mathcal{P}_2(\kappa, m)$$
: $B: \ell_p^n \to \ell_1^n, \frac{1}{p} + \frac{1}{q} = 1$

$$\forall x \in \mathbb{R}^n, \quad \sum_{k \ge 2} |x_{I_k}|_p \le |Bx|_1 \le (\kappa n)^{1/q} |x|_p$$

The operator $\frac{1}{m^{1/q}}\mathrm{Id}_n:\ell_p^n\to\ell_1^n$ satisfies property $\mathcal{P}_2(\frac{1}{m},m)$, that is for any $x\in\mathbb{R}^n$,

$$\sum_{k=2}^{m} |x_{I_k}|_p \le \frac{1}{m^{1/q}} |x|_1 \le \left(\frac{n}{m}\right)^{1/q} |x|_p$$

The random operator $T: \ell_p^n \to \ell_1^{\eta n}$ satisfies Property $\mathcal{P}_1(m, \frac{5}{8}, \frac{11}{8})$ with $m = c_p \frac{\eta}{\log\left(1 + \frac{1}{\eta}\right)} n$

The deterministic operator $\frac{1}{m^{1/q}}\mathrm{Id}_n:\ell_p^n\to\ell_1^n$ satisfies Property $\mathcal{P}_2(\frac{1}{m},m)$

The random operator $T: \ell_p^n \to \ell_1^{\eta n}$ satisfies Property

$$\mathcal{P}_1(m, \frac{5}{8}, \frac{11}{8}) \text{ with } m = c_p \frac{r_p}{\log(1 + \frac{1}{\eta})} n$$

The deterministic operator $\frac{1}{m^{1/q}} \mathrm{Id}_n : \ell_n^n \to \ell_1^n$ satisfies Property $\mathcal{P}_2(\frac{1}{m}, m)$

Theorem. [Friedland-Guédon '11]

Denote
$$U = \frac{1}{\beta} \left(\frac{m}{n} \right)^{1/q} A$$
 and $V = \frac{1}{(\kappa n)^{1/q}} B$.

Denote
$$U=rac{1}{eta}\left(rac{m}{n}
ight)^{1/q}A$$
 and $V=rac{1}{(\kappa n)^{1/q}}B$.
Then for any $x\in\mathbb{R}^n$, $W=\left(egin{array}{c}V\\U\end{array}
ight):\ell_p^n\to\ell_1^{(1+\eta)n}$ satisfies

$$\left(\frac{\alpha}{4\beta}\right) \left(\frac{\min(m, 1/\kappa)}{n}\right)^{1/q} |x|_p \le |Ux|_1 + |Vx|_1 \le 3|x|_p.$$

The random operator $T: \ell_p^n \to \ell_1^{\eta n}$ satisfies Property

$$\mathcal{P}_1(m, \frac{5}{8}, \frac{11}{8})$$
 with $m = c_p \frac{\eta}{\log(1 + \frac{1}{\eta})} n$

The deterministic operator $\frac{1}{m^{1/q}}\mathrm{Id}_n:\ell_p^n\to\ell_1^n$ satisfies Property $\mathcal{P}_2(\frac{1}{m},m)$

Theorem. [Friedland-Guédon '11]

Denote
$$U=\left(c_p\,rac{\eta}{\log\left(1+rac{1}{\eta}
ight)}
ight)^{1/q}T$$
 and $V=\left(c_p\,rac{\eta}{\log\left(1+rac{1}{\eta}
ight)}
ight)^{1/q}rac{\mathrm{Id}_n}{m^{1/q}}.$

Then for any
$$x \in \mathbb{R}^n$$
, $W = \left(\begin{array}{c} V \\ U \end{array} \right) : \ell_p^n \to \ell_1^{(1+\eta)n}$ satisfies

$$\left(c_p \frac{\eta}{\log\left(1 + \frac{1}{n}\right)}\right)^{1/q} |x|_p \le |Wx|_1 = |Ux|_1 + |Vx|_1 \le 3|x|_p.$$

Theorem. [Friedland-Guédon '11]

Denote
$$U=\left(c_p\,rac{\eta}{\log\left(1+rac{1}{\eta}
ight)}
ight)^{1/q}T$$
 and $V=\left(c_p\,rac{\eta}{\log\left(1+rac{1}{\eta}
ight)}
ight)^{1/q}rac{\mathrm{Id}_n}{m^{1/q}}.$ Then for any $x\in\mathbb{R}^n$, $W=\left(egin{array}{c}V\\U\end{array}
ight):\ell_p^n o\ell_1^{(1+\eta)n}$ satisfies

Then for any
$$x \in \mathbb{R}^n$$
, $W = \left(egin{array}{c} V \\ U \end{array}
ight) : \ell_p^n
ightarrow \ell_1^{(1+\eta)n}$ satisfies

$$\left(c_p \frac{\eta}{\log\left(1 + \frac{1}{\eta}\right)}\right)^{1/q} |x|_p \le |Wx|_1 = |Ux|_1 + |Vx|_1 \le 3|x|_p.$$

Theorem. [Friedland-Guédon '11]

Denote
$$U=\left(c_p\,rac{\eta}{\log\left(1+rac{1}{\eta}
ight)}
ight)^{1/q}T$$
 and $V=\left(c_p\,rac{\eta}{\log\left(1+rac{1}{\eta}
ight)}
ight)^{1/q}rac{\mathrm{Id}_n}{m^{1/q}}.$ Then for any $x\in\mathbb{R}^n$, $W=\left(egin{array}{c}V\\U\end{array}
ight):\ell_p^n o\ell_1^{(1+\eta)n}$ satisfies

$$\left(c_p \frac{\eta}{\log\left(1 + \frac{1}{\eta}\right)}\right)^{1/q} |x|_p \le |Wx|_1 = |Ux|_1 + |Vx|_1 \le 3|x|_p.$$

• Tightness. Take $\eta = 1/n \rightarrow$ Banach Mazur distance between ℓ_n^n and ℓ_1^{n+1} .

It is tight when $\eta \geq \frac{\log n}{n} \rightarrow$ connection with the study of Gelfand width.

Theorem. [Friedland-Guédon '11]

Denote
$$U = \left(c_p \, \frac{\eta}{\log\left(1+\frac{1}{\eta}\right)}\right)^{1/q} T$$
 and $V = \left(c_p \, \frac{\eta}{\log\left(1+\frac{1}{\eta}\right)}\right)^{1/q} \frac{\mathrm{Id}_n}{m^{1/q}}.$ Then for any $x \in \mathbb{R}^n$, $W = \left(\begin{array}{c} V \\ U \end{array}\right) : \ell_p^n \to \ell_1^{(1+\eta)n}$ satisfies
$$\left(c_p \, \frac{\eta}{\log\left(1+\frac{1}{\eta}\right)}\right)^{1/q} |x|_p \le |Wx|_1 = |Ux|_1 + |Vx|_1 \le 3|x|_p.$$

Mixture of random and deterministic method - Old story.

Theorem. [Friedland-Guédon '11]

Denote
$$U = \left(c_p \, \frac{\eta}{\log\left(1+\frac{1}{\eta}\right)}\right)^{1/q} T$$
 and $V = \left(c_p \, \frac{\eta}{\log\left(1+\frac{1}{\eta}\right)}\right)^{1/q} \frac{\operatorname{Id}_n}{m^{1/q}}.$
Then for any $x \in \mathbb{R}^n$, $W = \left(\begin{array}{c} V \\ U \end{array}\right) : \ell_p^n \to \ell_1^{(1+\eta)n}$ satisfies
$$\left(c_p \, \frac{\eta}{\log\left(1+\frac{1}{\eta}\right)}\right)^{1/q} |x|_p \leq |Wx|_1 = |Ux|_1 + |Vx|_1 \leq 3|x|_p.$$

• Valid in a more general setting \rightarrow arrival space is of stable type p, like in Pisier ['83], and also r-Banach spaces like in Bastero, Bernués ['93]

Theorem. [Friedland-Guédon '11]

Denote
$$U=\left(c_p\,rac{\eta}{\log\left(1+rac{1}{\eta}
ight)}
ight)^{1/q}T$$
 and $V=\left(c_p\,rac{\eta}{\log\left(1+rac{1}{\eta}
ight)}
ight)^{1/q}rac{\mathrm{Id}_n}{m^{1/q}}.$ Then for any $x\in\mathbb{R}^n$, $W=\left(egin{array}{c}V\\U\end{array}
ight):\ell_p^n o\ell_1^{(1+\eta)n}$ satisfies

Then for any
$$x\in \mathbb{R}^n$$
, $W=\left(egin{array}{c} V \ U \end{array}
ight):\ell_p^n o \ell_1^{(1+\eta)n}$ satisfies

$$\left(c_p \frac{\eta}{\log\left(1 + \frac{1}{\eta}\right)}\right)^{1/q} |x|_p \le |Wx|_1 = |Ux|_1 + |Vx|_1 \le 3|x|_p.$$

Valid for several new operators.

The random operator defined by Johnson and Schechtman satisfies the same property \mathcal{P}_1 .

Property \mathcal{P}_2 is just an algebraic property and is satisfied for example when $B: \ell_p^n \to \ell_1^n$ is such that

$$|x|_1 \le |Bx|_1 \le (Cn)^{1/q} |x|_p$$

Theorem. [Friedland-Guédon '11]

Denote
$$U=\left(c_p\,rac{\eta}{\log\left(1+rac{1}{\eta}
ight)}
ight)^{1/q}T$$
 and $V=\left(c_p\,rac{\eta}{\log\left(1+rac{1}{\eta}
ight)}
ight)^{1/q}rac{\mathrm{Id}_n}{m^{1/q}}.$ Then for any $x\in\mathbb{R}^n$, $W=\left(egin{array}{c}V\\U\end{array}
ight):\ell_p^n o\ell_1^{(1+\eta)n}$ satisfies

$$\left(c_p \frac{\eta}{\log\left(1 + \frac{1}{\eta}\right)}\right)^{1/q} |x|_p \le |Wx|_1 = |Ux|_1 + |Vx|_1 \le 3|x|_p.$$

• Optimality of $\mathcal{P}_1(m,\alpha,\beta) \to \text{Application to Gelfand width}$

$$c_k(\mathrm{Id}:\ell_1^N\to\ell_p^N)$$

which gives optimal results.

The random operator $T:\ell_p^n \to \ell_1^{\eta n}$ satisfies Property $\mathcal{P}_1(m,\frac{5}{8},\frac{11}{8})$ with $m=c_p\frac{\eta}{\log\left(1+\frac{1}{\eta}\right)}n$ that is,

$$\forall x \in \operatorname{sparse}(m) \quad \frac{5}{8}|x|_p \le |Tx|_1 \le \frac{11}{8}|x|_p.$$

The random operator $T: \ell_p^n \to \ell_1^{\eta n}$ satisfies Property $\mathcal{P}_1(m, \frac{5}{8}, \frac{11}{8})$ with $m = c_p \frac{\eta}{\log\left(1 + \frac{1}{\eta}\right)} n$ that is, $\forall x \in \operatorname{sparse}(m) \quad \frac{5}{8}|x|_p \leq |Tx|_1 \leq \frac{11}{8}|x|_p.$

Gelfand width of Id : $\ell_1^n \to \ell_p^n$.

Find a subspace S of codimension less than k such that you control the diameter (in the ℓ_p^n -norm) of the section of the octahedron by S i.e.

$$\forall x \in S, \quad |x|_p \leq D|x|_1$$

The random operator $T: \ell_p^n \to \ell_1^{\eta n}$ satisfies Property $\mathcal{P}_1(m, \frac{5}{8}, \frac{11}{8})$ with $m = c_p \frac{\eta}{\log\left(1 + \frac{1}{\eta}\right)} n$ that is, $\forall x \in \operatorname{sparse}(m) \quad \frac{5}{8} |x|_p \leq |Tx|_1 \leq \frac{11}{8} |x|_p.$

Gelfand width of Id : $\ell_1^n \to \ell_p^n$.

Find a subspace S of codimension less than k such that you control the diameter (in the ℓ_p^n -norm) of the section of the octahedron by S i.e.

$$\forall x \in S, \quad |x|_p \le D|x|_1$$

We take $k = \eta n$ and $S = \ker T$

The random operator $T: \ell_p^n \to \ell_1^{\eta n}$ satisfies Property $\mathcal{P}_1(m, \frac{5}{8}, \frac{11}{8})$ with $m = c_p \frac{\eta}{\log\left(1 + \frac{1}{\eta}\right)} n$ that is, $\forall x \in \operatorname{sparse}(m) \quad \frac{5}{8} |x|_p \leq |Tx|_1 \leq \frac{11}{8} |x|_p.$

$$\forall x \in \operatorname{sparse}(m) \quad \frac{1}{8}|x|_p \leq 1$$

Gelfand width of $\mathrm{Id}:\ell_1^n\to\ell_p^n$.

Find a subspace S of codimension less than k such that you control the diameter (in the ℓ_p^n -norm) of the section of the octahedron by S i.e.

$$\forall x \in S, \quad |x|_p \le D|x|_1$$

We take $k = \eta n$ and $S = \ker T$ Let $h \in \ker T$ with $h \neq 0$ then

$$|h|_p^p = |h - h_{I_1}|_p^p + |h_{I_1}|_p^p$$

The random operator $T: \ell_p^n \to \ell_1^{\eta n}$ satisfies Property

$$\mathcal{P}_1(m, \frac{5}{8}, \frac{11}{8})$$
 with $m = c_p \frac{r_\eta}{\log(1 + \frac{1}{r_0})} n$ that is,

$$\forall x \in \operatorname{sparse}(m) \quad \frac{5}{8}|x|_p \le |Tx|_1 \le \frac{11}{8}|x|_p.$$

By property P₁

$$\|h_{I_1}\|_p \leq rac{8}{5} |Th_{I_1}|_1 = rac{8}{5} \left| T\left(\sum_{k=2}^M h_{I_k}
ight)
ight|_1 \leq rac{8}{5} \sum_{k=2}^M |Th_{I_k}|_1$$

Using again property \mathcal{P}_1 , we get

$$|h_{I_1}|_p \leq \frac{11}{5} \sum_{k=2}^{M} |h_{I_k}|_p$$

And by the simple algebraic property \mathcal{P}_2 ,

$$|h_{I_1}|_p \leq \frac{11}{5} \frac{1}{m^{1/q}} |h|_1.$$

The random operator $T:\ell_p^n\to\ell_1^{\eta n}$ satisfies Property $\mathcal{P}_1(m,\frac{5}{8},\frac{11}{8})$ with $m=c_p\,\frac{\eta}{\log\left(1+\frac{1}{\eta}\right)}\,n$ that is,

$$\forall x \in \operatorname{sparse}(m) \quad \frac{5}{8}|x|_p \le |Tx|_1 \le \frac{11}{8}|x|_p.$$

For the other part

$$|h-h_{I_1}|_p^p = \left|\sum_{k=2}^M h_{I_k}\right|_p^p = \left(\sum_{k=2}^M |h_{I_k}|_p^p\right)^{1/p} \le \left(\sum_{k=2}^M |h_{I_k}|_p\right)^p$$

and by the simple algebraic property \mathcal{P}_2 , we get that

$$|h - h_{I_1}|_p^p \le \frac{1}{m^{p/q}} |x|_1^p$$

In concusion, for any $h \in \ker T$,

$$|h|_p \le C_p \frac{1}{m^{1/q}} |h|_1 = C_p' \left(\frac{\log\left(1 + \frac{n}{k}\right)}{k} \right)^{1/q} |h|_1$$

since

$$m = c_p \frac{\eta}{\log\left(1 + \frac{1}{n}\right)} n$$
 and $k = \eta n$

In confusion, for any $h \in \ker T$,

$$|h|_p \leq C_p \frac{1}{m^{1/q}} |h|_1 = C_p' \left(\frac{\log\left(1 + \frac{n}{k}\right)}{k} \right)^{1/q} |h|_1$$

since

$$m = c_p \frac{\eta}{\log\left(1 + \frac{1}{n}\right)} n$$
 and $k = \eta n$

This means that

$$c_k(\operatorname{Id}:\ell_1^n o \ell_p^n) \leq C_p' \left(rac{\log\left(1 + rac{n}{k}
ight)}{k}
ight)^{1/q}$$

and it is known to be optimal for $k \ge \log n$.

Let $W: \ell_p^n \to \ell_1^N$ such that

$$\frac{1}{D}|x|_p \le |Wx|_1 \le |x|_p.$$

Let $W: \ell_n^n \to \ell_1^N$ such that

$$\frac{1}{D}|x|_p \le |Wx|_1 \le |x|_p.$$

Let $S = \operatorname{Im} W$, $S \subset \ell_1^N$ and $\operatorname{codim} S = N - \operatorname{rank} W = \eta n = k$. Then for any $y \in S$, y = Wx with $x \in \ell_n^n$ and

$$|y|_1 = |Wx|_1 \ge \frac{1}{D} |x|_p$$

$$|x|_p \ge |Wx|_1 \ge |Wx|_p = |y|_p$$

Let $W: \ell_p^n \to \ell_1^N$ such that

$$\frac{1}{D}|x|_p \le |Wx|_1 \le |x|_p.$$

Let $S = \operatorname{Im} W$, $S \subset \ell_1^N$ and $\operatorname{codim} S = N - \operatorname{rank} W = \eta n = k$. Then for any $y \in S$, y = Wx with $x \in \ell_p^n$ and

$$|y|_1 = |Wx|_1 \ge \frac{1}{D} |x|_p$$

$$|x|_p \ge |Wx|_1 \ge |Wx|_p = |y|_p$$

This proves that

$$\forall y \in S, \quad |y|_p \leq D |y|_1$$

Let $W: \ell_n^n \to \ell_1^N$ such that

$$\frac{1}{D}|x|_p \le |Wx|_1 \le |x|_p.$$

We have proved that

$$\forall y \in S$$
, $|y|_p \le D |y|_1$

which means that

$$c_k(\operatorname{Id}:\ell_1^N o \ell_p^N) \leq D = \left(rac{\log\left(1 + rac{N}{k}
ight)}{k}
ight)^{1/q}$$

(here $n \simeq N$) and this is known to be optimal for $k \ge \log N$ i.e. $\eta \ge \frac{\log N}{n}$

Let $W: \ell_p^n \to \ell_1^N$ such that

$$\frac{1}{D}|x|_p \le |Wx|_1 \le |x|_p.$$

We have proved that

$$\forall y \in S$$
, $|y|_p \leq D |y|_1$

which means that

$$c_k(\operatorname{Id}:\ell_1^N o\ell_p^N)\leq D=\left(rac{\log\left(1+rac{N}{k}
ight)}{k}
ight)^{1/q}$$

(here $n \simeq N$) and this is known to be optimal for $k \ge \log N$ i.e. $\eta \ge \frac{\log N}{n}$

• Optimality of the Theorem [FG].

The random operator $T:\ell_p^n \to \ell_1^{\eta n}$ satisfies Property $\mathcal{P}_1(m,\frac{5}{8},\frac{11}{8})$ with $m=c_p\frac{\eta}{\log\left(1+\frac{1}{n}\right)}n$ that is,

$$\forall x \in \operatorname{sparse}(m) \quad \frac{5}{8}|x|_p \le |Tx|_1 \le \frac{11}{8}|x|_p.$$

The random operator $T: \ell_p^n \to \ell_1^{\eta n}$ satisfies Property $\mathcal{P}_1(m, \frac{5}{8}, \frac{11}{8})$ with $m = c_p \frac{\eta}{\log(1 + \frac{1}{n})} n$ that is,

$$\forall x \in \operatorname{sparse}(m) \quad \frac{5}{8}|x|_p \le |Tx|_1 \le \frac{11}{8}|x|_p.$$

Reconstruction via ℓ_1 -minimization

$$\Delta(y) = \operatorname{argmin} |z|_1$$
, subject to $Tz = Ty$

The random operator $T:\ell_p^n \to \ell_1^{\eta n}$ satisfies Property $\mathcal{P}_1(m,\frac{5}{8},\frac{11}{8})$ with $m=c_p\frac{\eta}{\log\left(1+\frac{1}{\eta}\right)}n$ that is,

$$\forall x \in \operatorname{sparse}(m) \quad \frac{5}{8}|x|_p \le |Tx|_1 \le \frac{11}{8}|x|_p.$$

Reconstruction via ℓ_1 -minimization

$$\Delta(y) = \operatorname{argmin} |z|_1$$
, subject to $Tz = Ty$

If s > 0 satisfies

$$s \le c_p \frac{k}{\log(1 + \frac{n}{k})}$$

then with probability greater than $1 - \exp(-b_p k)$, every *s*-sparse vectors y, is exactly reconstructed : $y = \Delta(y)$.

$$\forall y, |y - \Delta(y)|_1 \le 4 \inf_{|I| \le s} |y - y_I|_1$$

Sparsity and non-Euclidean embeddings

Omer Friedland and Olivier Guédon

Université Pierre et Marie Curie and Université Paris-Est Marne-la-Vallée

October 17-21, 2011
Embedding problems in Banach spaces and group theory
MSRI - Berkeley