Quantitative differentiation

Jeff Cheeger New York University, Courant Institute

Let $\frac{L_n} \det L_n$ denote Lebesgue measure on $\frac{bf R^n}$. There is a natural measure, $\frac{L_n} \det L_n$ on the collection of balls, $B_r(x) \le R^n$, for which the subcollection of balls $B_r(x) \le B_1(0)$, has infinite measure. Let $f: B_r(x) \to f R^n$ have bounded differential $\frac{f'}{l} = 1$. For any $B_r(x) \le B_1(0)$, there is a natural scale invariant quantity which encodes the deviation of f_n , $R_r(x)$ from being an affine linear function. The most basic case of quantitative differentiation (due to Peter Jones) asserts that for all $\frac{epsilon}{0}$, the measure of the collection of balls on which the deviation from linearity is $\frac{epsilon}{0}$. We will explain the sense in which this model case is actually a particular instance of a general phenomenon which is present in many different quantitative differitation theorem, one must verify a single estimate which we term {\text{it coercivity of relative defects}. We indicate a number of recent applications.