Quantitative differentiation

Jeff Cheeger New York University, Courant Institute

Let $\mathbb S\$ and L_n\$ denote Lebesgue measure on $\bf\$ R^n\$. There is a natural measure, $\mathcal{C}=r^{-1}dr\times \mathcal{L}_n\$ on the collection of balls, $B_r(x)\subset \be$ R^n\$, for which the subcollection of balls \$B_r(x)\subset B_1(0)\$, has infinite measure. Let $f: B_r(x)$ to $\bf R^n\$ have bounded differential $\|f\|$ leq 1\$. For any $B_r(x)$ subset B_1(0)\$, there is a natural scale invariant quantity which encodes the deviation of $f\$, \, B $r(x)$ \$ from being an affine linear function. The most basic case of quantitative differentiation (due to Peter Jones) asserts that for all \$\epsilon>0\$, the measure of the collection of balls on which the deviation from linearity is $\geq \epsilon$ \epsilon\$ is finite and controlled by \$\epsilon\$, independent of the particular function \$f\$. We will explain the sense in which this model case is actually a particular instance of a general phenomenon which is present in many different geometric/analytic contests. In each case which fits the framework, to prove the relevant quantitative diffentiation theorem, one must verify a single estimate which we term {\it coercivity of relative defects}. We indicate a number of recent applications.