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Statistical mechanics

Boltzmann (1844 – 1906) and Gibbs (1839 – 1903)

(a) The hotel where Boltzmann
died

(b) Boltzmann’s tombstone
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Ensembles

Canonical ensemble: N particles of mass m, momentum p2
i , in

a volume V at temperature T , and β = 1/kBT .
Canonical partition function

Z (V ,N,T ) =
1

N!

∫
dΓ exp(−βH)

Hamiltonian H =
∑N

i=1
p2

i
2m +

∑
1≤i<j≤N φ(|ri − rj |)

Momentum integral gives (2πmkBT )3N/2, so

Z (V ,N,T ) = λ

∫
· · ·
∫

dr1 · · · drN exp

−β∑
i<j

φ(|ri − rj |)


where λ = (2πmkBT )3N/2

N! .

For lattices, integrals→ sums, and V disappears.
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Thermodynamics

Thermodynamics comes from

Ψ(V ,N,T ) = −kBT log Z (V ,N,T ).

The thermodynamic limit exists for appropriate φ(r),

lim
N,V→∞, N/V fixed

1
N

Ψ(V ,N,T ) = ψ(ρ = N/V ,T ).

The TL is essential for a phase transition
For a variable number of particles, one has the Grand
Canonical Partition Function – just the ogf of the CPF:

Z(V ,T , z) =
∞∑

n=0

Z (V ,n,T )zn,

where z is called the fugacity.
Thermodynamics follow from, e.g.
PV = kBT logZ(V ,T , z), 〈N〉 = z ∂

∂z logZ(V ,T , z).
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Some well-known models

The Lenz-Ising (1900–1998) model and Potts (1925 – 2005)
model

(e) E. Ising at 90 (f) Ren Potts
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Lenz-Ising model

H = −J
∑
〈i,j〉

σi · σj , σi = ±1.

Z =
∑
σ1=±1

· · ·
∑

σN =±1

exp(−βH).

Generalise to the O(n) model, where σi is now an
n-dimensional vector. (Stanley 1968).
The Ising model is O(1). de Gennes pointed out that O(0)
is the SAW model (1972).
n =∞ gives the spherical model. n = 2 the XY model,
n = 3 the PCH model, n = −2 the Gaussian model.
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Ising and Onsager

It is simple to solve the 1d Ising model. The free-energy in
the TL is:

−ψ
kBT

= log(2 cosh(βJ)).

No phase transition. Boring!
Rescued by metallurgists interested in binary alloys.
Onsager, in 1944, solved the 2d model:

−ψ
kBT

=
log 2

2
+

1
2π

∫ π

0
log
(

c2 +
√

s2 + 1− 2s cos θ
)

dθ.

Here c = cosh(2K ), s = sinh(2K ).

A phase transition when s = 1. Statistical mechanics is a
“complete” theory. Hallelujah!
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de Gennes and Onsager

(g) Pierre-Gilles de Gennes
1932–2007, Nobel Physics 1991

(h) Lars Onsager 1903–1976, Nobel Chem.
1968
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From Stat. Mech. to Combinatorics

Z =
∑
{σ}

∏
〈i,j〉

exp(Kσiσj); K = J/kBT .

As σiσj = ±1, exp(Kσiσj) = cosh K (1 + σiσj tanh K ).

On a lattice, σiσj can be represented by a bond from σi to
neighbouring bond σj .

Summing over all configurations, only those in which any σ
occurs an even number of times survives.
Thus Z is a sum over all graphs on the lattice with every
vertex of even degree. We now have a combinatorial
counting problem!
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The Potts model

At each lattice site place one of q colours, {1,2, . . . ,q}.
The Hamiltonian is

H = −J
∑
〈i,j〉

δ(σi , σj),

so the interaction is 1 if adjacent spins have the same
colour, and 0 otherwise. Then with K = J/kBT ,

Z (q,K ) =
∑
{σi}

exp

K
∑
〈i,j〉

δ(σi , σj)


When q = 2 it is just the Ising model. But as q → 1 we get
a percolation problem. As q → 0 one obtains the number
of spanning forests. Other interesting limits exist.
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The Potts model

One connection with combinatorics is through the Tutte
polynomial. Set x = 1 + qe−K

1−e−K , y = ek , then
T (x , y) =

∑
i,j≥0 ti,jx iy j .

The Tutte polynomial coincides with the Potts model along
the hyperbola (x − 1)(y − 1) = q.
The Potts model for q ≥ 2 has, like the Ising model, a
straightforward graphical expansion.
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Some mathematical connections

Near a (second-order) phase transition, as exhibited, e.g.
by the Ising model, thermodynamic quantities behave as

f (z) =
∑

anzn ∼ A(1− z/zc)γ .

Then an ∼ A·n−γ−1

Γ(γ)·zn
c
.

In combinatorics, we ideally seek closed form expressions
for the generating functions, or rigorous asymptotics.
In statistical mechanics, one is often content to identify γ,
zc and A, the critical exponent, critical point and critical
amplitude respectively.
Universality: The exponent is common across many
different problems.
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Scaling

If f (ξ) ∼ Aξγ where ξ = 1− z/zc , this can be considered a
solution of

f (λξ) = κf (ξ),

with κ = Aλγ . That is, a scaling of ξ corresponds to a
rescaling of f . (Equivalently, f (λ1/γξ) = λf (ξ).)
This rescaling can be applied to functions of more than
one variable, so for a magnetic system (Hamiltonian has a
second, field variable, say H), we have

fs(λyt ξ, λyhH) = λd fs(ξ,H),

where d is the spatial dimension, and yt and yh are
exponents in terms of which all other related exponents
may be derived.
This then implies

fs(ξ,H) ∼ |ξ|−d/yt F (H|ξ|yt/yh )
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Polygons – Richard, Jensen, Guttmann

For square lattice polygons,

P(x ,q) ∼ P(reg)(x ,q) + (1− q) · F
(

xc − x
(1− q)2/3

)
+ C(q)

Here,
F (s) = const . log Ai(const .s),

and C(q) = 1
12π (1− q) log(1− q).

These scaling ideas, due to Kadanoff, Widom, Fisher and
others in the ’60s are a mathematical manifestation of the
physical idea that at the critical point, all length scales are
important.
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and C(q) = 1
12π (1− q) log(1− q).
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Block renormalization - L Kadanoff

Precedes K Wilson, Kadanoff 1966

Assume physics stays the same as we reblock. Then
H(T , J)→ H(T ′, J ′)→ H(T ′′, J ′′) etc. Iterates to a fixed
point.
For the 1d Ising model, the RG flow goes from order
(T = 0) to disorder (T =∞.)
For the 2d Ising model, the critical fixed point Kc lies in
between, and flow is away in both directions.
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The renormalization group - K Wilson

Due to Ken Wilson in the 70’s – Nobel Prize in 1982
Not a group. No renormalization. “The" is inappropriate.
(Cardy).
More generally, if {σi} → {σ′i}, and {Jk} → {J ′k} such that

Z ({σi}, {Jk}) = Z ({σ′i}, {J ′k}),

the system is renormalizable.
Then {J ′k} = β{Jk}. The β-function is said to induce a
renormalization flow on the J space.
In momentum space, one applies a Fourier transform, and
the renormalization idea corresponds to integrating out the
highest momentum components. Reminiscent of QED,
which is renormalizable.
The physics is given by the behaviour of the β function,
usually describable by a system of DEs.
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Scale invariance

Scaling and RG theory explained global scale invariance.
This gave scaling laws between exponents.
In 1984 Belavin, Polyakov, Zamolodchikov investigated
local scale invariance: conformal invariance
In 2d, the conformal group is infinite.
This implies that many systems can be labelled by a single
parameter c (central charge/conformal anomaly).
Blöte, Cardy and Nightingale (1986) showed how to
calculate c, via the transformation

z → W
2π

log z

which maps the complex plane to a strip of width W .
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Conformal invariance

Hence the free-energy of a critical model on an infinite
cylinder of circumference W has the scaling form

F = Wf∞ −
πc
6W

+ o(1/W ).

Precise numerical work can be done on finite-sized
systems, and c thus determined from the leading order
correction to the bulk value f∞.
Knowing c is not sufficient to determine the universality
class or ther exponents.
Rather, for many systems, with c < 1, the possible
exponents are restricted by the Kac formula, which gives
possible exponents in terms of c.
Systems can be in different universality classes with the
same value of central charge.
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Vertex models

Put arrows on the square lattice bonds, 2 pointing in/out.
There are only 6 possible configurations.
Give a Boltzmann weight wi to configuration i ∈ [1, · · · ,6].

The partition function is

Z =
∑

{configs}

6∏
i=1

wmi
i

where there are mi vertices of type i .
Different choices of weights lead to different models.
Solved by Lieb/Sutherland in 1967, for w1,2 = a, w3,4 = b,
w5,6 = c.
Adding two extra vertices (4 arrows in/out with w7,8 = d)
leads to the 8-vertex model. Solved by Baxter in 1973.
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Transfer matrices

The vertex models can be set up as a transfer matrix
problem. (Introduced into stat. mech, by Kramers and
Wannier in 1942).
The partition function is then given by eigenvalues of the
TM.
For the 6-v problem, the arrow conservation rules leads to
a block diagonal structure of the TM.
For small lattices, Lieb produced an Ansatz for the
eigenvectors (the Bethe Ansatz. Bethe 1931 1d a-f H
model)
In fact the TM commutes,
T (a,b, c)T ′(a′,b′, c′) = T ′(a′,b′, c′)T (a,b, c), and Baxter
realized that invoking this bypasses the Bethe Ansatz.
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8-vertex model

In this case the TM doesn’t commute.
Baxter investigated the conditions under which T (a,b, c,d)
andT ′(a′,b′, c′,d ′) commute.
He introduced a model with a third set of weights
(a′′,b′′, c′′,d ′′), and found that if a condition relating the
three models holds, then the TMs commute.
This equation is called the star-triangle or Yang-Baxter
equation.
To solve the 6-v model, the weights are parameterised in
terms of trig. functions. For the 8-v model a
parameterisation in terms of Jacobi ϑ functions is needed.
Invoking symmetries, one finds, in the TL, a functional
equation for the eigenvalues of the TM, from which the free
energy follows.
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SOS and RSOS models

The Bethe Ansatz gives TM eigenvectors, but the CTM
method does not.
Eigenvectors are needed to calculate other properties, e.g.
correlation functions.
Baxter devised an SOS model by putting a height variable
hi on each face, s.t. |hi − hj | = 1.
This height constraint imposes the ice rule.
With appropriate choice of weight functions, a Bethe
Ansatz can be formed, and the ev’s calculated.
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RSOS models

For a restricted set of parameters, Andrews, Baxter and
Forrester(1984) found the 8v SOS model yields an infinite
hierarchy of solvable restricted SOS (RSOS) models.
The first two members of this hierarchy are the Ising model
and the hard hexagon model (Baxter 1980).
One merely restricts the heights to the set {1, · · · ,L}.
In 1987 Pasquier rewrote the weights in terms of elements
of an adjacency matrix, and realised that it could be
replaced by any symmetric L× L matrix with elements 0
and 1, and all solvability properties still held.
Now such adjacency matrices can of course be
represented as graphs! Hence any graph gives rise to an
associated solvable RSOS model. Graph state models.
These models with ABF Boltzmann weights satisfy a T-L
algebra with a simple set of generators.
Models other than the ABF models, but with the same
weights, include the q-state self-dual Potts model.
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Nienhuis’s calculation for honeycomb SAW

Nienhuis and colleagues showed that the p.f of an O(n)
model can be written as a loop model
Take a honeycomb lattice of 2N sites. Place arrows on
edges such that at each vertex there are 0 or 2 arrows (1
in, 1 out). Gives oriented loops.
Let L = # of arrows, l , r = # of vertices with a left/right
turn.
For each loop there are 6 more/less turns to left than right.
So

Zloop =
∑

{configs}

t2N−L(2 cos 6α)P ,

where P = # of loops, and α is a fugacity.
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Next consider a q-state Potts model on the triangular
lattice, with N sites σi , with i ∈ 1, · · · ,q.
Then ZPotts =

∑
{σ} exp

(
K
∑
〈ij〉 δ(σi , σj)

)
,

Both the loop model and the Potts model are equivalent to
a 6-v model on a kagomé lattice of 3n sites
They are equivalent to the same model, and to one
another, iff

n = 2 cos(6α) = 2−(2−t2)2, q = 4−t2 = 2−2 sin(3α), e(−K ) = 0.

Then Zloop = ZPotts. Nienhuis argues, based on the
properties of the system of ODEs specifying the Potts
model RG, that this determines the critical point with α real
and q ∈ [0,4]. Thus for all n ∈ [−2,2].

Setting n = 0 gives t =
√

2 +
√

2.
Potts model RG equations then yield the exponents.
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Duminil-Copin and Smirnov’s proof

Some 29 years later, Duminil-Copin and Smirnov have
proved t =

√
2 +
√

2.
The proof is based on establishing a parafermionic
operator, using discrete holomorphicity.
Once one sees the proof however, both these concepts
can be discarded.
However we still have not even been able to prove the
existence of a critical exponent, let alone its value.
For many problems, one can obtain exact conjectures for
many properties by the methods of statistical mechanics,
with proofs usually coming afterwards.
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John Hammersley 1920–2004

To quote John Hammersley, “It’s much easier to prove
something once you know that it is true."
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