Statistical and mathematical physics of discrete lattice models

Tony Guttmann

ARC Centre of Excellence for Mathematics and Statistics of Complex Systems Department of Mathematics and Statistics The University of Melbourne, Australia

January 2012

Statistical mechanics

Boltzmann (1844 – 1906) and Gibbs (1839 – 1903)

(b) Boltzmann's tombstone

Statistical mechanics

Boltzmann (1844 – 1906) and Gibbs (1839 – 1903)

(d) Boltzmann's tombstone

Canonical ensemble: *N* particles of mass *m*, momentum p_i^2 , in a volume *V* at temperature *T*, and $\beta = 1/k_B T$.

Canonical partition function

$$
Z(V, N, T) = \frac{1}{N!} \int d\Gamma \exp(-\beta H)
$$

- Hamiltonian $H = \sum_{i=1}^{N}$ $\frac{\mathbf{p}_i^2}{2m} + \sum_{1 \leq i < j \leq N} \phi(|\mathbf{r}_i - \mathbf{r}_j|)$
- Momentum integral gives (2π*mkBT*) 3*N*/2 , so

$$
Z(V, N, T) = \lambda \int \cdots \int d\mathbf{r}_1 \cdots d\mathbf{r}_N \exp \left(-\beta \sum_{i < j} \phi(|\mathbf{r}_i - \mathbf{r}_j|)\right)
$$

where
$$
\lambda = \frac{(2\pi mk_BT)^{3N/2}}{N!}
$$
.

Canonical ensemble: *N* particles of mass *m*, momentum p_i^2 , in a volume *V* at temperature *T*, and $\beta = 1/k_B T$.

Canonical partition function

$$
Z(V, N, T) = \frac{1}{N!} \int d\Gamma \exp(-\beta H)
$$

Hamiltonian $H = \sum_{i=1}^{N}$ $\frac{\mathbf{p}_i^2}{2m} + \sum_{1 \le i < j \le N} \phi(|\mathbf{r}_i - \mathbf{r}_j|)$

Momentum integral gives (2π*mkBT*) 3*N*/2 , so

$$
Z(V, N, T) = \lambda \int \cdots \int d\mathbf{r}_1 \cdots d\mathbf{r}_N \exp \left(-\beta \sum_{i < j} \phi(|\mathbf{r}_i - \mathbf{r}_j|)\right)
$$

where
$$
\lambda = \frac{(2\pi m k_B T)^{3N/2}}{N!}
$$

Canonical ensemble: *N* particles of mass *m*, momentum p_i^2 , in a volume *V* at temperature *T*, and $\beta = 1/k_B T$.

• Canonical partition function

$$
Z(V, N, T) = \frac{1}{N!} \int d\Gamma \exp(-\beta H)
$$

- Hamiltonian $H = \sum_{i=1}^{N}$ $\frac{\mathbf{p}_i^2}{2m} + \sum_{1 \le i < j \le N} \phi(|\mathbf{r}_i - \mathbf{r}_j|)$
- Momentum integral gives (2π*mkBT*) 3*N*/2 , so

$$
Z(V, N, T) = \lambda \int \cdots \int d\mathbf{r}_1 \cdots d\mathbf{r}_N \exp \left(-\beta \sum_{i < j} \phi(|\mathbf{r}_i - \mathbf{r}_j|)\right)
$$

where
$$
\lambda = \frac{(2\pi mk_B T)^{3N/2}}{N!}
$$
.

Canonical ensemble: *N* particles of mass *m*, momentum p_i^2 , in a volume *V* at temperature *T*, and $\beta = 1/k_B T$.

• Canonical partition function

$$
Z(V, N, T) = \frac{1}{N!} \int d\Gamma \exp(-\beta H)
$$

- Hamiltonian $H = \sum_{i=1}^{N}$ $\frac{\mathbf{p}_i^2}{2m} + \sum_{1 \le i < j \le N} \phi(|\mathbf{r}_i - \mathbf{r}_j|)$
- Momentum integral gives (2π*mkBT*) 3*N*/2 , so

$$
Z(V, N, T) = \lambda \int \cdots \int d\mathbf{r}_1 \cdots d\mathbf{r}_N \exp \left(-\beta \sum_{i < j} \phi(|\mathbf{r}_i - \mathbf{r}_j|)\right)
$$

where
$$
\lambda = \frac{(2\pi mk_B T)^{3N/2}}{N!}
$$
.

• Thermodynamics comes from $\Psi(V, N, T) = -k_B T \log Z(V, N, T).$

• The *thermodynamic limit* exists for appropriate $\phi(r)$, lim *N*, *V*→∞, *N*/*V fixed* 1 $\frac{\partial}{\partial N}\Psi(V, N, T) = \psi(\rho = N/V, T).$

• The TL is essential for a phase transition

For a variable number of particles, one has the Grand Canonical Partition Function – just the ogf of the CPF:

$$
\mathcal{Z}(V,T,z)=\sum_{n=0}^{\infty}Z(V,n,T)z^{n},
$$

where *z* is called the *fugacity*.

• Thermodynamics follow from, e.g. $PV = k_B T \log \mathcal{Z}(V, T, z), \ \langle N \rangle = z \frac{\partial}{\partial z}$ ∂*z* log Z(*V*, *T*, *z*).

• Thermodynamics comes from

$$
\Psi(V, N, T) = -k_B T \log Z(V, N, T).
$$

• The *thermodynamic limit* exists for appropriate $\phi(r)$, lim *N*, *V*→∞, *N*/*V fixed* 1 \overline{N} Ψ (*V*, *N*, *T*) = ψ (ρ = *N*/*V*, *T*).

• The TL is essential for a phase transition

For a variable number of particles, one has the Grand Canonical Partition Function – just the ogf of the CPF:

$$
\mathcal{Z}(V,T,z)=\sum_{n=0}^{\infty}Z(V,n,T)z^{n},
$$

where *z* is called the *fugacity*.

• Thermodynamics follow from, e.g. $PV = k_B T \log \mathcal{Z}(V, T, z), \ \langle N \rangle = z \frac{\partial}{\partial z}$ ∂*z* log Z(*V*, *T*, *z*).

• Thermodynamics comes from

$$
\Psi(V, N, T) = -k_B T \log Z(V, N, T).
$$

• The *thermodynamic limit* exists for appropriate $\phi(r)$,

$$
\lim_{N, V \to \infty, N/V \text{ fixed}} \frac{1}{N} \Psi(V, N, T) = \psi(\rho = N/V, T).
$$

• The TL is essential for a phase transition

For a variable number of particles, one has the Grand Canonical Partition Function – just the ogf of the CPF:

$$
\mathcal{Z}(V,T,z)=\sum_{n=0}^{\infty}Z(V,n,T)z^{n},
$$

where *z* is called the *fugacity*.

• Thermodynamics follow from, e.g. $PV = k_B T \log \mathcal{Z}(V, T, z), \ \langle N \rangle = z \frac{\partial}{\partial z}$ ∂*z* log Z(*V*, *T*, *z*).

• Thermodynamics comes from

$$
\Psi(V, N, T) = -k_B T \log Z(V, N, T).
$$

• The *thermodynamic limit* exists for appropriate $\phi(r)$,

$$
\lim_{N, V \to \infty, N/V \text{ fixed}} \frac{1}{N} \Psi(V, N, T) = \psi(\rho = N/V, T).
$$

- The TL is essential for a phase transition
- For a variable number of particles, one has the Grand Canonical Partition Function – just the ogf of the CPF:

$$
\mathcal{Z}(V, T, z) = \sum_{n=0}^{\infty} Z(V, n, T) z^n,
$$

where *z* is called the *fugacity*.

• Thermodynamics follow from, e.g. $PV = k_B T \log \mathcal{Z}(V, T, z), \ \langle N \rangle = z \frac{\partial}{\partial z}$ ∂*z* log Z(*V*, *T*, *z*).

• Thermodynamics comes from

$$
\Psi(V, N, T) = -k_B T \log Z(V, N, T).
$$

• The *thermodynamic limit* exists for appropriate $\phi(r)$,

$$
\lim_{N, V \to \infty, N/V \text{ fixed}} \frac{1}{N} \Psi(V, N, T) = \psi(\rho = N/V, T).
$$

- The TL is essential for a phase transition
- For a variable number of particles, one has the Grand Canonical Partition Function – just the ogf of the CPF:

$$
\mathcal{Z}(V,T,z)=\sum_{n=0}^{\infty}Z(V,n,T)z^n,
$$

where *z* is called the *fugacity*.

• Thermodynamics follow from, e.g. $PV = k_B T \log \mathcal{Z}(V, T, z), \ \langle N \rangle = z \frac{\partial}{\partial z}$ ∂*z* log Z(*V*, *T*, *z*).

Some well-known models

The Lenz-Ising (1900–1998) model and Potts (1925 – 2005) model

ο

 \bullet

 $H = -J\sum \sigma_i \cdot \sigma_j$, $\sigma_i = \pm 1$. $\langle j, j \rangle$

$$
Z = \sum_{\sigma_1 = \pm 1} \cdots \sum_{\sigma_N = \pm 1} \exp(-\beta H).
$$

- Generalise to the $O(n)$ model, where σ_i is now an *n*-dimensional vector. (Stanley 1968).
- \bullet The Ising model is $O(1)$. de Gennes pointed out that $O(0)$ is the SAW model (1972).
- $n = \infty$ gives the spherical model. $n = 2$ the XY model. $n = 3$ the PCH model, $n = -2$ the Gaussian model.

 \bullet

 \bullet

 $H = -J\sum$ $\langle i,j \rangle$ $\sigma_i \cdot \sigma_j$, $\sigma_i = \pm 1$. $Z = \sum$ \cdots \sum exp(−β*H*).

• Generalise to the
$$
O(n)
$$
 model, where σ_i is now an *n*-dimensional vector. (Stanley 1968).

 $\sigma_1=\pm 1$

 \bullet The Ising model is $O(1)$. de Gennes pointed out that $O(0)$ is the SAW model (1972).

 σ_N = \pm 1

• $n = \infty$ gives the spherical model. $n = 2$ the XY model. $n = 3$ the PCH model, $n = -2$ the Gaussian model.

ο

$$
H=-J\sum_{\langle i,j\rangle}\sigma_i\cdot\sigma_j,\ \ \sigma_i=\pm1.
$$

$$
Z=\sum_{\sigma_1=\pm 1}\cdots\sum_{\sigma_N=\pm 1}\exp(-\beta H).
$$

- Generalise to the O (n) model, where σ_i is now an *n*-dimensional vector. (Stanley 1968).
- The Ising model is O(1). de Gennes pointed out that O(0) is the SAW model (1972).
- $n = \infty$ gives the spherical model. $n = 2$ the XY model, $n = 3$ the PCH model, $n = -2$ the Gaussian model.

Ο

$$
H=-J\sum_{\langle i,j\rangle}\sigma_i\cdot\sigma_j,\ \ \sigma_i=\pm1.
$$

$$
Z=\sum_{\sigma_1=\pm 1}\cdots\sum_{\sigma_N=\pm 1}\exp(-\beta H).
$$

- Generalise to the O (n) model, where σ_i is now an *n*-dimensional vector. (Stanley 1968).
- \bullet The Ising model is $O(1)$. de Gennes pointed out that $O(0)$ is the SAW model (1972).
- $n = \infty$ gives the spherical model. $n = 2$ the XY model. $n = 3$ the PCH model, $n = -2$ the Gaussian model.

 \bullet

$$
H=-J\sum_{\langle i,j\rangle}\sigma_i\cdot\sigma_j,\ \ \sigma_i=\pm1.
$$

$$
Z=\sum_{\sigma_1=\pm 1}\cdots\sum_{\sigma_N=\pm 1}\exp(-\beta H).
$$

- Generalise to the O (n) model, where σ_i is now an *n*-dimensional vector. (Stanley 1968).
- \bullet The Ising model is $O(1)$. de Gennes pointed out that $O(0)$ is the SAW model (1972).
- $n = \infty$ gives the spherical model. $n = 2$ the XY model. $n = 3$ the PCH model, $n = -2$ the Gaussian model.

• It is simple to solve the 1d Ising model. The free-energy in the TL is:

$$
\frac{-\psi}{k_{\mathcal{B}}\mathcal{T}} = \log(2\cosh(\beta J)).
$$

- No phase transition. Boring!
- Rescued by metallurgists interested in binary alloys.
- Onsager, in 1944, solved the 2d model:

$$
\frac{-\psi}{k_B T} = \frac{\log 2}{2} + \frac{1}{2\pi} \int_0^{\pi} \log \left(c^2 + \sqrt{s^2 + 1 - 2s\cos\theta} \right) d\theta.
$$

Here $c = \cosh(2K)$, $s = \sinh(2K)$.

• It is simple to solve the 1d Ising model. The free-energy in the TL is:

$$
\frac{-\psi}{k_{\mathcal{B}}\mathcal{T}} = \log(2\cosh(\beta J)).
$$

• No phase transition. Boring!

- Rescued by metallurgists interested in binary alloys.
- Onsager, in 1944, solved the 2d model:

$$
\frac{-\psi}{k_B T} = \frac{\log 2}{2} + \frac{1}{2\pi} \int_0^{\pi} \log \left(c^2 + \sqrt{s^2 + 1 - 2s\cos\theta} \right) d\theta.
$$

Here $c = \cosh(2K)$, $s = \sinh(2K)$.

• It is simple to solve the 1d Ising model. The free-energy in the TL is:

$$
\frac{-\psi}{k_{\mathcal{B}}\mathcal{T}} = \log(2\cosh(\beta J)).
$$

- No phase transition. Boring!
- Rescued by metallurgists interested in binary alloys.
- Onsager, in 1944, solved the 2d model:

$$
\frac{-\psi}{k_B T} = \frac{\log 2}{2} + \frac{1}{2\pi} \int_0^{\pi} \log \left(c^2 + \sqrt{s^2 + 1 - 2s\cos\theta} \right) d\theta.
$$

Here $c = \cosh(2K)$, $s = \sinh(2K)$.

• It is simple to solve the 1d Ising model. The free-energy in the TL is:

$$
\frac{-\psi}{k_{\mathcal{B}}\mathcal{T}} = \log(2\cosh(\beta J)).
$$

- No phase transition. Boring!
- Rescued by metallurgists interested in binary alloys.
- Onsager, in 1944, solved the 2d model:

$$
\frac{-\psi}{k_{\mathcal{B}}\mathcal{T}} = \frac{\log 2}{2} + \frac{1}{2\pi} \int_0^{\pi} \log \left(c^2 + \sqrt{s^2 + 1 - 2s\cos\theta} \right) d\theta.
$$

Here $c = \cosh(2K)$, $s = \sinh(2K)$.

• It is simple to solve the 1d Ising model. The free-energy in the TL is:

$$
\frac{-\psi}{k_{\mathcal{B}}\mathcal{T}} = \log(2\cosh(\beta J)).
$$

- No phase transition. Boring!
- Rescued by metallurgists interested in binary alloys.
- Onsager, in 1944, solved the 2d model:

$$
\frac{-\psi}{k_B T} = \frac{\log 2}{2} + \frac{1}{2\pi} \int_0^{\pi} \log \left(c^2 + \sqrt{s^2 + 1 - 2s\cos\theta} \right) d\theta.
$$

Here $c = \cosh(2K)$, $s = \sinh(2K)$.

de Gennes and Onsager

(g) Pierre-Gilles de Gennes 1932–2007, Nobel Physics 1991 (h) Lars Onsager 1903–1976, Nobel Chem. 1968

$$
Z=\sum_{\{\sigma\}}\prod_{\langle i,j\rangle}\exp(K\sigma_i\sigma_j); \ \ K=J/k_BT.
$$

- $\mathsf{As}~ \sigma_i \sigma_j = \pm 1, \, \mathsf{exp} (K \sigma_i \sigma_j) = \mathsf{cosh} \, K (1 + \sigma_i \sigma_j \, \mathsf{tanh} \, K).$
- On a lattice, σ*i*σ*^j* can be represented by a bond from σ*ⁱ* to neighbouring bond σ*^j* .
- **•** Summing over all configurations, only those in which any σ occurs an even number of times survives.
- Thus *Z* is a sum over all graphs on the lattice with every vertex of even degree. We now have a combinatorial counting problem!

$$
Z=\sum_{\{\sigma\}}\prod_{\langle i,j\rangle}\exp(K\sigma_i\sigma_j); \ \ K=J/k_BT.
$$

$\mathsf{As}~\sigma_i\sigma_j=\pm 1, \, \mathsf{exp}({\mathcal K}\sigma_i\sigma_j)=\mathsf{cosh}\,{\mathcal K}(1+\sigma_i\sigma_j\tanh{\mathcal K}).$

- On a lattice, σ*i*σ*^j* can be represented by a bond from σ*ⁱ* to neighbouring bond σ*^j* .
- **•** Summing over all configurations, only those in which any σ occurs an even number of times survives.
- Thus *Z* is a sum over all graphs on the lattice with every vertex of even degree. We now have a combinatorial counting problem!

$$
Z=\sum_{\{\sigma\}}\prod_{\langle i,j\rangle}\exp(K\sigma_i\sigma_j); \ \ K=J/k_BT.
$$

- $\mathsf{As}~\sigma_i\sigma_j=\pm 1, \, \mathsf{exp}({\mathcal K}\sigma_i\sigma_j)=\mathsf{cosh}\,{\mathcal K}(1+\sigma_i\sigma_j\tanh{\mathcal K}).$
- On a lattice, σ*i*σ*^j* can be represented by a bond from σ*ⁱ* to neighbouring bond σ*^j* .
- **•** Summing over all configurations, only those in which any σ occurs an even number of times survives.
- Thus *Z* is a sum over all graphs on the lattice with every vertex of even degree. We now have a combinatorial counting problem!

Ο

$$
Z=\sum_{\{\sigma\}}\prod_{\langle i,j\rangle}\exp(K\sigma_i\sigma_j); \ \ K=J/k_BT.
$$

- $\mathsf{As}~\sigma_i\sigma_j=\pm 1, \, \mathsf{exp}({\mathcal K}\sigma_i\sigma_j)=\mathsf{cosh}\,{\mathcal K}(1+\sigma_i\sigma_j\tanh{\mathcal K}).$
- On a lattice, σ*i*σ*^j* can be represented by a bond from σ*ⁱ* to neighbouring bond σ*^j* .
- **•** Summing over all configurations, only those in which any σ occurs an even number of times survives.
- Thus *Z* is a sum over all graphs on the lattice with every vertex of even degree. We now have a combinatorial counting problem!

$$
Z=\sum_{\{\sigma\}}\prod_{\langle i,j\rangle}\exp(K\sigma_i\sigma_j); \ \ K=J/k_BT.
$$

- $\mathsf{As}~\sigma_i\sigma_j=\pm 1, \, \mathsf{exp}({\mathcal K}\sigma_i\sigma_j)=\mathsf{cosh}\,{\mathcal K}(1+\sigma_i\sigma_j\tanh{\mathcal K}).$
- On a lattice, σ*i*σ*^j* can be represented by a bond from σ*ⁱ* to neighbouring bond σ*^j* .
- **•** Summing over all configurations, only those in which any σ occurs an even number of times survives.
- Thus *Z* is a sum over all graphs on the lattice with every vertex of even degree. We now have a combinatorial counting problem!

The Potts model

 \bullet

• At each lattice site place one of *q* colours, $\{1, 2, \ldots, q\}$. The Hamiltonian is

$$
H=-J\sum_{\langle i,j\rangle}\delta(\sigma_i,\sigma_j),
$$

so the interaction is 1 if adjacent spins have the same colour, and 0 otherwise. Then with $K = J/k_B T$,

$$
Z(q, K) = \sum_{\{\sigma_i\}} \exp\left(K \sum_{\langle i,j\rangle} \delta(\sigma_i, \sigma_j)\right)
$$

• When $q = 2$ it is just the Ising model. But as $q \rightarrow 1$ we get a percolation problem. As $q \to 0$ one obtains the number of spanning forests. Other interesting limits exist.

The Potts model

۰

• At each lattice site place one of *q* colours, $\{1, 2, \ldots, q\}$. The Hamiltonian is

$$
H=-J\sum_{\langle i,j\rangle}\delta(\sigma_i,\sigma_j),
$$

so the interaction is 1 if adjacent spins have the same colour, and 0 otherwise. Then with $K = J/k_B T$,

$$
Z(q, K) = \sum_{\{\sigma_i\}} \exp\left(K \sum_{\langle i,j\rangle} \delta(\sigma_i, \sigma_j)\right)
$$

• When $q = 2$ it is just the Ising model. But as $q \rightarrow 1$ we get a percolation problem. As $q \rightarrow 0$ one obtains the number of spanning forests. Other interesting limits exist.

The Potts model

Ο

• At each lattice site place one of *q* colours, $\{1, 2, \ldots, q\}$. The Hamiltonian is

$$
H=-J\sum_{\langle i,j\rangle}\delta(\sigma_i,\sigma_j),
$$

so the interaction is 1 if adjacent spins have the same colour, and 0 otherwise. Then with $K = J/k_B T$,

$$
Z(q, K) = \sum_{\{\sigma_i\}} \exp\left(K \sum_{\langle i,j\rangle} \delta(\sigma_i, \sigma_j)\right)
$$

• When $q = 2$ it is just the Ising model. But as $q \rightarrow 1$ we get a percolation problem. As $q \rightarrow 0$ one obtains the number of spanning forests. Other interesting limits exist.

- One connection with combinatorics is through the Tutte polynomial. Set *x* = 1 + $\frac{qe^{-k}}{1-e^{-k}}$ $\frac{qe^{-\kappa}}{1-e^{-\kappa}}, y=e^k$, then *T*(*x*, *y*) = $\sum_{i,j\geq 0} t_{i,j}x^{i}y^{j}$.
- The Tutte polynomial coincides with the Potts model along the hyperbola $(x - 1)(y - 1) = q$.
- The Potts model for $q \ge 2$ has, like the Ising model, a straightforward graphical expansion.

- One connection with combinatorics is through the Tutte polynomial. Set *x* = 1 + $\frac{qe^{-k}}{1-e^{-k}}$ $\frac{qe^{-\kappa}}{1-e^{-\kappa}}, y=e^k$, then *T*(*x*, *y*) = $\sum_{i,j\geq 0} t_{i,j}x^{i}y^{j}$.
- The Tutte polynomial coincides with the Potts model along the hyperbola $(x - 1)(y - 1) = q$.
- The Potts model for $q \ge 2$ has, like the Ising model, a straightforward graphical expansion.

- One connection with combinatorics is through the Tutte polynomial. Set *x* = 1 + $\frac{qe^{-k}}{1-e^{-k}}$ $\frac{qe^{-\kappa}}{1-e^{-\kappa}}, y=e^k$, then *T*(*x*, *y*) = $\sum_{i,j\geq 0} t_{i,j}x^{i}y^{j}$.
- The Tutte polynomial coincides with the Potts model along the hyperbola $(x - 1)(y - 1) = q$.
- The Potts model for $q \ge 2$ has, like the Ising model, a straightforward graphical expansion.

Near a (second-order) phase transition, as exhibited, e.g. by the Ising model, thermodynamic quantities behave as

$$
f(z)=\sum a_n z^n\sim A(1-z/z_c)^{\gamma}.
$$

Then
$$
a_n \sim \frac{A \cdot n^{-\gamma-1}}{\Gamma(\gamma) \cdot z_c^n}
$$
.

- In combinatorics, we ideally seek closed form expressions for the generating functions, or rigorous asymptotics.
- In statistical mechanics, one is often content to identify γ , *z^c* and *A*, the critical exponent, critical point and critical amplitude respectively.
- Universality: The exponent is common across many different problems.

Near a (second-order) phase transition, as exhibited, e.g. by the Ising model, thermodynamic quantities behave as

$$
f(z)=\sum a_n z^n\sim A(1-z/z_c)^{\gamma}.
$$

Then $a_n \sim \frac{A \cdot n^{-\gamma-1}}{\Gamma(\gamma) \cdot z_n^n}$ $\frac{A \cdot \Pi}{\Gamma(\gamma) \cdot z_c^n}$.

- In combinatorics, we ideally seek closed form expressions for the generating functions, or rigorous asymptotics.
- In statistical mechanics, one is often content to identify γ , *z^c* and *A*, the critical exponent, critical point and critical amplitude respectively.
- Universality: The exponent is common across many different problems.

Near a (second-order) phase transition, as exhibited, e.g. by the Ising model, thermodynamic quantities behave as

$$
f(z)=\sum a_n z^n\sim A(1-z/z_c)^{\gamma}.
$$

Then $a_n \sim \frac{A \cdot n^{-\gamma-1}}{\Gamma(\gamma) \cdot z_n^n}$ $\frac{A \cdot \Pi}{\Gamma(\gamma) \cdot z_c^n}$.

- In combinatorics, we ideally seek closed form expressions for the generating functions, or rigorous asymptotics.
- In statistical mechanics, one is often content to identify γ , *z^c* and *A*, the critical exponent, critical point and critical amplitude respectively.
- Universality: The exponent is common across many different problems.

Near a (second-order) phase transition, as exhibited, e.g. by the Ising model, thermodynamic quantities behave as

$$
f(z)=\sum a_n z^n\sim A(1-z/z_c)^{\gamma}.
$$

Then $a_n \sim \frac{A \cdot n^{-\gamma-1}}{\Gamma(\gamma) \cdot z_n^n}$ $\frac{A \cdot \Pi}{\Gamma(\gamma) \cdot z_c^n}$.

- In combinatorics, we ideally seek closed form expressions for the generating functions, or rigorous asymptotics.
- In statistical mechanics, one is often content to identify γ , *z^c* and *A*, the critical exponent, critical point and critical amplitude respectively.
- Universality: The exponent is common across many different problems.

Scaling

If $f(\xi) \sim A \xi^{\gamma}$ where $\xi = 1 - z/z_c$, this can be considered a solution of

$$
f(\lambda \xi) = \kappa f(\xi),
$$

with $\kappa = A \lambda^\gamma.$ That is, a scaling of ξ corresponds to a rescaling of *f*. (Equivalently, $f(\lambda^{1/\gamma}\xi) = \lambda f(\xi)$.)

• This rescaling can be applied to functions of more than one variable, so for a magnetic system (Hamiltonian has a second, field variable, say *H*), we have

$$
f_{s}(\lambda^{y_{t}}\xi,\lambda^{y_{h}}H)=\lambda^{d}f_{s}(\xi,H),
$$

where *d* is the spatial dimension, and *y^t* and *y^h* are exponents in terms of which all other related exponents may be derived.

• This then implies

$$
f_s(\xi,H) \sim |\xi|^{-d/y_t} F(H|\xi|^{y_t/y_h})
$$

Scaling

If $f(\xi) \sim A \xi^{\gamma}$ where $\xi = 1 - z/z_c$, this can be considered a solution of

$$
f(\lambda \xi) = \kappa f(\xi),
$$

with $\kappa = A \lambda^\gamma.$ That is, a scaling of ξ corresponds to a rescaling of *f*. (Equivalently, $f(\lambda^{1/\gamma}\xi) = \lambda f(\xi)$.)

• This rescaling can be applied to functions of more than one variable, so for a magnetic system (Hamiltonian has a second, field variable, say *H*), we have

$$
f_{s}(\lambda^{y_{t}}\xi,\lambda^{y_{h}}H)=\lambda^{d}f_{s}(\xi,H),
$$

where *d* is the spatial dimension, and *y^t* and *y^h* are exponents in terms of which all other related exponents may be derived.

• This then implies

$$
f_s(\xi,H) \sim |\xi|^{-d/y_t} F(H|\xi|^{y_t/y_h})
$$

If $f(\xi) \sim A \xi^{\gamma}$ where $\xi = 1 - z/z_c$, this can be considered a solution of

$$
f(\lambda \xi) = \kappa f(\xi),
$$

with $\kappa = A \lambda^\gamma.$ That is, a scaling of ξ corresponds to a rescaling of *f*. (Equivalently, $f(\lambda^{1/\gamma}\xi) = \lambda f(\xi)$.)

• This rescaling can be applied to functions of more than one variable, so for a magnetic system (Hamiltonian has a second, field variable, say *H*), we have

$$
f_{s}(\lambda^{y_{t}}\xi,\lambda^{y_{h}}H)=\lambda^{d}f_{s}(\xi,H),
$$

where *d* is the spatial dimension, and *y^t* and *y^h* are exponents in terms of which all other related exponents may be derived.

• This then implies

$$
f_s(\xi,H) \sim |\xi|^{-d/y_t} F(H|\xi|^{y_t/y_h})
$$

Polygons – Richard, Jensen, Guttmann

• For square lattice polygons,

$$
P(x,q) \sim P^{(reg)}(x,q) + (1-q) \cdot F\left(\frac{x_c - x}{(1-q)^{2/3}}\right) + C(q)
$$

• Here,

 $F(s) = const.$ log $Ai(const.s),$

and $C(q) = \frac{1}{12\pi}(1-q)\log(1-q)$.

These scaling ideas, due to Kadanoff, Widom, Fisher and others in the '60s are a mathematical manifestation of the physical idea that at the critical point, all length scales are important.

Polygons – Richard, Jensen, Guttmann

• For square lattice polygons,

$$
P(x,q) \sim P^{(reg)}(x,q) + (1-q) \cdot F\left(\frac{x_c - x}{(1-q)^{2/3}}\right) + C(q)
$$

• Here.

$F(s) = const.$ log $Ai(const.s),$

and
$$
C(q) = \frac{1}{12\pi}(1-q)\log(1-q)
$$
.

These scaling ideas, due to Kadanoff, Widom, Fisher and others in the '60s are a mathematical manifestation of the physical idea that at the critical point, all length scales are important.

Polygons – Richard, Jensen, Guttmann

• For square lattice polygons,

$$
P(x,q) \sim P^{(reg)}(x,q) + (1-q) \cdot F\left(\frac{x_c - x}{(1-q)^{2/3}}\right) + C(q)
$$

• Here.

$$
F(s) = const.\log Ai(const.s),
$$

and $C(q) = \frac{1}{12\pi}(1-q)\log(1-q)$.

These scaling ideas, due to Kadanoff, Widom, Fisher and others in the '60s are a mathematical manifestation of the physical idea that at the critical point, all length scales are important.

- Assume physics stays the same as we reblock. Then $H(T, J) \rightarrow H(T', J') \rightarrow H(T'', J'')$ etc. Iterates to a fixed point.
- For the 1d Ising model, the RG flow goes from order $(T = 0)$ to disorder $(T = \infty)$.
- For the 2d Ising model, the critical fixed point *K^c* lies in between, and flow is away in both directions.

- Assume physics stays the same as we reblock. Then $H(T, J) \rightarrow H(T', J') \rightarrow H(T'', J'')$ etc. Iterates to a fixed point.
- For the 1d Ising model, the RG flow goes from order $(T = 0)$ to disorder $(T = \infty)$.
- For the 2d Ising model, the critical fixed point *K^c* lies in between, and flow is away in both directions.

- Assume physics stays the same as we reblock. Then $H(T, J) \rightarrow H(T', J') \rightarrow H(T'', J'')$ etc. Iterates to a fixed point.
- For the 1d Ising model, the RG flow goes from order $(T = 0)$ to disorder $(T = \infty)$.
- For the 2d Ising model, the critical fixed point *K^c* lies in between, and flow is away in both directions.

- Assume physics stays the same as we reblock. Then $H(T, J) \rightarrow H(T', J') \rightarrow H(T'', J'')$ etc. Iterates to a fixed point.
- **•** For the 1d Ising model, the RG flow goes from order $(T = 0)$ to disorder $(T = \infty)$.
- For the 2d Ising model, the critical fixed point *K^c* lies in between, and flow is away in both directions.

- Assume physics stays the same as we reblock. Then $H(T, J) \rightarrow H(T', J') \rightarrow H(T'', J'')$ etc. Iterates to a fixed point.
- **•** For the 1d Ising model, the RG flow goes from order $(T = 0)$ to disorder $(T = \infty)$.
- For the 2d Ising model, the critical fixed point *K^c* lies in between, and flow is away in both directions.

Due to Ken Wilson in the 70's – Nobel Prize in 1982

- Not a group. No renormalization. "The" is inappropriate. (Cardy).
- More generally, if $\{\sigma_i\} \rightarrow \{\sigma'_i\}$, and $\{J_k\} \rightarrow \{J'_k\}$ such that

$$
Z(\{\sigma_i\},\{J_k\}) = Z(\{\sigma'_i\},\{J'_k\}),
$$

- Then $\{J'_k\} = \beta \{J_k\}$. The β -function is said to induce a renormalization flow on the *J* space.
- In momentum space, one applies a Fourier transform, and the renormalization idea corresponds to integrating out the highest momentum components. Reminiscent of QED, which is renormalizable.
- The physics is given by the behaviour of the β function, usually describable by a system of DEs.

- Due to Ken Wilson in the 70's Nobel Prize in 1982
- Not a group. No renormalization. "The" is inappropriate. (Cardy).
- More generally, if $\{\sigma_i\} \rightarrow \{\sigma'_i\}$, and $\{J_k\} \rightarrow \{J'_k\}$ such that

 $Z(\{\sigma_i\}, \{J_k\}) = Z(\{\sigma'_i\}, \{J'_k\}),$

- Then $\{J'_k\} = \beta \{J_k\}$. The β -function is said to induce a renormalization flow on the *J* space.
- In momentum space, one applies a Fourier transform, and the renormalization idea corresponds to integrating out the highest momentum components. Reminiscent of QED, which is renormalizable.
- The physics is given by the behaviour of the β function, usually describable by a system of DEs.

- Due to Ken Wilson in the 70's Nobel Prize in 1982
- Not a group. No renormalization. "The" is inappropriate. (Cardy).
- More generally, if $\{\sigma_i\} \rightarrow \{\sigma'_i\}$, and $\{J_k\} \rightarrow \{J'_k\}$ such that

$$
Z(\{\sigma_i\},\{J_k\})=Z(\{\sigma'_i\},\{J'_k\}),
$$

- Then $\{J'_k\} = \beta \{J_k\}$. The β -function is said to induce a renormalization flow on the *J* space.
- In momentum space, one applies a Fourier transform, and the renormalization idea corresponds to integrating out the highest momentum components. Reminiscent of QED, which is renormalizable.
- The physics is given by the behaviour of the β function, usually describable by a system of DEs.

- Due to Ken Wilson in the 70's Nobel Prize in 1982
- Not a group. No renormalization. "The" is inappropriate. (Cardy).
- More generally, if $\{\sigma_i\} \rightarrow \{\sigma'_i\}$, and $\{J_k\} \rightarrow \{J'_k\}$ such that

$$
Z(\{\sigma_i\},\{J_k\})=Z(\{\sigma'_i\},\{J'_k\}),
$$

- Then $\{J'_k\} = \beta \{J_k\}$. The β -function is said to induce a renormalization flow on the *J* space.
- In momentum space, one applies a Fourier transform, and the renormalization idea corresponds to integrating out the highest momentum components. Reminiscent of QED, which is renormalizable.
- The physics is given by the behaviour of the β function, usually describable by a system of DEs.

- Due to Ken Wilson in the 70's Nobel Prize in 1982
- Not a group. No renormalization. "The" is inappropriate. (Cardy).
- More generally, if $\{\sigma_i\} \rightarrow \{\sigma'_i\}$, and $\{J_k\} \rightarrow \{J'_k\}$ such that

$$
Z(\{\sigma_i\},\{J_k\})=Z(\{\sigma'_i\},\{J'_k\}),
$$

- Then $\{J'_k\} = \beta \{J_k\}$. The β -function is said to induce a renormalization flow on the *J* space.
- In momentum space, one applies a Fourier transform, and the renormalization idea corresponds to integrating out the highest momentum components. Reminiscent of QED, which is renormalizable.
- The physics is given by the behaviour of the β function, usually describable by a system of DEs.

- Due to Ken Wilson in the 70's Nobel Prize in 1982
- Not a group. No renormalization. "The" is inappropriate. (Cardy).
- More generally, if $\{\sigma_i\} \rightarrow \{\sigma'_i\}$, and $\{J_k\} \rightarrow \{J'_k\}$ such that

$$
Z(\{\sigma_i\},\{J_k\})=Z(\{\sigma'_i\},\{J'_k\}),
$$

- Then $\{J'_k\} = \beta \{J_k\}$. The β -function is said to induce a renormalization flow on the *J* space.
- In momentum space, one applies a Fourier transform, and the renormalization idea corresponds to integrating out the highest momentum components. Reminiscent of QED, which is renormalizable.
- The physics is given by the behaviour of the β function, usually describable by a system of DEs.

• Scaling and RG theory explained global scale invariance.

- This gave *scaling laws* between exponents.
- In 1984 Belavin, Polyakov, Zamolodchikov investigated local scale invariance: conformal invariance
- In 2d, the conformal group is infinite.
- This implies that many systems can be labelled by a single \bullet parameter *c* (central charge/conformal anomaly).
- Blöte, Cardy and Nightingale (1986) showed how to calculate *c*, via the transformation

$$
z\to \frac{W}{2\pi}\log z
$$

- Scaling and RG theory explained global scale invariance.
- This gave *scaling laws* between exponents.
- In 1984 Belavin, Polyakov, Zamolodchikov investigated local scale invariance: conformal invariance
- In 2d, the conformal group is infinite.
- This implies that many systems can be labelled by a single \bullet parameter *c* (central charge/conformal anomaly).
- Blöte, Cardy and Nightingale (1986) showed how to calculate *c*, via the transformation

$$
z\to \frac{W}{2\pi}\log z
$$

- Scaling and RG theory explained global scale invariance.
- This gave *scaling laws* between exponents.
- In 1984 Belavin, Polyakov, Zamolodchikov investigated local scale invariance: conformal invariance
- In 2d, the conformal group is infinite.
- This implies that many systems can be labelled by a single parameter *c* (central charge/conformal anomaly).
- Blöte, Cardy and Nightingale (1986) showed how to calculate *c*, via the transformation

$$
z\to \frac{W}{2\pi}\log z
$$

- Scaling and RG theory explained global scale invariance.
- This gave *scaling laws* between exponents.
- In 1984 Belavin, Polyakov, Zamolodchikov investigated local scale invariance: conformal invariance
- In 2d, the conformal group is infinite.
- This implies that many systems can be labelled by a single parameter *c* (central charge/conformal anomaly).
- Blöte, Cardy and Nightingale (1986) showed how to calculate *c*, via the transformation

$$
z\to \frac{W}{2\pi}\log z
$$

- Scaling and RG theory explained global scale invariance.
- This gave *scaling laws* between exponents.
- In 1984 Belavin, Polyakov, Zamolodchikov investigated local scale invariance: conformal invariance
- In 2d, the conformal group is infinite.
- This implies that many systems can be labelled by a single parameter *c* (central charge/conformal anomaly).
- Blöte, Cardy and Nightingale (1986) showed how to calculate *c*, via the transformation

$$
z\to \frac{W}{2\pi}\log z
$$

- Scaling and RG theory explained global scale invariance.
- This gave *scaling laws* between exponents.
- In 1984 Belavin, Polyakov, Zamolodchikov investigated local scale invariance: conformal invariance
- In 2d, the conformal group is infinite.
- This implies that many systems can be labelled by a single parameter *c* (central charge/conformal anomaly).
- Blöte, Cardy and Nightingale (1986) showed how to calculate *c*, via the transformation

$$
z\to \frac{W}{2\pi}\log z
$$

$$
F = Wf_{\infty} - \frac{\pi c}{6W} + o(1/W).
$$

- Precise numerical work can be done on finite-sized systems, and *c* thus determined from the leading order correction to the bulk value *f*∞.
- Knowing *c* is not sufficient to determine the universality class or ther exponents.
- Rather, for many systems, with $c < 1$, the possible exponents are restricted by the Kac formula, which gives possible exponents in terms of *c*.
- Systems can be in different universality classes with the same value of central charge.

$$
F = Wf_{\infty} - \frac{\pi c}{6W} + o(1/W).
$$

- **•** Precise numerical work can be done on finite-sized systems, and *c* thus determined from the leading order correction to the bulk value *f*∞.
- Knowing *c* is not sufficient to determine the universality class or ther exponents.
- Rather, for many systems, with $c < 1$, the possible exponents are restricted by the Kac formula, which gives possible exponents in terms of *c*.
- Systems can be in different universality classes with the same value of central charge.

$$
F = Wf_{\infty} - \frac{\pi c}{6W} + o(1/W).
$$

- **•** Precise numerical work can be done on finite-sized systems, and *c* thus determined from the leading order correction to the bulk value *f*∞.
- Knowing *c* is not sufficient to determine the universality class or ther exponents.
- Rather, for many systems, with $c < 1$, the possible exponents are restricted by the Kac formula, which gives possible exponents in terms of *c*.
- Systems can be in different universality classes with the same value of central charge.

$$
F = Wf_{\infty} - \frac{\pi c}{6W} + o(1/W).
$$

- **•** Precise numerical work can be done on finite-sized systems, and *c* thus determined from the leading order correction to the bulk value *f*∞.
- Knowing *c* is not sufficient to determine the universality class or ther exponents.
- Rather, for many systems, with $c < 1$, the possible exponents are restricted by the Kac formula, which gives possible exponents in terms of *c*.
- Systems can be in different universality classes with the same value of central charge.

$$
F = Wf_{\infty} - \frac{\pi c}{6W} + o(1/W).
$$

- **•** Precise numerical work can be done on finite-sized systems, and *c* thus determined from the leading order correction to the bulk value *f*∞.
- Knowing *c* is not sufficient to determine the universality class or ther exponents.
- Rather, for many systems, with $c < 1$, the possible exponents are restricted by the Kac formula, which gives possible exponents in terms of *c*.
- Systems can be in different universality classes with the same value of central charge.

- Put arrows on the square lattice bonds, 2 pointing in/out.
- There are only 6 possible configurations.
- Give a Boltzmann weight w_i to configuration $i \in [1, \cdots, 6]$.
- The partition function is

$$
Z = \sum_{\{\text{configs}\}} \prod_{i=1}^6 w_i^{m_i}
$$

- Different choices of weights lead to different models. Solved by Lieb/Sutherland in 1967, for w_1 , $a = a$, w_3 , $a = b$, $W_{5,6} = C$.
- Adding two extra vertices (4 arrows in/out with $w_{7,8} = d$) leads to the 8-vertex model. Solved by Baxter in 1973.

- Put arrows on the square lattice bonds, 2 pointing in/out.
- There are only 6 possible configurations.
- Give a Boltzmann weight w_i to configuration $i \in [1, \cdots, 6]$.
- The partition function is

$$
Z = \sum_{\{\text{configs}\}} \prod_{i=1}^{6} w_i^{m_i}
$$

- Different choices of weights lead to different models. Solved by Lieb/Sutherland in 1967, for w_1 , $a = a$, w_3 , $a = b$, $W_{5,6} = C$.
- Adding two extra vertices (4 arrows in/out with $w_{7,8} = d$) leads to the 8-vertex model. Solved by Baxter in 1973.

- Put arrows on the square lattice bonds, 2 pointing in/out.
- There are only 6 possible configurations.
- Give a Boltzmann weight w_i to configuration $i \in [1, \cdots, 6]$.

• The partition function is

$$
Z = \sum_{\{\text{configs}\}} \prod_{i=1}^{6} w_i^{m_i}
$$

- Different choices of weights lead to different models. Solved by Lieb/Sutherland in 1967, for w_1 , $a = a$, w_3 , $a = b$, $W_{5,6} = C$.
- Adding two extra vertices (4 arrows in/out with $w_{7,8} = d$) leads to the 8-vertex model. Solved by Baxter in 1973.

- Put arrows on the square lattice bonds, 2 pointing in/out.
- There are only 6 possible configurations.
- Give a Boltzmann weight w_i to configuration $i \in [1, \cdots, 6]$.
- The partition function is

$$
Z = \sum_{\{\text{configs}\}} \prod_{i=1}^{6} w_i^{m_i}
$$

- Different choices of weights lead to different models. Solved by Lieb/Sutherland in 1967, for w_1 , $a = a$, w_3 , $a = b$, $W_{5,6} = C$.
- Adding two extra vertices (4 arrows in/out with $w_{7,8} = d$) leads to the 8-vertex model. Solved by Baxter in 1973.

Vertex models

- Put arrows on the square lattice bonds, 2 pointing in/out.
- There are only 6 possible configurations.
- Give a Boltzmann weight w_i to configuration $i \in [1, \cdots, 6]$.
- The partition function is

$$
Z = \sum_{\{\text{configs}\}} \prod_{i=1}^{6} w_i^{m_i}
$$

where there are *mⁱ* vertices of type *i*.

- Different choices of weights lead to different models. Solved by Lieb/Sutherland in 1967, for $w_{1,2} = a$, $w_{3,4} = b$, $W_{5,6} = C$.
- Adding two extra vertices (4 arrows in/out with $w_{7,8} = d$) leads to the 8-vertex model. Solved by Baxter in 1973.

Vertex models

- Put arrows on the square lattice bonds, 2 pointing in/out.
- There are only 6 possible configurations.
- Give a Boltzmann weight w_i to configuration $i \in [1, \cdots, 6]$.
- The partition function is

$$
Z = \sum_{\{\text{configs}\}} \prod_{i=1}^{6} w_i^{m_i}
$$

where there are *mⁱ* vertices of type *i*.

- Different choices of weights lead to different models. Solved by Lieb/Sutherland in 1967, for $w_{1,2} = a$, $w_{3,4} = b$, $W_{5,6} = C$.
- Adding two extra vertices (4 arrows in/out with $w_{7,8} = d$) leads to the 8-vertex model. Solved by Baxter in 1973.

- The vertex models can be set up as a transfer matrix problem. (Introduced into stat. mech, by Kramers and Wannier in 1942).
- The partition function is then given by eigenvalues of the TM.
- For the 6-v problem, the arrow conservation rules leads to a block diagonal structure of the TM.
- For small lattices, Lieb produced an Ansatz for the eigenvectors (the Bethe Ansatz. Bethe 1931 1d a-f H model)
- In fact the TM commutes, $T(a, b, c) T'(a', b', c') = T'(a', b', c') T(a, b, c)$, and Baxter realized that invoking this bypasses the Bethe Ansatz.

- The vertex models can be set up as a transfer matrix problem. (Introduced into stat. mech, by Kramers and Wannier in 1942).
- The partition function is then given by eigenvalues of the TM.
- For the 6-v problem, the arrow conservation rules leads to a block diagonal structure of the TM.
- For small lattices, Lieb produced an Ansatz for the eigenvectors (the Bethe Ansatz. Bethe 1931 1d a-f H model)
- In fact the TM commutes, $T(a, b, c) T'(a', b', c') = T'(a', b', c') T(a, b, c)$, and Baxter realized that invoking this bypasses the Bethe Ansatz.

- The vertex models can be set up as a transfer matrix problem. (Introduced into stat. mech, by Kramers and Wannier in 1942).
- The partition function is then given by eigenvalues of the TM.
- For the 6-v problem, the arrow conservation rules leads to a block diagonal structure of the TM.
- For small lattices, Lieb produced an Ansatz for the eigenvectors (the Bethe Ansatz. Bethe 1931 1d a-f H model)
- In fact the TM commutes, $T(a, b, c) T'(a', b', c') = T'(a', b', c') T(a, b, c)$, and Baxter realized that invoking this bypasses the Bethe Ansatz.

- The vertex models can be set up as a transfer matrix problem. (Introduced into stat. mech, by Kramers and Wannier in 1942).
- The partition function is then given by eigenvalues of the TM.
- For the 6-v problem, the arrow conservation rules leads to a block diagonal structure of the TM.
- For small lattices, Lieb produced an Ansatz for the eigenvectors (the Bethe Ansatz. Bethe 1931 1d a-f H model)
- In fact the TM commutes,

 $T(a, b, c) T'(a', b', c') = T'(a', b', c') T(a, b, c)$, and Baxter realized that invoking this bypasses the Bethe Ansatz.

- The vertex models can be set up as a transfer matrix problem. (Introduced into stat. mech, by Kramers and Wannier in 1942).
- The partition function is then given by eigenvalues of the TM.
- For the 6-v problem, the arrow conservation rules leads to a block diagonal structure of the TM.
- For small lattices, Lieb produced an Ansatz for the eigenvectors (the Bethe Ansatz. Bethe 1931 1d a-f H model)
- In fact the TM commutes, $T(a, b, c) T'(a', b', c') = T'(a', b', c') T(a, b, c)$, and Baxter realized that invoking this bypasses the Bethe Ansatz.

- **In this case the TM doesn't commute.**
- \bullet Baxter investigated the conditions under which $T(a, b, c, d)$ and T' (a' , b' , c' , d') commute.
- He introduced a model with a third set of weights (a'', b'', c'', d'') , and found that if a condition relating the three models holds, then the TMs commute.
- This equation is called the *star-triangle* or *Yang-Baxter* equation.
- To solve the 6-v model, the weights are parameterised in terms of trig. functions. For the 8-v model a parameterisation in terms of Jacobi ϑ functions is needed.
- Invoking symmetries, one finds, in the TL, a functional equation for the eigenvalues of the TM, from which the free energy follows.

- **In this case the TM doesn't commute.**
- Baxter investigated the conditions under which $T(a, b, c, d)$ and $T'(a', b', c', d')$ commute.
- He introduced a model with a third set of weights (a'', b'', c'', d'') , and found that if a condition relating the three models holds, then the TMs commute.
- This equation is called the *star-triangle* or *Yang-Baxter* equation.
- To solve the 6-v model, the weights are parameterised in terms of trig. functions. For the 8-v model a parameterisation in terms of Jacobi ϑ functions is needed.
- Invoking symmetries, one finds, in the TL, a functional equation for the eigenvalues of the TM, from which the free energy follows.

- **In this case the TM doesn't commute.**
- \bullet Baxter investigated the conditions under which $T(a, b, c, d)$ and $T'(a', b', c', d')$ commute.
- He introduced a model with a third set of weights (a'', b'', c'', d'') , and found that if a condition relating the three models holds, then the TMs commute.
- This equation is called the *star-triangle* or *Yang-Baxter* equation.
- To solve the 6-v model, the weights are parameterised in terms of trig. functions. For the 8-v model a parameterisation in terms of Jacobi ϑ functions is needed.
- Invoking symmetries, one finds, in the TL, a functional equation for the eigenvalues of the TM, from which the free energy follows.

- **In this case the TM doesn't commute.**
- Baxter investigated the conditions under which $T(a, b, c, d)$ and $T'(a', b', c', d')$ commute.
- He introduced a model with a third set of weights (a'', b'', c'', d'') , and found that if a condition relating the three models holds, then the TMs commute.
- This equation is called the *star-triangle* or *Yang-Baxter* equation.
- To solve the 6-v model, the weights are parameterised in terms of trig. functions. For the 8-v model a parameterisation in terms of Jacobi ϑ functions is needed.
- Invoking symmetries, one finds, in the TL, a functional equation for the eigenvalues of the TM, from which the free energy follows.

- **In this case the TM doesn't commute.**
- Baxter investigated the conditions under which $T(a, b, c, d)$ and $T'(a', b', c', d')$ commute.
- He introduced a model with a third set of weights (a'', b'', c'', d'') , and found that if a condition relating the three models holds, then the TMs commute.
- This equation is called the *star-triangle* or *Yang-Baxter* equation.
- To solve the 6-v model, the weights are parameterised in terms of trig. functions. For the 8-v model a parameterisation in terms of Jacobi ϑ functions is needed.
- Invoking symmetries, one finds, in the TL, a functional equation for the eigenvalues of the TM, from which the free energy follows.

- **In this case the TM doesn't commute.**
- Baxter investigated the conditions under which $T(a, b, c, d)$ and $T'(a', b', c', d')$ commute.
- He introduced a model with a third set of weights (a'', b'', c'', d'') , and found that if a condition relating the three models holds, then the TMs commute.
- This equation is called the *star-triangle* or *Yang-Baxter* equation.
- To solve the 6-v model, the weights are parameterised in terms of trig. functions. For the 8-v model a parameterisation in terms of Jacobi ϑ functions is needed.
- Invoking symmetries, one finds, in the TL, a functional equation for the eigenvalues of the TM, from which the free energy follows.

SOS and RSOS models

The Bethe Ansatz gives TM eigenvectors, but the CTM method does not.

- Eigenvectors are needed to calculate other properties, e.g. correlation functions.
- Baxter devised an SOS model by putting a height variable h_i on each *face*, s.t. $|h_i - h_j| = 1$.
- **•** This height constraint imposes the ice rule.
- With appropriate choice of weight functions, a Bethe Ansatz can be formed, and the ev's calculated.

SOS and RSOS models

- The Bethe Ansatz gives TM eigenvectors, but the CTM method does not.
- Eigenvectors are needed to calculate other properties, e.g. correlation functions.
- Baxter devised an SOS model by putting a height variable h_i on each *face*, s.t. $|h_i - h_j| = 1$.
- **•** This height constraint imposes the ice rule.
- With appropriate choice of weight functions, a Bethe Ansatz can be formed, and the ev's calculated.

- The Bethe Ansatz gives TM eigenvectors, but the CTM method does not.
- Eigenvectors are needed to calculate other properties, e.g. correlation functions.
- Baxter devised an SOS model by putting a height variable h_i on each *face*, s.t. $|h_i - h_j| = 1$.
- **•** This height constraint imposes the ice rule.
- With appropriate choice of weight functions, a Bethe Ansatz can be formed, and the ev's calculated.

- The Bethe Ansatz gives TM eigenvectors, but the CTM method does not.
- Eigenvectors are needed to calculate other properties, e.g. correlation functions.
- Baxter devised an SOS model by putting a height variable h_i on each *face*, s.t. $|h_i - h_j| = 1$.
- This height constraint imposes the ice rule.
- With appropriate choice of weight functions, a Bethe Ansatz can be formed, and the ev's calculated.

- The Bethe Ansatz gives TM eigenvectors, but the CTM method does not.
- Eigenvectors are needed to calculate other properties, e.g. correlation functions.
- Baxter devised an SOS model by putting a height variable h_i on each *face*, s.t. $|h_i - h_j| = 1$.
- This height constraint imposes the ice rule.
- With appropriate choice of weight functions, a Bethe Ansatz can be formed, and the ev's calculated.

- For a restricted set of parameters, Andrews, Baxter and Forrester(1984) found the 8v SOS model yields an infinite hierarchy of solvable *restricted SOS* (RSOS) models.
- The first two members of this hierarchy are the Ising model and the hard hexagon model (Baxter 1980).
- \bullet One merely restricts the heights to the set $\{1, \dots, L\}$.
- In 1987 Pasquier rewrote the weights in terms of elements of an adjacency matrix, and realised that it could be replaced by *any* symmetric $L \times L$ matrix with elements 0 and 1, and all solvability properties still held.
- Now such adjacency matrices can of course be represented as graphs! Hence any graph gives rise to an associated solvable RSOS model. *Graph state models*.
- These models with ABF Boltzmann weights satisfy a T-L algebra with a simple set of generators.
- Models other than the ABF models, but with the same weights, include the *q*-state self-dual Potts model.

- For a restricted set of parameters, Andrews, Baxter and Forrester(1984) found the 8v SOS model yields an infinite hierarchy of solvable *restricted SOS* (RSOS) models.
- The first two members of this hierarchy are the Ising model and the hard hexagon model (Baxter 1980).
- \bullet One merely restricts the heights to the set $\{1, \dots, L\}$.
- In 1987 Pasquier rewrote the weights in terms of elements of an adjacency matrix, and realised that it could be replaced by *any* symmetric $L \times L$ matrix with elements 0 and 1, and all solvability properties still held.
- Now such adjacency matrices can of course be represented as graphs! Hence any graph gives rise to an associated solvable RSOS model. *Graph state models*.
- These models with ABF Boltzmann weights satisfy a T-L algebra with a simple set of generators.
- Models other than the ABF models, but with the same weights, include the *q*-state self-dual Potts model.

- For a restricted set of parameters, Andrews, Baxter and Forrester(1984) found the 8v SOS model yields an infinite hierarchy of solvable *restricted SOS* (RSOS) models.
- The first two members of this hierarchy are the Ising model and the hard hexagon model (Baxter 1980).
- \bullet One merely restricts the heights to the set $\{1, \dots, L\}$.
- In 1987 Pasquier rewrote the weights in terms of elements of an adjacency matrix, and realised that it could be replaced by *any* symmetric $L \times L$ matrix with elements 0 and 1, and all solvability properties still held.
- Now such adjacency matrices can of course be represented as graphs! Hence any graph gives rise to an associated solvable RSOS model. *Graph state models*.
- These models with ABF Boltzmann weights satisfy a T-L algebra with a simple set of generators.
- Models other than the ABF models, but with the same weights, include the *q*-state self-dual Potts model.

- For a restricted set of parameters, Andrews, Baxter and Forrester(1984) found the 8v SOS model yields an infinite hierarchy of solvable *restricted SOS* (RSOS) models.
- The first two members of this hierarchy are the Ising model and the hard hexagon model (Baxter 1980).
- \bullet One merely restricts the heights to the set $\{1, \dots, L\}$.
- In 1987 Pasquier rewrote the weights in terms of elements of an adjacency matrix, and realised that it could be replaced by *any* symmetric $L \times L$ matrix with elements 0 and 1, and all solvability properties still held.
- Now such adjacency matrices can of course be represented as graphs! Hence any graph gives rise to an associated solvable RSOS model. *Graph state models*.
- These models with ABF Boltzmann weights satisfy a T-L algebra with a simple set of generators.
- Models other than the ABF models, but with the same weights, include the *q*-state self-dual Potts model.

- For a restricted set of parameters, Andrews, Baxter and Forrester(1984) found the 8v SOS model yields an infinite hierarchy of solvable *restricted SOS* (RSOS) models.
- The first two members of this hierarchy are the Ising model and the hard hexagon model (Baxter 1980).
- \bullet One merely restricts the heights to the set $\{1, \dots, L\}$.
- In 1987 Pasquier rewrote the weights in terms of elements of an adjacency matrix, and realised that it could be replaced by *any* symmetric $L \times L$ matrix with elements 0 and 1, and all solvability properties still held.
- Now such adjacency matrices can of course be represented as graphs! Hence any graph gives rise to an associated solvable RSOS model. *Graph state models*.
- These models with ABF Boltzmann weights satisfy a T-L algebra with a simple set of generators.
- Models other than the ABF models, but with the same weights, include the *q*-state self-dual Potts model.

- For a restricted set of parameters, Andrews, Baxter and Forrester(1984) found the 8v SOS model yields an infinite hierarchy of solvable *restricted SOS* (RSOS) models.
- The first two members of this hierarchy are the Ising model and the hard hexagon model (Baxter 1980).
- \bullet One merely restricts the heights to the set $\{1, \dots, L\}$.
- In 1987 Pasquier rewrote the weights in terms of elements of an adjacency matrix, and realised that it could be replaced by *any* symmetric $L \times L$ matrix with elements 0 and 1, and all solvability properties still held.
- Now such adjacency matrices can of course be represented as graphs! Hence any graph gives rise to an associated solvable RSOS model. *Graph state models*.
- These models with ABF Boltzmann weights satisfy a T-L algebra with a simple set of generators.
- Models other than the ABF models, but with the same weights, include the *q*-state self-dual Potts model.

- For a restricted set of parameters, Andrews, Baxter and Forrester(1984) found the 8v SOS model yields an infinite hierarchy of solvable *restricted SOS* (RSOS) models.
- The first two members of this hierarchy are the Ising model and the hard hexagon model (Baxter 1980).
- \bullet One merely restricts the heights to the set $\{1, \dots, L\}$.
- In 1987 Pasquier rewrote the weights in terms of elements of an adjacency matrix, and realised that it could be replaced by *any* symmetric $L \times L$ matrix with elements 0 and 1, and all solvability properties still held.
- Now such adjacency matrices can of course be represented as graphs! Hence any graph gives rise to an associated solvable RSOS model. *Graph state models*.
- These models with ABF Boltzmann weights satisfy a T-L algebra with a simple set of generators.
- Models other than the ABF models, but with the same weights, include the *q*-state self-dual Potts model.

- Nienhuis and colleagues showed that the p.f of an O(*n*) model can be written as a loop model
- Take a honeycomb lattice of 2*N* sites. Place arrows on edges such that at each vertex there are 0 or 2 arrows (1 in, 1 out). Gives oriented loops.
- Let $L = #$ of arrows, $l, r = #$ of vertices with a left/right turn.
- **•** For each loop there are 6 more/less turns to left than right. So

$$
Z_{loop} = \sum_{\{\text{configs}\}} t^{2N-L} (2\cos 6\alpha)^P,
$$

where $P = #$ of loops, and α is a fugacity.

- Nienhuis and colleagues showed that the p.f of an O(*n*) model can be written as a loop model
- Take a honeycomb lattice of 2*N* sites. Place arrows on edges such that at each vertex there are 0 or 2 arrows (1 in, 1 out). Gives oriented loops.
- Let $L = #$ of arrows, $l, r = #$ of vertices with a left/right turn.
- **•** For each loop there are 6 more/less turns to left than right. So

$$
Z_{loop} = \sum_{\{\text{configs}\}} t^{2N-L} (2\cos 6\alpha)^P,
$$

where $P = \#$ of loops, and α is a fugacity.

- Nienhuis and colleagues showed that the p.f of an O(*n*) model can be written as a loop model
- Take a honeycomb lattice of 2*N* sites. Place arrows on edges such that at each vertex there are 0 or 2 arrows (1 in, 1 out). Gives oriented loops.
- Let $L = #$ of arrows, $l, r = #$ of vertices with a left/right turn.
- **•** For each loop there are 6 more/less turns to left than right. So

$$
Z_{loop} = \sum_{\{\text{configs}\}} t^{2N-L} (2\cos 6\alpha)^P,
$$

where $P = \#$ of loops, and α is a fugacity.

- Nienhuis and colleagues showed that the p.f of an O(*n*) model can be written as a loop model
- Take a honeycomb lattice of 2*N* sites. Place arrows on edges such that at each vertex there are 0 or 2 arrows (1 in, 1 out). Gives oriented loops.
- Let $L = #$ of arrows, $l, r = #$ of vertices with a left/right turn.
- For each loop there are 6 more/less turns to left than right. So

$$
Z_{loop} = \sum_{\{\text{configs}\}} t^{2N-L} (2\cos 6\alpha)^P,
$$

where $P = #$ of loops, and α is a fugacity.

- Nienhuis and colleagues showed that the p.f of an O(*n*) model can be written as a loop model
- Take a honeycomb lattice of 2*N* sites. Place arrows on edges such that at each vertex there are 0 or 2 arrows (1 in, 1 out). Gives oriented loops.
- Let $L = #$ of arrows, $l, r = #$ of vertices with a left/right turn.
- For each loop there are 6 more/less turns to left than right.
- So

$$
Z_{loop}=\sum_{\{configs\}}t^{2N-L}(2\cos 6\alpha)^P,
$$

where $P = \#$ of loops, and α is a fugacity.

• Then
$$
Z_{Potts} = \sum_{\{\sigma\}} \exp\left(K \sum_{\langle ij \rangle} \delta(\sigma_i, \sigma_j)\right)
$$
,

- Both the loop model and the Potts model are equivalent to a 6-v model on a kagomé lattice of 3*n* sites
- They are equivalent to the *same* model, and to one another, iff

$$
n = 2\cos(6\alpha) = 2 - (2 - t^2)^2, \ \ q = 4 - t^2 = 2 - 2\sin(3\alpha), \ \ e^(-K) =
$$

- Then *Zloop* = *ZPotts*. Nienhuis argues, based on the properties of the system of ODEs specifying the Potts model RG, that this determines the critical point with α real and *q* ∈ [0, 4]. Thus for all *n* ∈ [−2, 2].
- Setting $n = 0$ gives $t = \sqrt{2 + \frac{1}{n}}$ √ 2.
- **Potts model RG equations then yield the exponents.**

• Then
$$
Z_{Potts} = \sum_{\{\sigma\}} exp\left(K \sum_{\langle ij \rangle} \delta(\sigma_i, \sigma_j)\right)
$$
,

- Both the loop model and the Potts model are equivalent to a 6-v model on a kagomé lattice of 3*n* sites
- They are equivalent to the *same* model, and to one another, iff

$$
n = 2\cos(6\alpha) = 2 - (2 - t^2)^2, \ \ q = 4 - t^2 = 2 - 2\sin(3\alpha), \ \ e^(-K) =
$$

- Then *Zloop* = *ZPotts*. Nienhuis argues, based on the properties of the system of ODEs specifying the Potts model RG, that this determines the critical point with α real and *q* ∈ [0, 4]. Thus for all *n* ∈ [−2, 2].
- Setting $n = 0$ gives $t = \sqrt{2 + \frac{1}{n}}$ √ 2.
- **Potts model RG equations then yield the exponents.**

• Then
$$
Z_{Potts} = \sum_{\{\sigma\}} \exp\left(K \sum_{\langle ij \rangle} \delta(\sigma_i, \sigma_j)\right)
$$
,

- Both the loop model and the Potts model are equivalent to a 6-v model on a kagomé lattice of 3*n* sites
- They are equivalent to the *same* model, and to one another, iff

$$
n = 2\cos(6\alpha) = 2 - (2 - t^2)^2, \ \ q = 4 - t^2 = 2 - 2\sin(3\alpha), \ \ e^(-K) =
$$

- Then *Zloop* = *ZPotts*. Nienhuis argues, based on the properties of the system of ODEs specifying the Potts model RG, that this determines the critical point with α real and *q* ∈ [0, 4]. Thus for all *n* ∈ [−2, 2].
- Setting $n = 0$ gives $t = \sqrt{2 + \frac{1}{n}}$ √ 2.
- **Potts model RG equations then yield the exponents.**

• Then
$$
Z_{Potts} = \sum_{\{\sigma\}} \exp\left(K \sum_{\langle ij \rangle} \delta(\sigma_i, \sigma_j)\right)
$$
,

- Both the loop model and the Potts model are equivalent to a 6-v model on a kagomé lattice of 3*n* sites
- They are equivalent to the *same* model, and to one another, iff

$$
n = 2\cos(6\alpha) = 2 - (2 - t^2)^2, \ \ q = 4 - t^2 = 2 - 2\sin(3\alpha), \ \ e^(-K) =
$$

- Then *Zloop* = *ZPotts*. Nienhuis argues, based on the properties of the system of ODEs specifying the Potts model RG, that this determines the critical point with α real and *q* ∈ [0, 4]. Thus for all *n* ∈ [−2, 2].
- Setting $n = 0$ gives $t = \sqrt{2 + \frac{1}{n}}$ √ 2.
- **Potts model RG equations then yield the exponents.**

• Then
$$
Z_{Potts} = \sum_{\{\sigma\}} \exp\left(K \sum_{\langle ij \rangle} \delta(\sigma_i, \sigma_j)\right)
$$
,

- Both the loop model and the Potts model are equivalent to a 6-v model on a kagomé lattice of 3*n* sites
- They are equivalent to the *same* model, and to one another, iff

$$
n = 2\cos(6\alpha) = 2 - (2 - t^2)^2, \ \ q = 4 - t^2 = 2 - 2\sin(3\alpha), \ \ e^(-K) =
$$

- Then *Zloop* = *ZPotts*. Nienhuis argues, based on the properties of the system of ODEs specifying the Potts model RG, that this determines the critical point with α real and *q* ∈ [0, 4]. Thus for all *n* ∈ [−2, 2].
- Setting $n = 0$ gives $t = \sqrt{2 + \frac{1}{n}}$ √ 2.
- **•** Potts model RG equations then yield the exponents.

• Then
$$
Z_{Potts} = \sum_{\{\sigma\}} \exp\left(K \sum_{\langle ij \rangle} \delta(\sigma_i, \sigma_j)\right)
$$
,

- Both the loop model and the Potts model are equivalent to a 6-v model on a kagomé lattice of 3*n* sites
- They are equivalent to the *same* model, and to one another, iff

$$
n = 2\cos(6\alpha) = 2 - (2 - t^2)^2, \ \ q = 4 - t^2 = 2 - 2\sin(3\alpha), \ \ e^(-K) =
$$

Then *Zloop* = *ZPotts*. Nienhuis argues, based on the properties of the system of ODEs specifying the Potts model RG, that this determines the critical point with α real and *q* ∈ [0, 4]. Thus for all *n* ∈ [−2, 2].

• Setting
$$
n = 0
$$
 gives $t = \sqrt{2 + \sqrt{2}}$.

• Potts model RG equations then yield the exponents.

Next consider a *q*-state Potts model on the triangular lattice, with *N* sites σ_i , with $i \in 1, \cdots, q$.

• Then
$$
Z_{Potts} = \sum_{\{\sigma\}} \exp\left(K \sum_{\langle ij \rangle} \delta(\sigma_i, \sigma_j)\right)
$$
,

- Both the loop model and the Potts model are equivalent to a 6-v model on a kagomé lattice of 3*n* sites
- They are equivalent to the *same* model, and to one another, iff

$$
n = 2\cos(6\alpha) = 2 - (2 - t^2)^2, \ \ q = 4 - t^2 = 2 - 2\sin(3\alpha), \ \ e^(-K) =
$$

- Then *Zloop* = *ZPotts*. Nienhuis argues, based on the properties of the system of ODEs specifying the Potts model RG, that this determines the critical point with α real and *q* ∈ [0, 4]. Thus for all *n* ∈ [−2, 2].
- Setting $n = 0$ gives $t = \sqrt{2 + 1}$ $\frac{1}{\sqrt{2}}$ 2.
- Potts model RG equations then yield the exponents.

- Some 29 years later, Duminil-Copin and Smirnov have proved $t=\sqrt{2+1}$ √ 2.
- The proof is based on establishing a parafermionic operator, using discrete holomorphicity.
- Once one sees the proof however, both these concepts can be discarded.
- However we still have not even been able to prove the *existence* of a critical exponent, let alone its value.
- For many problems, one can obtain exact conjectures for many properties by the methods of statistical mechanics, with proofs usually coming afterwards.

- Some 29 years later, Duminil-Copin and Smirnov have proved $t=\sqrt{2+1}$ √ 2.
- The proof is based on establishing a parafermionic operator, using discrete holomorphicity.
- Once one sees the proof however, both these concepts can be discarded.
- However we still have not even been able to prove the *existence* of a critical exponent, let alone its value.
- For many problems, one can obtain exact conjectures for many properties by the methods of statistical mechanics, with proofs usually coming afterwards.

- Some 29 years later, Duminil-Copin and Smirnov have proved $t=\sqrt{2+1}$ √ 2.
- The proof is based on establishing a parafermionic operator, using discrete holomorphicity.
- Once one sees the proof however, both these concepts can be discarded.
- However we still have not even been able to prove the *existence* of a critical exponent, let alone its value.
- For many problems, one can obtain exact conjectures for many properties by the methods of statistical mechanics, with proofs usually coming afterwards.

- Some 29 years later, Duminil-Copin and Smirnov have proved $t=\sqrt{2+1}$ √ 2.
- The proof is based on establishing a parafermionic operator, using discrete holomorphicity.
- Once one sees the proof however, both these concepts can be discarded.
- However we still have not even been able to prove the *existence* of a critical exponent, let alone its value.
- For many problems, one can obtain exact conjectures for many properties by the methods of statistical mechanics, with proofs usually coming afterwards.

- Some 29 years later, Duminil-Copin and Smirnov have proved $t=\sqrt{2+1}$ √ 2.
- The proof is based on establishing a parafermionic operator, using discrete holomorphicity.
- Once one sees the proof however, both these concepts can be discarded.
- However we still have not even been able to prove the *existence* of a critical exponent, let alone its value.
- For many problems, one can obtain exact conjectures for many properties by the methods of statistical mechanics, with proofs usually coming afterwards.

John Hammersley 1920–2004

To quote John Hammersley, "It's much easier to prove something once you know that it is true."

Tony Guttmann [Statistical and mathematical physics of discrete lattice models](#page-0-0)

John Hammersley 1920–2004

To quote John Hammersley, "It's much easier to prove something once you know that it is true."

Tony Guttmann [Statistical and mathematical physics of discrete lattice models](#page-0-0)