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Model
» Tk infinite k + 1-regular tree.
» Spins [q], oy € [q] is the spin at v.
» Choose 0, at the root according to 7.

» Broadcast process.
» Independent Markov chain M on each (u,v) € E(T*).

Pij = Plo, = jloy = i]

> Gives rise to the free measure i on configurations.

» Model for random spin configurations of T*.
E.g. proper colorings, Ising and Potts models, independent
sets....



The Free measure

» Uniform distribution on proper colorings.

it
P(i,j) = ﬁ, 7 uniform on [q]

» Hardcore measure with fugacity A = w(1 + w)*. Choose
o, € {0,1} according to (mo, 1).

(3 8)-(& 1)
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Gibbs Measures, Uniqueness and Extremality

» Free measure u is a Gibbs measure on spin configurations.

» As g, k and M vary, is ;1 unique? extremal?



Reconstruction

Inference problem:

Given L(n), the configuration at depth n, is it possible to
reconstruct the value at the root? (with probability better than
guessing randomly)

Reconstruction non-solvability:

Vi lim Prlo,=i| L(n)] = (i)

[Georgii '88] Extremality of p is equivalent to reconstruction
non-solvability.
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The Hardcore Measure on the Rooted k + 1-regular Tree

p Let w > 0 and A = w(1 + w)k.

Choose o, € {0,1} at root p
according to

L ( )_ w 1+ w
T E 152w 142w )

Think of w as a small number in [0, 1].



The Hardcore Measure on the Rooted k + 1-regular Tree

Generate vertex states recur-
p sively from parents’ states ac-
cording to
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Phase Transitions

v

[Kelly '85] Uniqueness threshold at Ay = k*/(k — 1)k+1.
“Census”, “second eigenvalue” or Kesten Stigum bound.
Reconstruction for (A2(M))?k > 1. Tight for Ising model.

» [Mossel '01, Brightwell-Winkler '04] Possible to reconstruct
below the KS-bound for Potts models, binary asymmetric
channels and hardcore model.

v

» [Mossel '01] Coupling to show there is a threshold for
reconstruction.

» Finding the reconstruction threshold arises naturally in
biology, information theory and statistical physics.



The Reconstruction Threshold on the k-regular Tree

Ar [Mossel]

non-reconstruction reconstruction

» [Mossel '01] Non rec. for A < Ag, reconst. for A > Ag.



Bounds on the Reconstruction Threshold

Ar [Mos]

non-reconstruction ‘ reconstruction

|

e — 1 [Mar] (e + o(1)) In? k [Bri-Win]

» [Martin '03] Non-reconstruction for A < e — 1.

» [Brightwell-Winkler '04] Reconstruction when

S Ink+Inlnk+1+¢

A > (e+ o(1))(In k)2, p



Improved Bound for Non-Reconstruction

Ar [Mos]
non-reconstruction { reconstruction
e — 1 [Mar] (e + o(1)) In? k [Bri-Win]
(in2—o(1)) n” k [B-Sly-Tet)

2Inink

» [B-Sly-Tetali '10] Non-reconstruction for

\ < (In2-o(1)) In? k
- 2Inln k ’

w *

< Ink+Inink —Ininink —In2+41Inin2 —o(1)
< p =



An Equivalent Definition of Reconstruction Using
Conditional Posterior

Magnetization:

X(n) = 3 [P0, = Lo(L(n)) = A) — ]

Theorem
Non-reconstruction is equivalent to

lim EY [X(n)] =0,

n—oo

where IElTn [X(n)] denotes the measure conditioned on o, = 1.



Steps for Showing Non-Reconstruction

1. Tree recursions for posterior probabilities

k —0lo(L) = A
o, = 1o(L) = A) = 2= P, = 0lo(L) j\li\.

1+ AT oy, = 0lo(L) = AY)



Steps for Showing Non-Reconstruction
2. Using methods from [Borgs-Chayes-Mossel-Roch '06]

Tree recursion for X = if EL [X] < 1, then
4

EL [X(£+1)] < (w2e2FK)EL [X(0)].

Tl+1
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Steps for Showing Non-Reconstruction

2. Tree recursion for X = if EL L[X] < %, then

Y, [X(£+1)] < (w22 K)EY, [X(0)]

(In k)3/2
Kk1/2

For w < w*, w2e%“’kk <~ < 1 for large k.
Hence EIT,, [X] — 0. (We know ]ElTn[X] >0)

3. For a depth 3 tree, typical conditional posterior probability
EL[X] < 1/2.

> We show EY. [Ploreo: = 1 | o(L)]] < 3.
> This implies B} [X] < 1/2.
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In a Bad subtree T»

IP)(;'2[Uroot =0 0o(L(2)] = 2 <1 + 1 > - %
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What is the Typical Conditional Posterior in T37

Bad subtree T,

v

Chance that a subtree is bad ~ 3%.

v

By Chernoff, we see ~ InIn k bad subtrees w.p. at least 2/3.
Bad subtrees = if w < w*, PY [0, = 1 | o(L)] = ok(1).
EL[Plo, = 1] o(L)]] < 1/2. O

v

v



Random Constraint Satisfaction

v

Random 3-SAT: n Boolean variables xi, - - - , x,.

v

Choose m = an constraints, or “clauses” uniformly and
independently. Negate variables w.p. 1/2.

f:(X4V72VX12)A(X27VX8V71)A--'

v

Intuitively, larger « harder to satisfy.

v

[Friedgut '99] There is an a.(n) s.t. for any € > 0,

1 if 1—
lim P[f is satisfiable] = { if @ < (1—¢)ac(n)

n—oo

0 if a>(14¢€)ac(n)



Geometry of the Solution Space
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Clustering and Algorithmic Efficiency

» [Achlioptas-Coja-Oghlan-Ricci-Tersenghi '10],
[Montanari-Restrepo-Tetali '09] Clustering for random
colorings of G(n, k) and that it coincides with reconstruction
in the tree (threshold bound [Sly '09]).

» Clustering coincides with persistence of long-range correlation
of spins of vertices for sparse random graph.

> At clustering, energy barriers between clusters are bottlenecks
for Glauber dynamics. Local algorithms conjectured to be
efficient upto reconstruction threshold.



Glauber Dynamics on Trees

v

[Berger-Kenyon-Mossel-Peres '05], [Ding-Lubetzky-Peres '10],
[Martinelli-Sinclair-Weitz '04] For the Ising model,

Trelax = O(n) in non-reconstruction regime and slower in
reconstruction regime.

> [Tetali-Vera-Vigoda-Yang '10] Phase transition of Tejax at
reconstruction threshold for colorings of tree with free
boundary.

» [Martinelli-Sinclair-Weitz '04] For the hardcore model,
Trelax = O(n) for all X on the tree with free boundary.

> [Restrepo-Stefankovic-Vera-Vigoda-Yang '10] For the hardcore
modeel, phase transition in relaxation time for constructed
boundary at reconstruction threshold.



Glauber Dynamics on Sparse random Graphs

» Random regular graphs. [Vigoda '99] O(nln n) mixing for
colorings only well below uniqueness.

» Erdds-Renyi graphs. [Mossel-Sly '08] Polynomial mixing for
colorings for g < k*.



Constraint Satisfaction - Optimization

Finding maximum independent set in random sparse graph of
average degree k.

» [Frieze '90] There exist independent sets of size w

> Greedy algorithm yields independent sets of size w
(corresponding to mjn).

» [Coja-Oghlan - Efthymiou '10] Combinatorial structure of
solution space undergoes phase transition when independent
sets are of size ~ L}(‘k



