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In This Talk

I Introduction
I Reconstruction in Trees.

I Gibbs measures.

I Applications and Questions
I Reconstruction Threshold for the Hardcore model.

I Random Constraint Satisfaction and Clustering.

I Mixing of Glauber Dynamics.



Broadcast Process on a Tree

Model

I T k infinite k + 1-regular tree.

I Spins [q], σv ∈ [q] is the spin at v .

I Choose σρ at the root according to π.
I Broadcast process.

I Independent Markov chain M on each (u, v) ∈ E (T k).

Pi,j = P[σu = j |σv = i ]

I Gives rise to the free measure µ on configurations.

I Model for random spin configurations of T k .
E.g. proper colorings, Ising and Potts models, independent
sets....
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The Free measure

I Uniform distribution on proper colorings.

P(i , j) =
δi 6=j

q − 1
, π uniform on [q]

I Hardcore measure with fugacity λ = ω(1 + ω)k . Choose
σρ ∈ {0, 1} according to (π0, π1).

M =

(
P1,1 P1,0

P0,1 P0,0

)
=

(
0 1
ω

1+ω
1

1+ω

)
.



Gibbs Measures, Uniqueness and Extremality

I Free measure µ is a Gibbs measure on spin configurations.

I As q, k and M vary, is µ unique? extremal?



Reconstruction

Inference problem:

Given L(n), the configuration at depth n, is it possible to
reconstruct the value at the root? (with probability better than
guessing randomly)

Reconstruction non-solvability:

∀ i lim
n→∞

PT [σr = i | L(n)]→ π(i)

[Georgii ’88] Extremality of µ is equivalent to reconstruction
non-solvability.



The Hardcore Measure on the Rooted k + 1-regular Tree

ρ
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The Hardcore Measure on the Rooted k + 1-regular Tree

ρ
Generate vertex states recur-
sively from parents’ states ac-
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Phase Transitions

I [Kelly ’85] Uniqueness threshold at λU = kk/(k − 1)k+1.

I “Census”, “second eigenvalue” or Kesten Stigum bound.
Reconstruction for (Λ2(M))2k > 1. Tight for Ising model.

I [Mossel ’01, Brightwell-Winkler ’04] Possible to reconstruct
below the KS-bound for Potts models, binary asymmetric
channels and hardcore model.

I [Mossel ’01] Coupling to show there is a threshold for
reconstruction.

I Finding the reconstruction threshold arises naturally in
biology, information theory and statistical physics.



The Reconstruction Threshold on the k-regular Tree

non-reconstruction reconstruction

λR [Mossel]

I [Mossel ’01] Non rec. for λ < λR , reconst. for λ > λR .



Bounds on the Reconstruction Threshold

λR [Mos]

non-reconstruction reconstruction

(e + o(1)) ln2 k [Bri-Win]e − 1 [Mar]

I [Martin ’03] Non-reconstruction for λ < e − 1.

I [Brightwell-Winkler ’04] Reconstruction when

λ ≥ (e + o(1))(ln k)2, ω ≥ ln k + ln ln k + 1 + ε

k
.



Improved Bound for Non-Reconstruction

λR [Mos]

non-reconstruction reconstruction

(e + o(1)) ln2 k [Bri-Win]e − 1 [Mar]
(ln 2−o(1)) ln2 k

2 ln ln k [B-Sly-Tet]

I [B-Sly-Tetali ’10] Non-reconstruction for

λ ≤ (ln 2− o(1)) ln2 k

2 ln ln k
,

ω ≤ ln k + ln ln k − ln ln ln k − ln 2 + ln ln 2− o(1)

k
:= ω∗.



An Equivalent Definition of Reconstruction Using
Conditional Posterior

Magnetization:

X (n) = π−10 [P(σρ = 1|σ(L(n)) = A)− π1]

?

Theorem
Non-reconstruction is equivalent to

lim
n→∞

E1
Tn

[X (n)] = 0,

where E1
Tn

[X (n)] denotes the measure conditioned on σρ = 1.



Steps for Showing Non-Reconstruction

1. Tree recursions for posterior probabilities

P(σρ = 1|σ(L) = A) =
λ
∏k

i=1 P(σρi = 0|σ(L) = Ai )

1 + λ
∏k

i=1 P(σρi = 0|σ(L) = Ai )



Steps for Showing Non-Reconstruction

2. Using methods from [Borgs-Chayes-Mossel-Roch ’06]

Tree recursion for X ⇒ if E1
T`

[X ] < 1
2 , then

E1
T`+1

[X (`+ 1)] ≤ (ω2e
1
2
ωkk)E1

T`
[X (`)].
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T3
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I This implies E1
T3
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What is the Typical Conditional Posterior in T3?

Bad subtree T2

?

?

In a Bad subtree T2

P0
T2

[σroot = 0 | σ(L(2))] =
1

2

(
1 +

1

1 + 2λ

)
∼ 1

2



What is the Typical Conditional Posterior in T3?

Bad subtree T2

?
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I Chance that a subtree is bad ∼ 3 ln ln k
k .

I By Chernoff, we see ∼ ln ln k bad subtrees w.p. at least 2/3.

I Bad subtrees ⇒ if ω ≤ ω∗, P1
T3

[σρ = 1 | σ(L)] = ok(1).

I E1
T3

[P[σρ = 1 | σ(L)]] < 1/2.
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Random Constraint Satisfaction

I Random 3-SAT: n Boolean variables x1, · · · , xn.

I Choose m = αn constraints, or “clauses” uniformly and
independently. Negate variables w.p. 1/2.

f = (x4 ∨ x2 ∨ x12) ∧ (x27 ∨ x8 ∨ x1) ∧ · · ·

I Intuitively, larger α harder to satisfy.

I [Friedgut ’99] There is an αc(n) s.t. for any ε > 0,

lim
n→∞

P[f is satisfiable] =

{
1 if α < (1− ε)αc(n)

0 if α > (1 + ε)αc(n)



Geometry of the Solution Space
[Krzakala, Montanari, Ricci-Tersenghi, Semerjian, Zdeborova-’06]

I At αclust the set of solutions breaks into exponentially many
clusters of exponentially small mass and large intracluster
distance.

I At αcond these condense into subexponentially many clusters
whose largest n sizes are Poisson-Dirichlet.

I All clusters disappear at satisfiability threshold αc .
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Clustering and Algorithmic Efficiency

I [Achlioptas-Coja-Oghlan-Ricci-Tersenghi ’10],
[Montanari-Restrepo-Tetali ’09] Clustering for random
colorings of G (n, k) and that it coincides with reconstruction
in the tree (threshold bound [Sly ’09]).

I Clustering coincides with persistence of long-range correlation
of spins of vertices for sparse random graph.

I At clustering, energy barriers between clusters are bottlenecks
for Glauber dynamics. Local algorithms conjectured to be
efficient upto reconstruction threshold.



Glauber Dynamics on Trees

I [Berger-Kenyon-Mossel-Peres ’05], [Ding-Lubetzky-Peres ’10],
[Martinelli-Sinclair-Weitz ’04] For the Ising model,
Trelax = O(n) in non-reconstruction regime and slower in
reconstruction regime.

I [Tetali-Vera-Vigoda-Yang ’10] Phase transition of Trelax at
reconstruction threshold for colorings of tree with free
boundary.

I [Martinelli-Sinclair-Weitz ’04] For the hardcore model,
Trelax = O(n) for all λ on the tree with free boundary.

I [Restrepo-Stefankovic-Vera-Vigoda-Yang ’10] For the hardcore
modeel, phase transition in relaxation time for constructed
boundary at reconstruction threshold.



Glauber Dynamics on Sparse random Graphs

I Random regular graphs. [Vigoda ’99] O(n ln n) mixing for
colorings only well below uniqueness.

I Erdös-Renyi graphs. [Mossel-Sly ’08] Polynomial mixing for
colorings for q < k4.



Constraint Satisfaction - Optimization

Finding maximum independent set in random sparse graph of
average degree k .

I [Frieze ’90] There exist independent sets of size (2−o(1))n ln k
k .

I Greedy algorithm yields independent sets of size (1+o(1))n ln k
k

(corresponding to π∗1n).

I [Coja-Oghlan - Efthymiou ’10] Combinatorial structure of
solution space undergoes phase transition when independent
sets are of size ∼ n ln k

k .


