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Problem 1: Counting minimum (s,t)-cuts

Input:
 

a positively weighted (directed) planar graph G=(V,E)    
and two vertices s,t

Output: the number of minimum (s,t)-cuts of G

Example:

Recall: (s,t)-cut is a set S⊆V containing s but not t; its 
weight is the sum of edge weights out of S
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Input:
 

a positively weighted (directed) planar graph G=(V,E)    
and two vertices s,t

Output: the number of minimum (s,t)-cuts of G

Example:

Recall: (s,t)-cut is a set S⊆V containing s but not t; its 
weight is the sum of edge weights out of S

s
t

5

2

1

4

2

2

4

3

31

3

3

1

weight(S3

 

)  
= 2+1+4   
= 7

S3

Problem 1: Counting minimum (s,t)-cuts



Input:
 

a positively weighted (directed) planar graph G=(V,E)    
and two vertices s,t

Output: the number of minimum (s,t)-cuts of G

Example:

Min (s,t)-cut weight: 7

Number of min (s,t)-cuts: 5
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Problem 1: Counting minimum (s,t)-cuts



Motivation & related work

Earliest cut-counting works: network reliability problems

- Min-cuts / Disconnecting two vertices:

-

 

number of min (s,t)-cuts useful in estimating the probability of 
disconnecting the network, e.g., [Colbourn

 

’05]

-

 

efficient poly-time counting in (unweighted) planar (multi-) graphs 
when s,t

 

are on the same face [Ball and Provan

 

’83]

Other, recent, motivation: computer vision

-
 

e.g.: [Boykov

 

& Veksler

 

’06], [Boykov, Veksler, & Zabih

 

’01],        
[Vicente, Kolmogorov, & Rother

 

’08], [Zeng, Samaras, Chen, & Peng

 

’08]



Motivation & related work

Other, recent, motivation: computer vision

-
 

the simplest case: image segmentation                           
where image represented by a planar graph

-

 

user selects two points, the graph cut represents              
the segmentation

-

 

currently in use only min-cut algorithms                                     
(optimization version), using an arbitrary min-cut

- many advantages of counting (and the related sampling) versions, e.g.:

- statistical tests

- user can choose from several cuts

-

 

can be used to compute the partition function that can be used to 
estimate model parameters

http://path.upmc.edu/cases/case123.html
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Problem 2: Single-source-multi-sink cuts

Input:
 

a positively weighted planar graph G=(V,E),                    
a source vertex s and a set of sink vertices T (s∈T)

Output: the number of contiguous minimum (s,T)-cuts

Example:
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Input:
 

a positively weighted planar graph G=(V,E),                    
a source vertex s and a set of sink vertices T (s∈T)
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Problem 2: Single-source-multi-sink cuts



Input:
 

a positively weighted planar graph G=(V,E),                    
a source vertex s and a set of sink vertices T (s∈T)
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Not a contiguous cut !
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Input:
 

a positively weighted planar graph G=(V,E),                    
a source vertex s and a set of sink vertices T (s∈T)

Output: the number of contiguous minimum (s,T)-cuts

Example:
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Problem 2: Single-source-multi-sink cuts



Motivation & related work –
 

con’t

Back to image segmentation:

- what about thin objects ?

-

 

user selects several points to guide                           
the segmentation algorithm

http://www.sciencephoto.com/media/310285/view



http://www.sciencephoto.com/media/310285/view

Back to image segmentation:

- what about thin objects ?

-

 

user selects several points to guide                           
the segmentation algorithm

Motivation & related work –
 

con’t



http://www.sciencephoto.com/media/310285/view

Back to image segmentation:

- what about thin objects ?

-

 

user selects several points to guide                           
the segmentation algorithm

Motivation & related work –
 

con’t



http://www.sciencephoto.com/media/310285/view

Back to image segmentation:

- what about thin objects ?

-

 

user selects several points to guide                           
the segmentation algorithm

Motivation & related work –
 

con’t



Back to image segmentation:

- what about thin objects ?

-

 

user selects several points to guide                           
the segmentation algorithm

-

 

contiguity requirements [connectivity                          
priors]

http://www.sciencephoto.com/media/310285/view

Motivation & related work –
 

con’t



Recent progress in flow/cut algorithms for planar graphs        
[optimization problems, not counting/sampling]:

-

 

[Borradaile

 

& Klein ’09]: O(n

 

log n) single-source-single-sink acyclic 
max.flow

-

 

[Borradaile, Sankowski, & Wulff-Nilsen

 

’10]: fast computation of a 
minimum single-source-single-sink cut, for a sequence of given source-

 sink pairs

-

 

[Italiano, Nussbaum, Sankowski, & Wulff-Nilsen

 

’11]: undirected planar 
graphs, algos

 

below O(n

 

log n) time barrier

-

 

[Borradaile, Klein, Mozes, Nussbaum, & Wulff-Nilsen

 

’11]: O(n

 

log3

 

n) 
multi-source-multi-sinks max. flow

Motivation & related work –
 

con’t



Hardness results in general graphs:

- [Ball & Provan

 

’83]:  counting minimum (s,t)-cuts is #P-complete

-

 

[Dyer, Goldberg, Greenhill, Jerrum

 

‘03]:  AP-reduction between 
counting independent sets in bipartite graphs and counting upper

 

sets of 
a poset

Motivation & related work –
 

con’t



Our contributions

Thm
 

1:
 

An O(dn
 

+ n log n) algorithm counting all minimum 
(s,t)-cuts in weighted planar graphs, where n is the number 
of vertices, and d is the distance from s to t in the 
unweighted

 
graph.

Thm
 

2: An O(n3) algorithm counting all contiguous minimum 
single-source multi-sink cuts in weighted planar graphs.

[Can be used to find a contiguous minimum (s,T)-cut.]

In both cases:

After this preprocessing time, we can produce a uniformly 
random minimum (s,t)-cut, resp. contiguous minimum        
(s,T)-cut, in linear time.



Review of network flows

Flow network:

- a directed graph with positive capacities on the edges, and

- two vertices s (the source) and t (the sink)
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Review of network flows

Flow f: flow amount on every edge satisfying:

- for every edge e: flow amount f(e) ≤
 

capacity c(e), and

- for every vertex v (except s,t):

flow amount into v = flow amount out of v 

- flow value: amount out of s minus amount into s
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Review of network flows

Residual graph
 

of a flow f:

- forward edges: weight = capacity –
 

flow

- backward edges: weight = flow
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Review of network flows

Residual graph
 

of a flow f:

- forward edges: weight = capacity –
 

flow

- backward edges: weight = flow
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Review of network flows

Residual graph
 

of a flow f:

- forward edges: weight = capacity –
 

flow

- backward edges: weight = flow

(only edges with positive weight)
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Review of network flows

Ford-Fulkerson Thm:

value of max s-t
 

flow = value of min s-t
 

cut

Note: flow is max iff
 

no s-t
 

path in the residual graph

t

2

1

1
1

7

s
4

4

5

5
2 2

3 3

3



Ball & Provan’s
 

reduction

Given an unweighted
 

(multi-)graph and vertices s,t:

1.
 

Find a max flow and construct the residual graph

2.
 

Contract strongly connected components

3.
 

Compute # “forward-cuts”
 

in the DAG

(forward-cuts = upper set / maximal antichains

 

in the poset)

ts
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Ball & Provan’s
 

reduction

ts

Contract(t)

Contract(s)

“Forward-cut:”
 

a set of vertices S such that:

-
 

contains Contract(s) and not Contract(t), and

-
 

for every vertex in S, all successors also in S
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“Forward-cut:”
 

a set of vertices S such that:

-
 

contains Contract(s) and not Contract(t), and

-
 

for every vertex in S, all successors also in S

Another DAG example:



Ball & Provan’s
 

reduction

Contract(t)

Contract(s)

OK

“Forward-cut:”
 

a set of vertices S such that:

-
 

contains Contract(s) and not Contract(t), and

-
 

for every vertex in S, all successors also in S

Another DAG example:



Ball & Provan’s
 

reduction

Contract(t)

Contract(s)

OK

“Forward-cut:”
 

a set of vertices S such that:

-
 

contains Contract(s) and not Contract(t), and

-
 

for every vertex in S, all successors also in S

Another DAG example:



Ball & Provan’s
 

reduction

Contract(t)

Contract(s)

Not OK !!!   
(not “forward”)

“Forward-cut:”
 

a set of vertices S such that:

-
 

contains Contract(s) and not Contract(t), and

-
 

for every vertex in S, all successors also in S

Another DAG example:
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Ball & Provan’s
 

reduction

ts

Contract(t)

Contract(s)

Given an unweighted
 

(multi-)graph and vertices s,t:

1.
 

Find a max flow and construct the residual graph

2.
 

Contract strongly connected components

3.
 

Compute # “forward-cuts”
 

in the DAG

positively weighted



Observe: Planar input graph -> planar DAG

Goal: count “forward-cuts”
 

(or maximal antichains)

“Forward-cuts”
 

in planar DAGs
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face
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count all “top”-“bottom”
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Observe: Planar input graph -> planar DAG

Goal: count “forward-cuts”
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What if s,t
 

are on different faces ?

“Forward-cuts”
 

and different faces

Contract(t)Contract(s)



What if s,t
 

are on different faces ? 
-
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construct the dual, except no edges cross the path
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What if s,t
 

are on different faces ? 
-

 

find a contract(t)-contract(s) path

-

 

construct the dual, except no edges cross the path -> DAG

-

 

sum # paths between faces sharing an edge on the path

“Forward-cuts”
 

and different faces

Contract(t)Contract(s)



-
 

Choose a red edge proportionally to the corresponding 
path count.

-
 

Starting at the corresponding end
 

vertex, choose a 
predecessor vertex proportionally to the stored value

-
 

Continue until get to the start vertex

Sampling minimum (s,t)-cuts

Contract(t)Contract(s)



Reduction to forward cuts:
-

 

O(n

 

log n) to find a (acyclic) max-flow in planar graphs                 
[Borradaile-Klein ’09]

-

 

O(n) to find and contract the strongly connected components

Counting forward cuts:
-

 

O(n) find the path, construct the dual graph

-

 

O(n) compute #paths between two end-points in the dual

-

 

O(dn) overall computation of paths, at most d end-point pairs where d 
= length of the s-t

 

path

TOTAL: O(dn
 

+ n log n)

Running time



Contiguous cuts

Contiguous set of vertices: can be separated from the other 
vertices by a simply connected planar region that intersects 
every edge at most once

Examples:

contiguous contiguous



Contiguous cuts

not contiguous not contiguous

Contiguous set of vertices: can be separated from the other 
vertices by a simply connected planar region that intersects 
every edge at most once

Examples:



Back to the Ball & Provan’s
 

reduction

-
 

Every minimum cut separating s and t is contiguous

-
 

For multiple sinks:

-
 

not planar anymore, i.e.                                        
BP reduction works but don’t know                            
how to count forward cuts

-
 

does the reduction “preserve”
 

contiguous cuts ?

s
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t3
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3

the new sink
∞

∞ ∞



t2

s

Back to the Ball & Provan’s
 

reduction

Does the reduction preserve contiguous cuts ?

NO…

Blue edges used up to their capacity, other edges not ->  
Only blue edges survive in the contracted residual graph:

s

t1 t2

All edges weight ∞, 
except for blue edges: 
weight 1.

t1



t2

s

Back to the Ball & Provan’s
 

reduction

Does the reduction preserve contiguous cuts ?

NO…
s

t1 t2

t1

both contiguous

t2

s

s

t1 t2

t1

only bottom contiguous



The new reduction and counting

-
 

A new reduction: creates a different DAG where 
contiguous forward (T’,s’)-cuts are in bijection

 
with 

contiguous (s,T)-cuts in G

-
 

Computing the number of contiguous forward (T’,s’)-cuts: 
dynamic programming across a tree-structure connecting 
T’

 
with s’

 
in the dual graph



Cut is not a simple cycle !

-> a tour in the dual graph.

Tours in the dual graph

t3
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t1
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t2

A contiguous 
forward (T,s)-cut

Cut is not a simple cycle !

-> a tour in the dual graph.

Tours in the dual graph
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t2

Another contiguous 
forward (T,s)-cut

Cut is not a simple cycle !

-> a tour in the dual graph.

Tours in the dual graph



A non-crossing tour:

For every face visited by the tour, its edges must be “cut”
 

in 
the clockwise order when traversing the tour.

t3

s

t1

t2

Another contiguous 
forward (T,s)-cut

f

Tours in the dual graph



A non-crossing tour:

For every face visited by the tour, its edges must be “cut”
 

in 
the clockwise order when traversing the tour.

Not non-crossing !

Tours in the dual graph



Lemma:

Contiguous forward (T,s)-cuts are in 1-1 correspondence with 
non-crossing tours in the dual of the graph obtained from 
the new reduction.

Not non-crossing !

Tours in the dual graph



Goal: count non-crossing tours

Counting via dynamic programming
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Goal: count non-crossing tours

Idea: build a tree from T to s:

Counting via dynamic programming
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Goal: count non-crossing tours

Idea: build a tree from T to s:

Counting via dynamic programming

t3

s

t1

t2



Goal: count non-crossing tours

Idea: build a tree from T to s:

Then, compute #paths                                            
between a “left”

 
and                                                            

a “right”
 

edge in a “wedge”.

Generalize to larger wedge distance (of the left and the 
right edge) via dynamic programming.

Counting via dynamic programming

s

T



Many open problems:

-
 

multi-source multi-sink min cuts: counting (contig
 

or not)

-
 

multi-source multi-sink contig. min cuts: find

-
 

other notions of contiguity

-
 

graphs arising in computer vision (e.g., high-dimensional 
grids)

-
 

non-planar graphs ? (unweighted
 

or weighted)

-
 

sampling all cuts proportionally to their weights

Open Problems
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