
Counting and sampling minimum cuts
in weighted planar graphs

Ivona Bezáková
(Rochester Institute of Technology)

Based on joint works with Adam Friedlander and Zach Langley.

Discrete Lattice Models in Mathematics, Physics, and Computing
MSRI, Berkeley, January 13, 2012

Problem 1: Counting minimum (s,t)-cuts

Input:

a positively weighted (directed) planar graph G=(V,E)
and two vertices s,t

Output: the number of minimum (s,t)-cuts of G

Example:

Recall: (s,t)-cut is a set S⊆V containing s but not t; its
weight is the sum of edge weights out of S

s
t

5

2

1

4

2

2

4

3

31

3

3

1

Input:

a positively weighted (directed) planar graph G=(V,E)
and two vertices s,t

Output: the number of minimum (s,t)-cuts of G

Example:

Recall: (s,t)-cut is a set S⊆V containing s but not t; its
weight is the sum of edge weights out of S

s
t

5

2

1

4

2

2

4

3

31

3

3

1

weight(S1

)
= 2+1+1+3+3
= 10

S1

Problem 1: Counting minimum (s,t)-cuts

Input:

a positively weighted (directed) planar graph G=(V,E)
and two vertices s,t

Output: the number of minimum (s,t)-cuts of G

Example:

Recall: (s,t)-cut is a set S⊆V containing s but not t; its
weight is the sum of edge weights out of S

s
t

5

2

1

4

2

2

4

3

31

3

3

1

S2

weight(S2

)
= 2+1+1+3
= 7

Problem 1: Counting minimum (s,t)-cuts

Input:

a positively weighted (directed) planar graph G=(V,E)
and two vertices s,t

Output: the number of minimum (s,t)-cuts of G

Example:

Recall: (s,t)-cut is a set S⊆V containing s but not t; its
weight is the sum of edge weights out of S

s
t

5

2

1

4

2

2

4

3

31

3

3

1

weight(S3

)
= 2+1+4
= 7

S3

Problem 1: Counting minimum (s,t)-cuts

Input:

a positively weighted (directed) planar graph G=(V,E)
and two vertices s,t

Output: the number of minimum (s,t)-cuts of G

Example:

Min (s,t)-cut weight: 7

Number of min (s,t)-cuts: 5

s
t

5

2

1

4

2

2

4

3

31

3

3

1

Problem 1: Counting minimum (s,t)-cuts

Motivation & related work

Earliest cut-counting works: network reliability problems

- Min-cuts / Disconnecting two vertices:

-

number of min (s,t)-cuts useful in estimating the probability of
disconnecting the network, e.g., [Colbourn

’05]

-

efficient poly-time counting in (unweighted) planar (multi-) graphs
when s,t

are on the same face [Ball and Provan

’83]

Other, recent, motivation: computer vision

-

e.g.: [Boykov

& Veksler

’06], [Boykov, Veksler, & Zabih

’01],
[Vicente, Kolmogorov, & Rother

’08], [Zeng, Samaras, Chen, & Peng

’08]

Motivation & related work

Other, recent, motivation: computer vision

-

the simplest case: image segmentation
where image represented by a planar graph

-

user selects two points, the graph cut represents
the segmentation

-

currently in use only min-cut algorithms
(optimization version), using an arbitrary min-cut

- many advantages of counting (and the related sampling) versions, e.g.:

- statistical tests

- user can choose from several cuts

-

can be used to compute the partition function that can be used to
estimate model parameters

http://path.upmc.edu/cases/case123.html

Motivation & related work

http://path.upmc.edu/cases/case123.html

Other, recent, motivation: computer vision

-

the simplest case: image segmentation
where image represented by a planar graph

-

user selects two points, the graph cut represents
the segmentation

-

currently in use only min-cut algorithms
(optimization version), using an arbitrary min-cut

- many advantages of counting (and the related sampling) versions, e.g.:

- statistical tests

- user can choose from several cuts

-

can be used to compute the partition function that can be used to
estimate model parameters

Motivation & related work

http://path.upmc.edu/cases/case123.html

Other, recent, motivation: computer vision

-

the simplest case: image segmentation
where image represented by a planar graph

-

user selects two points, the graph cut represents
the segmentation

-

currently in use only min-cut algorithms
(optimization version), using an arbitrary min-cut

- many advantages of counting (and the related sampling) versions, e.g.:

- statistical tests

- user can choose from several cuts

-

can be used to compute the partition function that can be used to
estimate model parameters

Problem 2: Single-source-multi-sink cuts

Input:

a positively weighted planar graph G=(V,E),
a source vertex s and a set of sink vertices T (s∈T)

Output: the number of contiguous minimum (s,T)-cuts

Example:
s

t1

5

6

1

1

2

6

1

2

11

4

1

1

t2

t3
5

3

3

3

Input:

a positively weighted planar graph G=(V,E),
a source vertex s and a set of sink vertices T (s∈T)

Output: the number of contiguous minimum (s,T)-cuts

Example:
s

t1

5

6

1

1

2

6

1

2

11

4

1

1

t2

t3
5

3

3

3S

Weight(S) = 6+1+2+6 = 15

Problem 2: Single-source-multi-sink cuts

Input:

a positively weighted planar graph G=(V,E),
a source vertex s and a set of sink vertices T (s∈T)

Output: the number of contiguous minimum (s,T)-cuts

Example:
s

t1

5

6

1

1

2

6

1

2

11

4

1

1

t2

t3
5

3

3

3
S

Weight(S) =
1+1+1+2+1+1+2+1+1 = 11

Problem 2: Single-source-multi-sink cuts

s

t1

5

6

1

1

2

6

1

2

11

4

1

1

t2

t3
5

3

3

3
S

Weight(S) =
1+1+1+2+1+1+2+1+1 = 11

Not a contiguous cut !

Input:

a positively weighted planar graph G=(V,E),
a source vertex s and a set of sink vertices T (s∈T)

Output: the number of contiguous minimum (s,T)-cuts

Example:

Problem 2: Single-source-multi-sink cuts

Input:

a positively weighted planar graph G=(V,E),
a source vertex s and a set of sink vertices T (s∈T)

Output: the number of contiguous minimum (s,T)-cuts

Example:
s

t1

5

6

1

1

2

6

1

2

11

4

1

1

t2

t3
5

3

3

3
S

Weight(S) =
6+2+1+1+1 = 11

Contiguous minimum cut

Problem 2: Single-source-multi-sink cuts

Motivation & related work –

con’t

Back to image segmentation:

- what about thin objects ?

-

user selects several points to guide
the segmentation algorithm

http://www.sciencephoto.com/media/310285/view

http://www.sciencephoto.com/media/310285/view

Back to image segmentation:

- what about thin objects ?

-

user selects several points to guide
the segmentation algorithm

Motivation & related work –

con’t

http://www.sciencephoto.com/media/310285/view

Back to image segmentation:

- what about thin objects ?

-

user selects several points to guide
the segmentation algorithm

Motivation & related work –

con’t

http://www.sciencephoto.com/media/310285/view

Back to image segmentation:

- what about thin objects ?

-

user selects several points to guide
the segmentation algorithm

Motivation & related work –

con’t

Back to image segmentation:

- what about thin objects ?

-

user selects several points to guide
the segmentation algorithm

-

contiguity requirements [connectivity
priors]

http://www.sciencephoto.com/media/310285/view

Motivation & related work –

con’t

Recent progress in flow/cut algorithms for planar graphs
[optimization problems, not counting/sampling]:

-

[Borradaile

& Klein ’09]: O(n

log n) single-source-single-sink acyclic
max.flow

-

[Borradaile, Sankowski, & Wulff-Nilsen

’10]: fast computation of a
minimum single-source-single-sink cut, for a sequence of given source-

 sink pairs

-

[Italiano, Nussbaum, Sankowski, & Wulff-Nilsen

’11]: undirected planar
graphs, algos

below O(n

log n) time barrier

-

[Borradaile, Klein, Mozes, Nussbaum, & Wulff-Nilsen

’11]: O(n

log3

n)
multi-source-multi-sinks max. flow

Motivation & related work –

con’t

Hardness results in general graphs:

- [Ball & Provan

’83]: counting minimum (s,t)-cuts is #P-complete

-

[Dyer, Goldberg, Greenhill, Jerrum

‘03]: AP-reduction between
counting independent sets in bipartite graphs and counting upper

sets of
a poset

Motivation & related work –

con’t

Our contributions

Thm

1:

An O(dn

+ n log n) algorithm counting all minimum
(s,t)-cuts in weighted planar graphs, where n is the number
of vertices, and d is the distance from s to t in the
unweighted

graph.

Thm

2: An O(n3) algorithm counting all contiguous minimum
single-source multi-sink cuts in weighted planar graphs.

[Can be used to find a contiguous minimum (s,T)-cut.]

In both cases:

After this preprocessing time, we can produce a uniformly
random minimum (s,t)-cut, resp. contiguous minimum
(s,T)-cut, in linear time.

Review of network flows

Flow network:

- a directed graph with positive capacities on the edges, and

- two vertices s (the source) and t (the sink)

s t

7

5
4

23

5

31
1

7

5

Review of network flows

Flow f: flow amount on every edge satisfying:

- for every edge e: flow amount f(e) ≤

capacity c(e), and

- for every vertex v (except s,t):

flow amount into v = flow amount out of v

- flow value: amount out of s minus amount into s

t

7

5
4

23

5

31
1

7

5

s
4

4

5

5
2

2

3

Flow value: 9

3

Review of network flows

Residual graph

of a flow f:

- forward edges: weight = capacity –

flow

- backward edges: weight = flow

t

7

5
4

23

5

31
1

7

5

s
4

4

5

5
2

2

3
3

Review of network flows

Residual graph

of a flow f:

- forward edges: weight = capacity –

flow

- backward edges: weight = flow

t

7

5
4

23

5

31
1

7

5

s
4

4

5

5
2

2

3
3

2

5

Review of network flows

Residual graph

of a flow f:

- forward edges: weight = capacity –

flow

- backward edges: weight = flow

(only edges with positive weight)

t

2

1

1
1

7

s
4

4

5

5
2 2

3 3

3

Review of network flows

Ford-Fulkerson Thm:

value of max s-t

flow = value of min s-t

cut

Note: flow is max iff

no s-t

path in the residual graph

t

2

1

1
1

7

s
4

4

5

5
2 2

3 3

3

Ball & Provan’s

reduction

Given an unweighted

(multi-)graph and vertices s,t:

1.

Find a max flow and construct the residual graph

2.

Contract strongly connected components

3.

Compute # “forward-cuts”

in the DAG

(forward-cuts = upper set / maximal antichains

in the poset)

ts

Ball & Provan’s

reduction

ts

Given an unweighted

(multi-)graph:

1.

Find a max flow and construct the residual graph

2.

Contract strongly connected components

3.

Compute # “forward-cuts”

in the DAG

Given an unweighted

(multi-)graph and vertices s,t:

1.

Find a max flow and construct the residual graph

2.

Contract strongly connected components

3.

Compute # “forward-cuts”

in the DAG

Ball & Provan’s

reduction

ts

Given an unweighted

(multi-)graph and vertices s,t:

1.

Find a max flow and construct the residual graph

2.

Contract strongly connected components

3.

Compute # “forward-cuts”

in the DAG

Ball & Provan’s

reduction

ts

Contract(t)

Contract(s)

Given an unweighted

(multi-)graph and vertices s,t:

1.

Find a max flow and construct the residual graph

2.

Contract strongly connected components

3.

Compute # “forward-cuts”

in the DAG

Ball & Provan’s

reduction

ts

Contract(t)

Contract(s)

Given an unweighted

(multi-)graph and vertices s,t:

1.

Find a max flow and construct the residual graph

2.

Contract strongly connected components

3.

Compute # “forward-cuts”

in the DAG

Ball & Provan’s

reduction

ts

Contract(t)

Contract(s)

Given an unweighted

(multi-)graph and vertices s,t:

1.

Find a max flow and construct the residual graph

2.

Contract strongly connected components

3.

Compute # “forward-cuts”

in the DAG

Ball & Provan’s

reduction

ts

Contract(t)

Contract(s)

“Forward-cut:”

a set of vertices S such that:

-

contains Contract(s) and not Contract(t), and

-

for every vertex in S, all successors also in S

Ball & Provan’s

reduction

Contract(t)

Contract(s)

“Forward-cut:”

a set of vertices S such that:

-

contains Contract(s) and not Contract(t), and

-

for every vertex in S, all successors also in S

Another DAG example:

Ball & Provan’s

reduction

Contract(t)

Contract(s)

OK

“Forward-cut:”

a set of vertices S such that:

-

contains Contract(s) and not Contract(t), and

-

for every vertex in S, all successors also in S

Another DAG example:

Ball & Provan’s

reduction

Contract(t)

Contract(s)

OK

“Forward-cut:”

a set of vertices S such that:

-

contains Contract(s) and not Contract(t), and

-

for every vertex in S, all successors also in S

Another DAG example:

Ball & Provan’s

reduction

Contract(t)

Contract(s)

Not OK !!!
(not “forward”)

“Forward-cut:”

a set of vertices S such that:

-

contains Contract(s) and not Contract(t), and

-

for every vertex in S, all successors also in S

Another DAG example:

Ball & Provan’s

reduction

ts

Contract(t)

Contract(s)

Given an unweighted

(multi-)graph and vertices s,t:

1.

Find a max flow and construct the residual graph

2.

Contract strongly connected components

3.

Compute # “forward-cuts”

in the DAG

Ball & Provan’s

reduction

ts

Contract(t)

Contract(s)

Given an unweighted

(multi-)graph and vertices s,t:

1.

Find a max flow and construct the residual graph

2.

Contract strongly connected components

3.

Compute # “forward-cuts”

in the DAG

positively weighted

Observe: Planar input graph -> planar DAG

Goal: count “forward-cuts”

(or maximal antichains)

“Forward-cuts”

in planar DAGs

Contract(t)

Contract(s)

Observe: Planar input graph -> planar DAG

Goal: count “forward-cuts”

(or maximal antichains)

Ball & Provan’s

algorithm for both s,t

on the outer face:
-

split the outer face into the “top”

and the “bottom”

face

-

count all “top”-“bottom”

paths in the dual graph

“Forward-cuts”

in planar DAGs

Contract(t)

Contract(s)

Observe: Planar input graph -> planar DAG

Goal: count “forward-cuts”

(or maximal antichains)

Ball & Provan’s

algorithm for both s,t

on the outer face:
-

split the outer face into the “top”

and the “bottom”

face

-

count all “top”-“bottom”

paths in the dual graph

“Forward-cuts”

in planar DAGs

Contract(t)

Contract(s)

Observe: Planar input graph -> planar DAG

Goal: count “forward-cuts”

(or maximal antichains)

Ball & Provan’s

algorithm for both s,t

on the outer face:
-

split the outer face into the “top”

and the “bottom”

face

-

count all “top”-“bottom”

paths in the dual graph

“Forward-cuts”

in planar DAGs

Contract(t)

Contract(s)

Observe: Planar input graph -> planar DAG

Goal: count “forward-cuts”

(or maximal antichains)

Ball & Provan’s

algorithm for both s,t

on the outer face:
-

split the outer face into the “top”

and the “bottom”

face

-

count all “top”-“bottom”

paths in the dual graph

“Forward-cuts”

in planar DAGs

Contract(t)

Contract(s)

Observe: Planar input graph -> planar DAG

Goal: count “forward-cuts”

(or maximal antichains)

Ball & Provan’s

algorithm for both s,t

on the outer face:
-

split the outer face into the “top”

and the “bottom”

face

-

count all “top”-“bottom”

paths in the dual graph

“Forward-cuts”

in planar DAGs

Contract(t)

Contract(s)

Observe: Planar input graph -> planar DAG

Goal: count “forward-cuts”

(or maximal antichains)

Ball & Provan’s

algorithm for both s,t

on the outer face:
-

split the outer face into the “top”

and the “bottom”

face

-

count all “top”-“bottom”

paths in the dual graph

“Forward-cuts”

in planar DAGs

Contract(t)

Contract(s)

Observe: Planar input graph -> planar DAG

Goal: count “forward-cuts”

(or maximal antichains)

Ball & Provan’s

algorithm for both s,t

on the outer face:
-

split the outer face into the “top”

and the “bottom”

face

-

count all “top”-“bottom”

paths in the dual graph

“Forward-cuts”

in planar DAGs

Contract(t)

Contract(s)

(# paths from the top vertex to this vertex)1

Observe: Planar input graph -> planar DAG

Goal: count “forward-cuts”

(or maximal antichains)

Ball & Provan’s

algorithm for both s,t

on the outer face:
-

split the outer face into the “top”

and the “bottom”

face

-

count all “top”-“bottom”

paths in the dual graph

“Forward-cuts”

in planar DAGs

Contract(t)

Contract(s)

(# paths from the top vertex to this vertex)

2

1

Observe: Planar input graph -> planar DAG

Goal: count “forward-cuts”

(or maximal antichains)

Ball & Provan’s

algorithm for both s,t

on the outer face:
-

split the outer face into the “top”

and the “bottom”

face

-

count all “top”-“bottom”

paths in the dual graph

“Forward-cuts”

in planar DAGs

Contract(t)

Contract(s)

(# paths from the top vertex to this vertex)

2

1

2

Observe: Planar input graph -> planar DAG

Goal: count “forward-cuts”

(or maximal antichains)

Ball & Provan’s

algorithm for both s,t

on the outer face:
-

split the outer face into the “top”

and the “bottom”

face

-

count all “top”-“bottom”

paths in the dual graph

“Forward-cuts”

in planar DAGs

Contract(t)

Contract(s)

(# paths from the top vertex to this vertex)

2

1

2

4

Observe: Planar input graph -> planar DAG

Goal: count “forward-cuts”

(or maximal antichains)

Ball & Provan’s

algorithm for both s,t

on the outer face:
-

split the outer face into the “top”

and the “bottom”

face

-

count all “top”-“bottom”

paths in the dual graph

“Forward-cuts”

in planar DAGs

Contract(t)

Contract(s)

(# paths from the top vertex to this vertex)

2

1

2

4

10

What if s,t

are on different faces ?

“Forward-cuts”

and different faces

Contract(t)Contract(s)

What if s,t

are on different faces ?
-

find a contract(t)-contract(s) path

-

construct the dual, except no edges cross the path

-

sum # paths between faces sharing an edge on the path

“Forward-cuts”

and different faces

Contract(t)Contract(s)

What if s,t

are on different faces ?
-

find a contract(t)-contract(s) path

-

construct the dual, except no edges cross the path

-

sum # paths between faces sharing an edge on the path

“Forward-cuts”

and different faces

Contract(t)Contract(s)

What if s,t

are on different faces ?
-

find a contract(t)-contract(s) path

-

construct the dual, except no edges cross the path

-

sum # paths between faces sharing an edge on the path

“Forward-cuts”

and different faces

Contract(t)Contract(s)

What if s,t

are on different faces ?
-

find a contract(t)-contract(s) path

-

construct the dual, except no edges cross the path -> DAG

-

sum # paths between faces sharing an edge on the path

“Forward-cuts”

and different faces

Contract(t)Contract(s)

What if s,t

are on different faces ?
-

find a contract(t)-contract(s) path

-

construct the dual, except no edges cross the path -> DAG

-

sum # paths between faces sharing an edge on the path

“Forward-cuts”

and different faces

Contract(t)Contract(s)

“Forward-cuts”

and different faces

Contract(t)Contract(s)

What if s,t

are on different faces ?
-

find a contract(t)-contract(s) path

-

construct the dual, except no edges cross the path -> DAG

-

sum # paths between faces sharing an edge on the path

What if s,t

are on different faces ?
-

find a contract(t)-contract(s) path

-

construct the dual, except no edges cross the path -> DAG

-

sum # paths between faces sharing an edge on the path

“Forward-cuts”

and different faces

Contract(t)Contract(s)

-

Choose a red edge proportionally to the corresponding
path count.

-

Starting at the corresponding end

vertex, choose a
predecessor vertex proportionally to the stored value

-

Continue until get to the start vertex

Sampling minimum (s,t)-cuts

Contract(t)Contract(s)

Reduction to forward cuts:
-

O(n

log n) to find a (acyclic) max-flow in planar graphs
[Borradaile-Klein ’09]

-

O(n) to find and contract the strongly connected components

Counting forward cuts:
-

O(n) find the path, construct the dual graph

-

O(n) compute #paths between two end-points in the dual

-

O(dn) overall computation of paths, at most d end-point pairs where d
= length of the s-t

path

TOTAL: O(dn

+ n log n)

Running time

Contiguous cuts

Contiguous set of vertices: can be separated from the other
vertices by a simply connected planar region that intersects
every edge at most once

Examples:

contiguous contiguous

Contiguous cuts

not contiguous not contiguous

Contiguous set of vertices: can be separated from the other
vertices by a simply connected planar region that intersects
every edge at most once

Examples:

Back to the Ball & Provan’s

reduction

-

Every minimum cut separating s and t is contiguous

-

For multiple sinks:

-

not planar anymore, i.e.
BP reduction works but don’t know
how to count forward cuts

-

does the reduction “preserve”

contiguous cuts ?

s

t1

5

6

1

1

2

6

1

2

11

4

1

1

t2

t3
5

3

3

3

the new sink
∞

∞ ∞

t2

s

Back to the Ball & Provan’s

reduction

Does the reduction preserve contiguous cuts ?

NO…

Blue edges used up to their capacity, other edges not ->
Only blue edges survive in the contracted residual graph:

s

t1 t2

All edges weight ∞,
except for blue edges:
weight 1.

t1

t2

s

Back to the Ball & Provan’s

reduction

Does the reduction preserve contiguous cuts ?

NO…
s

t1 t2

t1

both contiguous

t2

s

s

t1 t2

t1

only bottom contiguous

The new reduction and counting

-

A new reduction: creates a different DAG where
contiguous forward (T’,s’)-cuts are in bijection

with

contiguous (s,T)-cuts in G

-

Computing the number of contiguous forward (T’,s’)-cuts:
dynamic programming across a tree-structure connecting
T’

with s’

in the dual graph

Cut is not a simple cycle !

-> a tour in the dual graph.

Tours in the dual graph

t3

s

t1

t2

t3

s

t1

t2

A contiguous
forward (T,s)-cut

Cut is not a simple cycle !

-> a tour in the dual graph.

Tours in the dual graph

t3

s

t1

t2

Another contiguous
forward (T,s)-cut

Cut is not a simple cycle !

-> a tour in the dual graph.

Tours in the dual graph

A non-crossing tour:

For every face visited by the tour, its edges must be “cut”

in
the clockwise order when traversing the tour.

t3

s

t1

t2

Another contiguous
forward (T,s)-cut

f

Tours in the dual graph

A non-crossing tour:

For every face visited by the tour, its edges must be “cut”

in
the clockwise order when traversing the tour.

Not non-crossing !

Tours in the dual graph

Lemma:

Contiguous forward (T,s)-cuts are in 1-1 correspondence with
non-crossing tours in the dual of the graph obtained from
the new reduction.

Not non-crossing !

Tours in the dual graph

Goal: count non-crossing tours

Counting via dynamic programming

t3

s

t1

t2

Goal: count non-crossing tours

Idea: build a tree from T to s:

Counting via dynamic programming

t3

s

t1

t2

Goal: count non-crossing tours

Idea: build a tree from T to s:

Counting via dynamic programming

t3

s

t1

t2

Goal: count non-crossing tours

Idea: build a tree from T to s:

Then, compute #paths
between a “left”

and

a “right”

edge in a “wedge”.

Generalize to larger wedge distance (of the left and the
right edge) via dynamic programming.

Counting via dynamic programming

s

T

Many open problems:

-

multi-source multi-sink min cuts: counting (contig

or not)

-

multi-source multi-sink contig. min cuts: find

-

other notions of contiguity

-

graphs arising in computer vision (e.g., high-dimensional
grids)

-

non-planar graphs ? (unweighted

or weighted)

-

sampling all cuts proportionally to their weights

Open Problems

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81

