
An elementary qualitative model for diffusion
and aggregation of β-amyloid in Alzheimer’s

disease

Maria Carla Tesi (University of Bologna)

Connections for Women: Discrete Lattice Models in
Mathematics, Physics and Computing

January 12-13, 2012 at MSRI, Berkeley, California

Y. Achdou, B. Franchi, N. Marcello, M.C. Tesi Model for behaviour of β-amyloid in AD



In this talk I present an elementary mathematical model of the
diffusion and agglomeration of the β-amyloid (Aβ from now on)
in the brain affected by Alzheimer’s disease (AD).

The model is based on the classical Smoluchowski equation with
diffusion.

I will also show some numerical results from a numerical scheme
we implemented for the approximation of the solution. These
results are in good agreement with clinical evidence.
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The connection with the topics presented in this workshop is
not immediate...
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Amyloid is a general term for protein fragments that the body
produces normally. Aβ is a protein fragment snipped from an
amyloid precursor protein (APP). In a healthy brain, these
protein fragments are broken down and eliminated. In
Alzheimer’s disease, the fragments accumulate to form hard,
insoluble plaques.
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Spatial scale for our description of the phenomena:

I we consider a portion of the hippocampus or of the cerebral
cortex (the regions of the brain mainly affected by AD) of
size comparable to a multiple of the size of the soma of a
neuron.

We discard:

I the description of intracellular phenomena,

I the description of the clinical manifestations of the disease
at a macroscopic scale.
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The portion of cerebral tissue considered is represented by a
bounded connected smooth open region Ω0 ⊂ R3 (or Ω0 ⊂ R2),
whereas the neurons are represented by a family of M smooth
connected open sets Ωh such that:

I Ωh ⊂ Ω0 for h = 1, . . . ,M ;

I Ωk ∩ Ωh = ∅ if k 6= h.
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Our model is meant to describe the evolution of AD in vivo.

Thefore the essential features that we want to describe are the
following:

I agglomeration phenomena: by means of the so-called
Smoluchowski equation;

I uniform (reasonable at our scale) diffusion: by the usual
Fourier diffusion equation;

I production of Aβ, in the monomeric form, at the level of
the neuron’s membrane: by a non-homogeneous Neumann
condition on ∂Ωh, h = 1, . . . ,M ;

I isolate our portion of tissue from the environment: by an
homogeneous Neumann condition on ∂Ω0.
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Given t ∈ R, t ≥ 0 (the time), and x ∈ Ω := Ω0 \
⋃M
h=1 Ωh (the

space), we denote by um = um(t, x) the(molar) concentration at
time t and at point x of an Aβ assembly of m monomers, with
1 ≤ m < N − 1.

Moreover, we denote by uN the molar concentration of
assemblies of more than N − 1 monomers (therefore uN is, by
its own nature, slightly different from the others um’s).
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Thus, we are lead to the following Cauchy-Neumann problem
for monomers (m = 1):

∂
∂tu1 = d1∆xu1 − u1

∑N
j=1 a1,juj

∂u1

∂ν
= 0 on ∂Ω0

∂u1

∂ν
= ψh on ∂Ωh, h = 1, . . . ,M

u1(x, 0) = U1(x) ≥ 0,

(1)

where 0 ≤ ψh ≤ 1 is a smooth function for h = 1, . . . ,M ,
describing the production of the amyloid near the membrane of
the neuron. We only take into account neurons affected by the
disease, i.e. we assume ψh 6≡ 0 for h = 1, . . . ,M .
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For oligomers (1 < m < N − 1) we have:



∂
∂tum = dm∆xum − um

∑N
j=1 am,juj + 1

2

∑m−1
j=1 aj,m−jujum−j .

∂um
∂ν

= 0 on ∂Ω0

∂um
∂ν

= 0 on ∂Ωh, h = 1, . . . ,M

um(x, 0) = 0,
(2)

where dm > 0, m = 1, . . . , N − 1 and ai,j = aj,i > 0,
i, j = 1, . . . , N − 1.
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Finally for non soluble fibrils (m = N) we have:

∂
∂tuN = dN∆xuN + 1

2

∑
j+k≥N,k<N,j<N aj,kujuk.

∂uN
∂ν

= 0 on ∂Ω0

∂uN
∂ν

= 0 on ∂Ωh, h = 1, . . . ,M

uN (x, 0) = 0,

(3)

where dN > 0 and ai,j = aj,i > 0, i, j = 1, . . . , N (but aN,N = 0).

Concerning the last term in the equation, notice that:

1

2

∑
j+k≥N,k<N,j<N

aj,kujuk =
1

2

∑
j+k≥N

aj,kujuk − uN
N∑
j=1

aN,juj .

(4)
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Since uN describes the sum of the densities of all the “large”
assemblies, we assume that:

1) large assemblies exhibit all the same coagulation properties;

2) large assemblies do not coagulate with other large assemblies
(aN,N = 0).

This last assumption is meant to prevent blow-up phenomena
for solutions at a finite time, but is also coherent with
experimental data.
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Peculiarity of this model:

The non-homogeneous Neumann boundary conditions for
monomers implies that we do not have mass conservation; due
to this lack some estimates provided in the literature in the
homogeneous case fail to hold.

We have therefore to adapt some classical techniques to our
situation, relying on a repeated use of the classical parabolic
maximum principle.
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Results:

To avoid technicalities, we assume U1 ∈ C2+α(Ω̄) for some
α ∈ (0, 1), and ∂U1

∂ν = ψh on ∂Ωh, h = 0, . . . ,M .

We have (local existence):

Proposition

If u = (u1, . . . , uN ), there exists τmax > 0 such that problem
(1)-(3) has a local classical maximal solution
u ∈ C2+α,1+α/2(Ω̄× [0, τ ]) for every τ ∈ (0, τmax).
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Proposition

If u = (u1, . . . , uN ) is a solution of problems (1)-(3), then
um > 0 in Ω̄× (0, τmax, ) for m = 1, . . . , N .

Proposition

We have τmax = +∞.
The proof uses (repeatedly) the parabolic maximum principle.
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Proposition

For any T > 0 we have

λT := inf
Ω×(T,∞)

uN > 0. (5)

Moreover

φN (t) :=

∫
Ω
uN (t, x) dx→∞ as t→∞. (6)

Since uN (t, ·) describes the plaques, (5) states basically that
plaques form extraordinarily quickly (this corresponds to the
experimental evidences); while (6) states that the average of the
insoluble fibrillar form grows and we eventually obtain thick
plaques.
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Another estimate on the asymptotic behaviour of the
concentration of soluble (short) fibrils is the following:

Proposition

If we set

Φ(t) :=

N−1∑
m=1

∫
Ω
mum(t, x) dx,

then there exists a > 0 such that for t > 1 we have

Φ(t) ≤ e−aλ1(t−1)Φ(1) +
d1

∑M
h=1

∫
∂Ωh

ψh dHn−1

aλ1|Ω|
(1− e−aλ1(t−1)).

(7)
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Our numerical simulations suggest that the estimate (7) can be
considered asymptotically optimal, in the sense that the
numerical experiments show that there exist positive constants
`1, . . . , `N−1 such that∫

Ω
mum(t, x) dx→ `m as t→∞,

for m = 1, . . . , N − 1.

In other words, the concentration of soluble oligomers stabilizes,
whereas we have seen before that the average of the insoluble
fibrillar form grows (see (6)) and we eventually obtain thick
plaques.
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Figure: Total mass of 5-oligomers with N = 16, α = 10, U1 ≡ 0,
ψ = 0.5.

The production of the amyloid does not stop (ψ = 0.5), but the
total mass stabilizes around a positive value. The slope of the
graph is very small, since only very small production of
monomers prevents the death of neurons.
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Numerical simulation

In the numerical simulation presented, we have not been
interested in the precise quantitative matching of our results
with clinical data (that is far from our current reach), but rather
in producing qualitative outputs that stress interesting features
of the phenomena and asymptotic behaviors in particular.

Therefore, for sake of simplicity, we assume that Ω0 is a square
in the plane, and that the neurons are periodically distributed
in Ω0. We then look for periodic solutions um(t, ·).
Eventually, without loss of generality, we replace the periodic
problem by a problem in a single cell perforated by a single
disk, with periodic lateral conditions.
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Another simplification of our numerical simulation consists in
taking the same diffusion coefficient up to N1-polymers (i.e.
assuming d1 = d2 = · · · = dN1 := 1), whereas, for sake of
simplicity, we choose dm = 0 for m > N1.

Concerning the coagulation rates (the coefficients ai,j) we use
the following form:

ai,j = α
1

ij
where α > 0, (8)

consistent with our assumption that big assemblies do not
aggregate with other big assemblies.
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Plaque grown near a neuron. The picture has been obtained by
taking the higher level sets of uN (t, ·); that is we identify senile
plaques with the sets {x : uN (t, x) > c > 0}.

Figure: Plaque generated with N = 16, α = 10, U1 ≡ 0, ψ = 0.5. Left:
full plot. Right: only the set uN > 0.3 is presented, to show the shape
of the senile plaque.
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Recent experimental results have suggested that the plaque
counting is a poor measure of the severity of the AD, and that
levels of soluble Aβ correlate much better with the presence and
degree of cognitive deficits than do simple plaque counts.

Even more, “the idea that large aggregates of a disease causing
protein can actually be inert or even protective to neurons has
been supported by work on other protein folding disorders”.
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To closely fit these clinical evidences, we have have slightly
modified the numerical simulation of the model by assuming the
existence of a threshold κ > 0 such that, as long as the global
amount of soluble amyloid remains below κ, then the
production of Aβ from the neuronal membrane is positive, but,
when this amount exceeds κ, the neuron dies and consequently
the production stops.
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Figure: Total mass of 5-oligomers with N = 16, α = 10, U1 ≡ 0,
κ = 0.7. Left: ψ = 0.5. Right: ψ = 1.0.
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Figure: Total mass of 5-oligomers with N = 16, α = 10, U1 ≡ 0,
ψ = 1.0, κ = 0.7.

Due to the higher (with respect to the threshold) production of
monomers (ψ = 1.0), the neuron dies and quickly the total mass
of soluble oligomers vanishes. This corresponds to the clinical
experience of advanced AD.
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In this model we deliberately ignored the action of astrocytes
and microglia on the agglomeration and diffusion of Aβ
amyloid, on the neuronal death and on the formation of plaques.

Figure: Microglia’s cells

Future goal: try to incorporate in the model, in some
appropriate way, these factors...
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