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Wiener sausage

The classical Wiener sausage is defined as ∪s≤t(ξ(s) + B(0, r)).
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Wiener sausage

Question

Which has bigger expected volume?
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Wiener sausage

Theorem (Peres, S. (2011))

Let (ξ(s))s≥0 be a standard Brownian motion in d ≥ 1 dimensions and
let (Ds)s≥0 be open sets in Rd with vol(Ds) = c for all s. Then for all t
we have that

E [vol (∪s≤t (ξ(s) + Ds))] ≥ E [vol (∪s≤t(ξ(s) + B(0, r)))] ,

where r is such that vol(B(0, r)) = c.

In particular this gives that the expected volume of the Wiener sausage
with squares is bigger than the expected volume with balls.
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A connection to capacity

Spitzer and Whitman(1964) proved that in d ≥ 3, if A ⊂ Rd is an open
set with finite volume, then

E[vol(∪s≤t(ξ(s) + A))]

t
→ Cap(A) as t →∞.

Our theorem is a refinement of a classical inequality due to Pólya and
Szëgo:

In d ≥ 3 among all open sets of fixed volume, the ball has the smallest
Newtonian capacity.
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Planar Brownian motion
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Theorem (Lévy 1940)

Let B be a planar Brownian motion. Then

L(B[0, 1]) = 0 a.s.
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Area of planar Brownian motion with drift

Question

Let f be a continuous function. Does (B + f )[0, 1] still have 0 area?

An a.s. property insensitive to the drift:
For any f continuous, B + f is nowhere differentiable a.s.
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Cameron–Martin Theorem

Denote by D[0, 1] the Dirichlet space

D[0, 1] =

{
f ∈ C [0, 1] : ∃g ∈ L2[0, 1] s.t. f (t) =

∫ t

0

g(s)ds,∀t ∈ [0, 1]

}
.

Theorem (Cameron–Martin 1944)

If f ∈ D[0, 1], then the law of B is mutually absolutely continuous w.r.t.
the law of B + f .

Hence, if f ∈ D[0, 1], then L(B + f )[0, 1] = 0 a.s.

Perla Sousi Brownian motion with drift and the Wiener sausage



Cameron–Martin Theorem

Denote by D[0, 1] the Dirichlet space

D[0, 1] =

{
f ∈ C [0, 1] : ∃g ∈ L2[0, 1] s.t. f (t) =

∫ t

0

g(s)ds,∀t ∈ [0, 1]

}
.

Theorem (Cameron–Martin 1944)

If f ∈ D[0, 1], then the law of B is mutually absolutely continuous w.r.t.
the law of B + f .

Hence, if f ∈ D[0, 1], then L(B + f )[0, 1] = 0 a.s.

Perla Sousi Brownian motion with drift and the Wiener sausage



Cameron–Martin Theorem

Denote by D[0, 1] the Dirichlet space

D[0, 1] =

{
f ∈ C [0, 1] : ∃g ∈ L2[0, 1] s.t. f (t) =

∫ t

0

g(s)ds,∀t ∈ [0, 1]

}
.

Theorem (Cameron–Martin 1944)

If f ∈ D[0, 1], then the law of B is mutually absolutely continuous w.r.t.
the law of B + f .

Hence, if f ∈ D[0, 1], then L(B + f )[0, 1] = 0 a.s.

Perla Sousi Brownian motion with drift and the Wiener sausage



Graversen’s result

Theorem (Graversen 1982)

For all 0 < α < 1/2, there exists a Hölder(α) continuous function
f : R+ → R2 s.t. E[L(B + f )[0, 1]] > 0.
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Le-Gall’s result

The condition α < 1/2 in Graversen’s theorem was not an accident,
because

Theorem (Le-Gall 1988)

If f is Hölder(1/2), then

L(B + f )[0, 1] = 0 a.s.

We will see: same transition from Hölder(α) for α < 1/2 to α = 1/2
applies to a large variety of properties of Brownian motion.
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Antunović, Peres and Vermesi result

Very recently, Antunović, Peres and Vermesi strengthened Graversen’s
result and they proved

Theorem (Antunović et al 2010)

For any α < 1/2, there exists a Hölder(α) function f : R+ → R2 for
which (B + f )[0, 1] completely covers an open set a.s.
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A remaining question

In all these works it was not clear whether for any continuous f

P(L(B + f )[0, 1] > 0) ∈ {0, 1}.

This was the impetus for our work.
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0-1 Laws

Let (Bt , 0 ≤ t ≤ 1) be a standard Brownian motion in Rd and let
f : [0, 1]→ Rd be a continuous function.

Theorem (Peres and S.)

P(L(B + f )[0, 1] > 0) ∈ {0, 1}.
P(interior of (B + f )[0, 1] 6= ∅) ∈ {0, 1}.
dim(B + f )[0, 1] = c a.s., where c is a positive constant and dim is
the Hausdorff dimension.
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Beyond the Cameron–Martin theorem

Again the same setting, B is a standard Brownian motion and D[0, 1] is
the Dirichlet space

D[0, 1] =

{
f ∈ C [0, 1] : ∃g ∈ L2[0, 1] s.t. f (t) =

∫ t

0

g(s)ds,∀t ∈ [0, 1]

}
.

Theorem (Cameron–Martin 1944)

If f /∈ D[0, 1], then the law of B and the law of B + f are singular.

As a consequence, when f /∈ D[0, 1], there is some a.s. property of
Brownian motion that fails for B + f .
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Hitting probabilities

Cauchy–Scwartz inequality gives that if f ∈ D[0, 1], then f is
Hölder(1/2).

The space of Hölder(α) continuous functions is much larger than D[0, 1].
Indeed, for any α ∈ (0, 1/2], most Hölder(α) continuous functions are
nowhere differentiable.

Question

Does B + f hit the same sets as B, if f is Hölder(1/2)?
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Hölder(1/2).
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Hitting probabilities

Theorem (Peres and S.)

Let A be a closed set of Rd , for d ≥ 2, and f a Hölder(1/2) continuous
function. If Px(B hits A) > 0, for all x ∈ Rd , then Px(B + f hits A) > 0,
for all x ∈ Rd .

In 2 dimensions, if Px(B hits A) > 0, then by neighborhood recurrence,
Px(B hits A) = 1. The same is true for B + f , if f is Hölder(1/2).

Concerning the existence of multiple points, B + f behaves in the same
way as B, if f is Hölder(1/2).

(This can fail if f is not Hölder(1/2), e.g. for f fractional Brownian
motion.)
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Hausdorff dimension

Definition (Hausdorff dimension)

For every α ≥ 0, the α-Hausdorff content of a metric space E is defined

Hα
∞(E ) = inf{

∞∑
i=1

(diam(Ei ))α : E1,E2, . . . is a covering of E}.

The Hausdorff dimension of E is defined to be

dim E = inf{α ≥ 0 : Hα
∞(E ) = 0}.
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Hausdorff dimension

Let B be a standard Brownian motion in d ≥ 1 dimensions and let f be a
continuous function, f : [0, 1]→ Rd .

From our 0-1 law, we know that dim(B + f )[0, 1] is a constant a.s.

Question

Can we provide bounds for dim(B + f )[0, 1]?
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Hausdorff dimension

Let B be a standard Brownian motion in d ≥ 1 dimensions and let f be a
continuous function, f : [0, 1]→ Rd .

Recall that dim B[0, 1] = 2 ∧ d a.s.

Theorem (Peres and S.)

dim(B + f )[0, 1] ≥ max{2 ∧ d , dim f [0, 1]} a.s.
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Back to the 0-1 law

Let B be a d dimensional standard Brownian motion and let f be a
continuous function, f : [0, 1]→ Rd .

Theorem (0-1 law for L)

P(L(B + f )[0, 1] > 0) ∈ {0, 1}.
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Proof of the 0-1 law for L

For an interval I ⊂ [0, 1], define Ψ(I ) = L(B + f )(I ).

Write Dn =
{[

k−1
2n ,

k
2n

]
: k = 1, . . . , 2n

}
.

Declare I ∈ Dn good if Ψ(I ) > 0. Write pI = P(Ψ(I ) > 0).

Let Zn be the number of good intervals of Dn. Then Zn is increasing in
n.

Hence E[Zn] =
∑

I∈Dn
pI must be increasing.

The limit of E[Zn] exists and can be either infinite or finite.
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Proof of the 0-1 law for L

Case 1: E[Zn] =
∑

I∈Dn
pI ↑ ∞

Recall Ψ(I ) = L(B + f )(I )

how is it going? everything is okay Zn =
∑

I∈Dn
1(Ψ(I ) > 0)

how is it going? everything is okay pI = P(Ψ(I ) > 0)

P(Ψ([0, 1]) = 0) = P(∀I ∈ Dn : Ψ(I ) = 0) =
∏
I∈Dn

(1− pI ) ≤ e−
∑

I∈Dn
pI

Letting n→∞ gives P(Ψ([0, 1]) = 0) = 0.
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Proof of the 0-1 law for L

Case 2: E[Zn] =
∑

I∈Dn
pI ↑ C <∞

Recall Ψ(I ) = L(B + f )(I )

how is it going? everything is okayperla Zn =
∑

I∈Dn
1(Ψ(I ) > 0)

Declare x ∈ [0, 1] good if all dyadic intervals that contain it are good.

I contains a good point ⇔ Ψ(I ) > 0.

If |{good points ∈ [0, 1]}| =∞⇒ Zn →∞, contradiction.

Hence, |{good points ∈ [0, 1]}| <∞.

[0, 1] is the union of the good points and the dyadic intervals that do not
contain any good points.

Since Ψ(good points) = 0⇒ Ψ([0, 1]) = 0 a.s.
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More on 0-1 laws

Let (Bt , 0 ≤ t ≤ 1) be a standard Brownian motion in Rd , let
f : [0, 1]→ Rd be a continuous function and A a closed set in [0, 1].

Which of the following events satisfy a 0-1 law?

{L(B + f )(A) > 0}
{interior of (B + f )(A) 6= ∅}
{dim(B + f )(A) > c}
{B is 1-1 on A}
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