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Introduction to Polymers

Polymer: Large molecule made of repeated molecular units called monomers; if there is more

than one type of monomer Copolymer

homopolymer - polyethylene copolymer

Fundamental Question of Interest: What properties of polymer solutions are primarily a

result of the fact that a polymer is a very large molecule made up of repeated molecular units?



Introduction to Random Knotting:What is a Knot?

unknot φ trefoil 31 figure-eight 41

A knot is an embedding of a simple closed curve in R3. Two knots are equivalent if they are ambient

isotopic, i.e. if one can be continuously transformed into the other. The knot types are the equivalence

classes.

A knot K has a prime knot decomposition, K = K1#K2#...#Kp



Knots and Polymers

right-handed trefoil left-handed trefoil

Electron micrographs of recA coated DNA.

Reproduced with permission of author from: Determination of the absolute handedness of knots and catenanes of DNA. Mark A. Krasnow, Andrzej

Stasiak, Sylvia J. Spengler, Frank Dean, Theo Koller, Nicholas R. Cozzarelli. Nature 304, 559-560 11 08 1983 Letter



DNA type II Topoisomerase

passes one part of DNA through another via

enzyme-bridged transient break

Biochemisty, 5th edition, Berg JM, Tymoczko JL, Stryer L. New York: W H Freeman; 2002



Knots in Nature
Knots and links have been observed in circular DNA molecules - DNA highly compacted and

self-entangled in cell nucleus. Knots topologically obstruct cellular processes such as replication.

Topoisomerases: enzymes that pass one part of a DNA molecule through another via enzyme-bridged

transient break in the DNA. Act locally on the DNA to remove topological (global) obstructions.

http://www.math.fsu.edu/~jmann/KnotOnMtn.htm

QUESTION: If local strand passages occur at random locations, how efficient is this action at

changing knot type?

D.W. Sumners, Program in Mathematics and Molecular Biology (PMMB) Short Course, Berkeley, June 22

- July 3 1998

FIRST STEP: How likely is a knot in a “random” polygon?



Random Knotting in Self-Avoiding Polygons

Frisch-Wasserman Delbruck Conjecture:

In the 1960’s Frisch and Wasserman, and Delbruck, conjectured that sufficiently long

ring polymers would be knotted (not the unknot) with high probability.

Frisch & Wasserman (1961) (JAmChemSoc 83 3789), Delbruck (1962) Math. Problems in the Biol. Sci.

Proved for various polymer models:

Sumners and Whittington (1988) and Pippenger (1989) for self-avoiding polygons:

All but exponentially few sufficiently long self-avoiding polygons (SAP) on the simple cubic lattice (Z3)

are knotted.

Diao, Pippenger and Sumners (1994) for Gaussian random polygons in 3-space.

Diao (1995) for Equilateral polygons in 3-space.



Lattice Models of Ring Polymers

Lattice Model Assumptions: a ring polymer configuration is represented by a

self-avoiding polygon in Z3; in dilute solution (hence polymer-polymer interactions

can be ignored); at equilibrium s.t. two equal energy size n configurations are

equally likely; two configurations identical if one is translate of the other

Advantages of lattice models: excluded volume property easily incorporated

substantial conformational freedom available

combinatorial and asymptotic analysis possible

values of some critical exponents expected to be exact

SELF AVOIDING POLYGON



Properties of Self-avoiding Walks (SAWs) and Polygons (SAPs)

cn: the number of n-step SAWs starting at the origin

pn: the number of n-step SAPs up-to-translation

Square Lattice (d = 2): c1 = 4, c2 = 12, c3 = 36, c4 = 3c3 − 8 = 100;

p4 = 1, p6 = 2, p8 = 7

c71 ≈ 41 × 1029 (d = 2) c30 = 270569905525454674614 ≈ 2 × 1020 (d = 3)

p110 ≈ 97 × 1039 (d = 2) p32 = 53424552150523386 ≈ 5.3 × 1016 (d = 3)

(Jensen JPA 36 (2003) 5731–45) (Clisby et al JPA 40 (2007) 10973–1017)

www.ms.unimelb.edu.au/∼ iwan/saw/series/sqsaw.ser www.math.ubc.ca/∼slade/

c36 = 2941370856334701726560670 ≈ 2.9 × 1024 (d = 3) (Schram et al. arXiv:1104.2184v1 Apr. 2011)

Smallest knotted SAPs are trefoils with n = 24 edges and p24(31) = 3328
(Y Diao JKTR 2 (1993) 413–25; JSP 74 (1994) 1247–54); Scharein et al JPA 42 (2009) 475006



Simplest Model: Each SAP of size n (number of edges) is considered equally likely.

pn - # of distinct (up to translation) n-edge SAPs in Z3

pn(φ) - # of distinct (up to translation) n-edge UNKNOTTED SAPs in Z3

pn(K) - # of distinct (up to translation) n-edge knot type K SAPs in Z3

As n → ∞ Sumners and Whittington (1988) (JPA 21, 1689–94) ⇒

Prob. of Knotting= 1 −
pn(φ)

pn
= 1 − e−(κ−κo)n+o(n)

Soteros, Sumners and Whittington (1992) (MathProcCambPhilSoc 111 75) ⇒

Prob. of Knot-type K=
pn(K)

pn
→ 0

Orlandini et al (1998) (IMA Vol.Math.Appl. 103 9; JPA 31 5953) Monte Carlo evidence consistent with

pn(K) ∼ AKnθo+fK eκon

fK - # prime knots in K’s knot decomp.



Properties of Self-avoiding Polygons (SAPs) in Zd

Standard Concatenation Argument

pnpm ≤ (d − 1)pn+m ; pn ≤ (2d)n ⇒ lim
n→∞

1
2n

log p2n ≡ log µd = κd

(Hammersley Proc.Camb.Phil.Soc. 58 (1961), 235–8)

pn(φ)pm(φ) ≤ 2pn+m(φ) ; pn(φ) ≤ pn ⇒ lim
n→∞

1
2n

log p2n(φ) ≡ log µ0 = κ0

(Sumners and Whittington JPA 21 (1988), 1689–94)

κo < κ3 ⇒ Prob. of Knotting= 1 −
pn(φ)

pn
= 1 − e−(κ−κo)n+o(n)

Key ingredient: Pattern theorem (Kesten, 1963) used to prove that “tight trefoil” pattern occurs at
least once in all but exponentially few sufficiently long SAPs.



Pattern Theorem for Self-avoiding Polygons (SAPs) in Zd

Theorem 1 (Kesten Pattern Theorem 1963) Given any proper SAW pattern P , ∃ εP > 0 such that

lim sup
n→∞

„
cn(εP n, P )

cn

«1/n

< 1. (1)

Corollary 1 (Sumners and Whittington 1988) Given any proper SAP pattern P , ∃ εP > 0 such that

lim sup
n→∞

„
pn(εP n, P )

pn

«1/n

< 1. (2)

pn(εP n, P ): # of n edge SAPs which contain AT MOST εP n translates of P

⇒ all but exponentially few sufficiently long SAPs contain more than εP n translates
of P

NOT a proper SAP pattern:



Sumners and Whittington (1988) (JPA 21 1689):

κo ≡ lim
n→∞

n−1 log pn(φ) < lim
n→∞

n−1 log pn ≡ κ

Hence for n large enough unknotted polygons are exponentially rare in the set of polygons and

Prob. of Knotting= 1 −
pn(φ)

pn
= 1 − e−(κ−κo)n+o(n)

Key ingredients in the proof:

(i) There are no “antiknots” - that is, if k is a given knot type then there does not exist a knot k′ such

that k#k′ = φ.

(ii) There exists a “tight pattern” τ such that if it occurs as a subwalk of a SAP, then the SAP cannot be

an unknot.

(iii) The pattern theorem due to Kesten (1963) can be used to prove that τ occurs at least once as a

subwalk on all but exponentially few sufficiently long SAPs. This relies on the fact that the number of

SAWs and SAPs have the same exponential growth rate.



pn(K) - # of distinct (up to translation) n-edge SAPs in Z3 with knot type K

Soteros, Sumners and Whittington (1992) (MathProcCambPhilSoc 111 75):

lim sup
n→∞

n−1 log pn(K) < lim
n→∞

n−1 log pn ≡ κ

Open Questions:

Does the following limit exist for K *= φ?

κK ≡ lim
n→∞

n−1 log pn(K)

⇒ pn−m(φ) ≤ pn(K) ⇒ κo ≤ κK

κK = κo?



Markov Chain Monte Carlo Methods for Studying SAPs
Pivot Moves: (Lal (1969) MolPhys 17 57)

Pick two vertices ω(j) and ω(l) of SAP ω := ω(0),ω(1), ...,ω(n − 1) at random. Next choose an

operation at random from a set of lattice preserving operations. Perform the chosen operation on a path

of the polygon from ω(j) to ω(l).

w(l)

w(j)

w(l)

w(j)

Madras et al (1990) (JSP 58 159–83) proved: the resulting Markov Chain is irreducible on the state

space of all n-edge SAPs. Transition matrix can be chosen to be symmetric and aperiodic and hence at

equilibrium each n-edge SAP is equally likely.

Efficient algorithm for sampling from the set of all n-edge SAPs.



BFACF Moves: (Berg & Foester (1981), Aragao de Carvalho & Caracciolo (1983), Aragao de

Carvalho et al (1983))

Janse van Rensburg and Whittington (1990) (JPA 24 5553) proved: the resulting Markov Chain is

irreducible on the state space of all (variable length) SAPs with fixed knot type K.

Given β < βc, transition probilities can be chosen so the chain is aperiodic and its equilib. dist. is

π(ω) =
eβn

P
m pm(K)eβm

=
eβn

Q(β)
, ω n-edge SAP knot type K.

Sokal and Thomas (1988) proved: the exponential autocorrelation time (the relaxation time of the slowest

mode) of the BFACF algorithm is infinite. Plus integrated autocorr. time increases as β → βc.

Note that Expected # of edges in SAP =

P
n npn(K)eβn

Q(β)
=

d log Q(β)

dβ

Thus as β → βc, the average polygon size increases.

Combining pivots and BFACF moves can reduce the problem - resulting chain is irreducible on the set of
all SAPs.

Alternatively, a Multiple Markov Chain Monte Carlo approach can be used.



Multiple MCMC Method for Variable Length SAPs
Choose a sequence β1 < β2 < ... < βM .

For the ith subchain use BFACF moves (+ pivots) and transition probabilities that yield stationary

distribution πi on state space S∗

πi(ω) =
eβin

P
m p∗

meβim
, ω n-edge SAP in S∗

p∗
m (= pm(K) or pm) is the number of m-edge SAPs in S∗.

After t time steps in each subchain, a neighboring pair of subchains (say i and i + 1) is chosen at random

and a swap of subchain i’s SAP (S(i)
t ) with subchain (i + 1)’s SAP (S(i+1)

t ) is attempted with

Metropolis acceptance probability:

min{1,
πi(S

(j)
t )πj(S

(i)
t )

πi(S
(i)
t )πj(S

(j)
t )

}

Orlandini et al (1996) (JPA 29 L299) proved: the resulting Markov Chain has equil. dist.

π((ω1,ω2, ...,ωM )) =
MY

i=1

πi(ωi), ωi ∈ S∗, i = 1, ..., M.

In practice this improves the autocorrelations times with suitable choice of β1, ...,βM .



Monte Carlo Estimates

Pn(Knotted) = 1 −
pn(φ)

pn
= 1 − e−(κ−κo)n+o(n)

Janse van Rensburg and Whittington (1990) (JPA 23 3573–90): studied n-edge SAPs on the FCC lattice

(smallest trefoil has 16 edges) n ≤ 1600.

Janse van Rensburg (Contemporary Math. 304 (2002) 137-151): n-edge SAPs for n ≤ 4000

κ − κo = (4.15 ± 0.32) × 10−6 (simple cubic)

κ − κo = (5.91 ± 0.32) × 10−6 (fcc)

κ − κo = (5.82 ± 0.32) × 10−6 (bcc)

pn(K) = AKnα(K)−3eκon(1 +
B

n∆
+ ...)

Orlandini et al (1998) (IMA Vol.Math.Appl. 103 9; JPA 31 5953): studied fixed knot type

µ(φ) = eκo = 4.6852 µ(31) = e
κ31 = 4.6832 µ(41) = e

κ41 = 4.6833

µ(62) = eκ62 = 4.6844 µ(31#31) = e
κ31#31 = 4.6800 µ(31#41) = e

κ31#41 = 4.6841

If assume all equal, then µ(φ) = 4.6836 ± 0.0038 (95% conf. int.).

Results consistent with α(K) = α(φ) + Nf , Nf # prime knots in K’s knot decomp.



Recent Numerical Results

pn(K) = AKnα(K)−3eκon(1 +
B

n∆
+ ...)

Janse van Rensburg and Rechnitzer developed new approximate enumeration method based on

“atmospheres of polygons” (JPA 2008 41:105002, JKTR 2011 20 p 1145)

For two prime knots K and L, as n → ∞:

pn(K)

pn(L)
≈

AK

AL

Numerical evidence (using atmospheric moves and GAS sampling) shows that this limiting constant is

universal (lattice independent, at least for SC, FCC, BCC). (JPA 2011 44 162002, 165001)

“estimate that a long random polygon is approximately 28 times more likely to be a trefoil than a

figure-eight, independent of the underlying lattice, giving an estimate of the intrinsic entropy associated

with knot types in closed curves”

Limiting ratio also studied by different methods in Baiesi, Orlandini and Stella (J. Stat. Mech. Theor. Exp. 2010

P06012)



SAPs in ∞× N × M Tubes
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Markov Chain Like Properties (Transfer Matrix Arguments)

α > 0 and κ(N, M) > 0 s.t. as n → ∞ (Soteros 1998 IMA Vol.Math.App. 103 101–33)

pn(N, M) = αenκ(N,M) + o(enκ(N,M))

pn(N, M, P̄ ) = ᾱenκ(N,M,P̄ ) + o(enκ(N,M,P̄ ))

where κ(N, M, P̄ ) < κ(N, M)

⇒ Knotting Prob = 1 − pn(N,M,φ)
pn(N,M) = 1 − e−(κ(N,M)−κ0(N,M))n+o(n) → 1 as n → ∞



Outline of Pattern Theorem Proof (Soteros 1998): Based on transfer-matrix approach of

Alm and Janson (1990) Communic. Stat. Stoch. Models 6 169-212 for SAWs in one-dimensional lattices.

The transfer-matrix G(x) is an L × L matrix where L is the number of possible configurations of a

polygon in a subset of the tube with span b.
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a)

b)

gi,j(x) =

(
xei if configuration i can hook up to configuration j

0 otherwise.

G(x) is non-negative, irreducible and aperiodic and Frobenius theory implies nice properties for its

spectral radius, ρ(x).



The generating function H(x) =
X

m

p2m(N, M)x2m = Qa(x) + Qb(x) where

Qb(x) ∝
1

det(I − G(x))

thus H(x) is analytic for |x| < x0 and has a second order pole when |x| = x0 where x0 is such that

ρ(x0) = 1.

This implies that there exists α > 0 such that as n → ∞

pn(N, M) = αx−n
0 + o(x−n

0 )

i.e. κ(N, M) = − log x0.

Removing pattern P from all polygons corresponds to deleting a row and column in G(x) and Frobenius

theory implies there exists x̄0 < x0 and ᾱ > 0 such that

pn(N, M, P̄ ) = ᾱx̄−n
0 + o(x̄−n

0 )

i.e. κ(N, M, P̄ ) = − log x̄0 < κ(N, M).

For any non-negative integer valued additive functional ψ defined for SAPs, there exists γψ > 0

(determined from eigenvalues and eigenvectors of G) s.t. as n → ∞

E[ψ(X)] = γψn + O(1)



Transfer-Matrix calculations for small L and M

L = 1

system valid sections valid 2-spans β η1ξ1
β x0 = µ−1

(1,1)-prism 20 108 2.951241 2.336134 10−2 0.547397

(1,2)-prism 814 9702 3.621382 0.636925 10−2 0.437382

(1,3)-prism 44,484 963,096 4.105161 0.182089 10−2 0.388795

(1,4)-prism 4,065,078 129,413,546

L = 0

system column states β
η1ξ1

β x0 = µ−1

(0,1)-prism 1 1 1 1.000000

(0,2)-prism 3 2.500000 1.0 10−1 0.707107

(0,3)-prism 8 2.841143 2.433445 10−2 0.594616

(0,4)-prism 20 3.107643 0.719011 10−2 0.536749

(0,5)-prism 50 3.330234 2.461838 10−3 0.501896

(0,6)-prism 126 3.523772 0.946299 10−3 0.478782

(0,7)-prism 322 3.696418 0.399452 10−3 0.462427

(0,8)-prism 834 3.853173 1.821891 10−4 0.450302

(0,9)-prism 2187 0.440989

(0,10)-prism 5797 0.433634



Transfer-Matrix and Polymer Entanglements Summary

Knots in Stretched Polymers:

Atapour, Soteros & Whittington (J.Phys.A 42 (2009) 322002)

Linking probability:

Atapour, Ernst, Soteros & Whittington (JKTR 19 (2010) 27-54)

Systems of Self-avoiding walks and entanglement complexity of dense polymer systems:

Atapour (2008) (PhD Thesis U of S)

Knotting of 2-spheres in tubes in Z4:

Soteros, Sumners & Whittington (2011) (submitted to JKTR)



Some Review Sources

N. Madras and G. Slade, The Self-avoiding Walk 1993, 1996 (Birkhäuser; Boston)

E. Orlandini and S.G. Whittington, Statistical topology of closed curves: Some applications in

polymer physics Rev. Mod. Phys. 79 (2007) 611-642

E. J. Janse van Rensburg, Monte Carlo methods for self-avoiding walk JPA 42 (2009) 323001

A. J. Guttmann (editor), Polygons, Polyominoes and Polycubes 2009 (Springer)


