[Discrete model](#page-2-0) [Continuous objects](#page-12-0) D_{cent}

Maximal stream, minimal cutset and maximal flow in d-dimensional first passage percolation

Marie Théret

LPMA, Université Paris Diderot (Paris VII)

joint work with Raphaël Cerf (IUF - Université Paris Sud)

2 [Continuous objects](#page-12-0)

点 \mathbf{h} 4. 重 \sim ×. 重 299

∍

$\Omega \subset \mathbb{R}^d$ open bounded connected $(d\geq 2)$ \leftrightsquigarrow piece of ${\sf rock}$

- $\mathsf{\Gamma}^1,\mathsf{\Gamma}^2\subset\partial\Omega$ open \leftrightsquigarrow where the water can enter / come out
- Graph $(\mathbb{V}_n, \mathbb{E}_n) = (\mathbb{Z}^d/n, \mathbb{E}^d/n) \cap \Omega \leftrightarrow \text{tubes}$
- Random variables $(t(e))_{e\in\mathbb{E}_n}$ i.i.d. $\geq 0 \leftrightarrow \infty$ capacities :

- $\Omega \subset \mathbb{R}^d$ open bounded connected $(d\geq 2)$ \leftrightsquigarrow piece of ${\sf rock}$
- $\mathsf{\Gamma}^1,\mathsf{\Gamma}^2\subset\partial\Omega$ open \leftrightsquigarrow where the water can enter / come out
- Graph $(\mathbb{V}_n, \mathbb{E}_n) = (\mathbb{Z}^d/n, \mathbb{E}^d/n) \cap \Omega \leftrightarrow \text{tubes}$
- Random variables $(t(e))_{e\in\mathbb{E}_n}$ i.i.d. $\geq 0 \leftrightarrow \infty$ capacities :

- $\Omega \subset \mathbb{R}^d$ open bounded connected $(d\geq 2)$ \leftrightsquigarrow piece of ${\sf rock}$
- $\mathsf{\Gamma}^1,\mathsf{\Gamma}^2\subset\partial\Omega$ open \leftrightsquigarrow where the water can enter / come out
- $\mathsf{Graph}\,\left(\mathbb{V}_n,\mathbb{E}_n\right)=\left(\mathbb{Z}^d/n,\mathbb{E}^d/n\right)\cap\Omega\leftrightsquigarrow \mathsf{tubes}$

Random variables $(t(e))_{e\in\mathbb{E}_n}$ i.i.d. $\geq 0 \leftrightarrow \infty$ capacities :

A . . 2 . . 2 .

- $\Omega \subset \mathbb{R}^d$ open bounded connected $(d\geq 2)$ \leftrightsquigarrow piece of ${\sf rock}$
- $\mathsf{\Gamma}^1,\mathsf{\Gamma}^2\subset\partial\Omega$ open \leftrightsquigarrow where the water can enter / come out
- $\mathsf{Graph}\,\left(\mathbb{V}_n,\mathbb{E}_n\right)=\left(\mathbb{Z}^d/n,\mathbb{E}^d/n\right)\cap\Omega\leftrightsquigarrow \mathsf{tubes}$
- Random variables $(t(e))_{e\in\mathbb{E}_n}$ i.i.d. $\geq 0 \leftrightarrow \infty$ capacities :

 $t(e)$ is the maximal amount of water than can cross e per second.

Streams

Circulation of water : $e \in \mathbb{E}_n \mapsto \vec{f}_n(e)$ such that

- $\|\vec{f}_n(e)\| =$ amount of water that cross e per second,
- $\vec{f}_n(e)$ $\frac{I_n(e)}{\|\vec{f}_n(e)\|}$ = direction in which the water circulates.

同 ▶ ヨ ヨ ▶ ヨ ヨ ▶

Streams

Circulation of water : $e \in \mathbb{E}_n \mapsto \vec{f}_n(e)$ such that

- $\|\vec{f}_n(e)\| =$ amount of water that cross e per second,
- $\vec{f}_n(e)$ $\frac{I_n(e)}{\|\vec{f}_n(e)\|}$ = direction in which the water circulates.

Constraints :

- node law, at each point in $\mathbb{V}_n\smallsetminus (\mathsf{\Gamma}^1\cup \mathsf{\Gamma}^2).$
- capacity constraint (random) : $\forall e \in \mathbb{E}_n, \, \|\vec{f}_n(e)\| \leq t(e).$

Stream : Borel vector measure defined by

$$
\vec{\mu}_n = \sum_{e \in \mathbb{E}_n} \vec{f}_n(e) \, \delta_{\mathrm{center}(e)} \, .
$$

[Discrete model](#page-2-0) [Continuous objects](#page-12-0) $D_{\text{max}} + \epsilon$

Maximal flow

Flow : flow $^{\text{disc}}_{n}(\vec{\mu}_{n})$ is the amount of water that enters in Ω through Γ^1 per second according to $\vec{\mu}_n$. Maximal flow : $\phi_n = \sup \{ \text{flow}_n^{\text{disc}}(\vec{\mu}_n) \}.$

Cutsets :

\n- $$
E_n \subset \mathbb{E}_n
$$
 is a **cutset** if $\Gamma^1 \leftrightarrow \Gamma^2$ in $\mathbb{E}_n \setminus E_n$,
\n- capacity^{disc}_n $(E_n) = \sum_{e \in E_n} t(e)$,
\n

Max-flow min-cut Theorem (Ford and Fulkerson, '56) :

$$
\phi_n = \min \left\{ \text{ capacity}_n^{\text{disc}}(E_n) \, | \, E_n \text{ is a cutset} \right\}.
$$

A . . 2 . . 2 .

[Discrete model](#page-2-0) [Continuous objects](#page-12-0) D_{cent}

Maximal flow

Flow : flow $^{\text{disc}}_{n}(\vec{\mu}_{n})$ is the amount of water that enters in Ω through Γ^1 per second according to $\vec{\mu}_n$. Maximal flow :

$$
\phi_n = \sup\{\text{flow}_n^{\text{disc}}(\vec{\mu}_n)\}.
$$

Cutsets :

•
$$
E_n \subset \mathbb{E}_n
$$
 is a **cutset** if $\Gamma^1 \leftrightarrow \Gamma^2$ in $\mathbb{E}_n \setminus E_n$,

• capacity_n^{disc}
$$
(E_n)
$$
 = $\sum_{e \in E_n} t(e)$,

Max-flow min-cut Theorem (Ford and Fulkerson, '56) :

$$
\phi_n = \min \left\{ \text{capacity}_n^{\text{disc}}(E_n) \, | \, E_n \text{ is a cutset} \right\}.
$$

母 ▶ ヨ ヨ ▶ ヨ ヨ

Cutsets

Representation of a cutset :

- "dual" of an edge e $=$ small "plaquette" e^* ,
- \bullet "dual" of a cutset E_n
	- $=$ "surface" E_n^*
	- $=$ boundary of a set \mathcal{E}_n : $\mathcal{E}_n \subset \Omega$, $\Gamma^1 \subset \partial \mathcal{E}_n$.

Goal

Main characters :

- **•** maximal flow ϕ_n (random real number),
- maximal stream $\vec{\mu}^\text{max}_n$ (random vector measure), i.e., stream of maximal flow, and such that no water comes out of $Ω$ through $Γ¹$,
- minimal cutset \mathcal{E}_n^{\min} (random subset of Ω), i.e., cutset of minimal capacity, and of minimal number of edges.

Question : Behaviors of ϕ_n , $\vec{\mu}_n^{\text{max}}$ and $\mathcal{E}_n^{\text{min}}$ when $n \to \infty$?

しょうしょう エレーエム

Continuous capacity $\nu(\vec{v})$

Definitions : $B(\vec{v})$ unit cube oriented towards $\vec{v} \in \mathbb{S}^{d-1}$, $\tau_n(B(\vec{v})) = \min \Big\{$ capacity $^{\text{disc}}_{n}(E_n) \Big\}$ $\ensuremath{{E^*_n}}$ surface of plaquettes in $B(\vec{v})$ of boundary R $\big\}$. $\tau_n(B(\vec{v})) =$ maximal flow from pink to blue.

Continuous capacity $\nu(\vec{v})$

Definitions : $B(\vec{v})$ unit cube oriented towards $\vec{v} \in \mathbb{S}^{d-1}$, $\tau_n(B(\vec{v})) = \min \Big\{$ capacity $^{\text{disc}}_{n}(E_n) \Big\}$ $\ensuremath{{E^*_n}}$ surface of plaquettes in $B(\vec{v})$ of boundary R o in $B(\vec{v})$ of boundary $R \int$. Subadditivity :

$$
\frac{\tau_n(B(\vec{v}))}{n^{d-1}}\overset{\rho.s.}{\underset{n\to\infty}\longrightarrow}\nu(\vec{v})\,.
$$

Continuous capacity $\nu(\vec{v})$

Definitions : $B(\vec{v})$ unit cube oriented towards $\vec{v} \in \mathbb{S}^{d-1}$, $\tau_n(B(\vec{v})) = \min \Big\{$ capacity $^{\text{disc}}_{n}(E_n) \Big\}$ $\ensuremath{{E^*_n}}$ surface of plaquettes in $B(\vec{v})$ of boundary R $\big\}$. Subadditivity :

$$
\frac{\tau_n(B(\vec{v}))}{n^{d-1}}\overset{\rho.s.}{\underset{n\to\infty}\longrightarrow}\nu(\vec{v})\,.
$$

Interpretation : $\nu(\vec{v})$ is the average asymptotic capacity of a continuous unit surface normal to \vec{v} .

Continuous cutset

Cutstet : $F \subset \Omega$ of finite perimeter $(\mathbb{1}_F \in BV(\Omega))$ $\longrightarrow S = (\partial F \cap \Omega) \cup (\partial F \cap \Gamma^2) \cup (\partial (\Omega \setminus F) \cap \Gamma^1).$ **Capacity**: capacity^{cont} $(F) = \int_{\mathcal{S}} \nu(\vec{v}_{\mathcal{S}}(x)) d\mathcal{H}^{d-1}(x)$.

Variational problem :

 $\phi^{\mathrm{cutset}} \,=\, \inf\{\mathsf{capacity}^{\mathrm{cont}}(\mathcal{F})\,|\, \mathcal{F}\subset \Omega\,,\; \mathbb{1}_\mathcal{F}\in BV(\Omega)\}\,,$ $\Sigma^{\text{cutset}} \,=\, \left\{ F \subset \Omega \,|\, 1\!\!1_{F} \in BV(\Omega)\,,\, \text{capacity}^{\text{cont}}(F)=\phi^{\text{cutset}} \right\}.$

CALCE AND A TENNIS

つくへ

[Discrete model](#page-2-0) [Continuous objects](#page-12-0) D_{cent}

Continuous cutset

Cutstet : $F \subset \Omega$ of finite perimeter $(\mathbb{1}_F \in BV(\Omega))$ $\longrightarrow S = (\partial F \cap \Omega) \cup (\partial F \cap \Gamma^2) \cup (\partial (\Omega \setminus F) \cap \Gamma^1).$ **Capacity**: capacity^{cont} $(F) = \int_{\mathcal{S}} \nu(\vec{v}_{\mathcal{S}}(x)) d\mathcal{H}^{d-1}(x)$.

Variational problem :

 $\phi^{\mathrm{cutset}} \,=\, \inf\{\mathsf{capacity}^{\mathrm{cont}}(\mathcal{F})\,|\, \mathcal{F}\subset \Omega\,,\; \mathbb{1}_\mathcal{F}\in BV(\Omega)\}\,,$ $\Sigma^{\text{cutset}} \,=\, \left\{ F \subset \Omega \,|\, 1\!\!1_{F} \in BV(\Omega)\,,\, \text{capacity}^{\text{cont}}(F)=\phi^{\text{cutset}} \right\}.$

医毛囊 医毛囊 医心包

つくへ

Continuous cutset

Cutstet : $F \subset \Omega$ of finite perimeter $(\mathbb{1}_F \in BV(\Omega))$ $\longrightarrow S = (\partial F \cap \Omega) \cup (\partial F \cap \Gamma^2) \cup (\partial (\Omega \setminus F) \cap \Gamma^1).$ **Capacity**: capacity^{cont} $(F) = \int_{\mathcal{S}} \nu(\vec{v}_{\mathcal{S}}(x)) d\mathcal{H}^{d-1}(x)$.

Variational problem :

$$
\phi^{\text{cutset}} = \inf \{ \text{capacity}^{\text{cont}}(F) \, | \, F \subset \Omega, \, \mathbb{1}_F \in BV(\Omega) \},
$$

$$
\Sigma^{\text{cutset}} = \{ F \subset \Omega \, | \, \mathbb{1}_F \in BV(\Omega), \, \text{capacity}^{\text{cont}}(F) = \phi^{\text{cutset}} \}.
$$

 $x = x$

Continuous stream

 $\mathsf{Stream} :$ vector field $\vec{\sigma} \in L^\infty(\Omega \to \mathbb{R}^d, \mathcal{L}^d)$ satisfying

- boundary conditions : $\vec{\sigma} \cdot \vec{v}_\Omega \leq 0$ \mathcal{H}^{d-1} -a.e. on $\mathsf{\Gamma}^1$ and $\vec{\sigma} \cdot \vec{v}_\Omega = 0$ \mathcal{H}^{d-1} -a.e. on $\partial \Omega \smallsetminus (\mathsf{\Gamma}^1 \cup \mathsf{\Gamma}^2)$,
- conservation law : div $\vec{\sigma} = 0$ \mathcal{L}^{d} -a.e. on Ω ,
- capacity constraint : $\vec{\sigma} \cdot \vec{v} \le \nu(\vec{v})$ for all $\vec{v} \in \mathbb{S}^{d-1}$, \mathcal{L}^d -a.e.

Flow: flow^{cont} $(\vec{\sigma}) = \int_{\Gamma^1} -\vec{\sigma} \cdot \vec{v}_{\Omega} d\mathcal{H}^{d-1}$.

Variational problem :

 $\phi^{\text{stream}} = \text{sup}\{\text{flow}^{\text{cont}}(\vec{\sigma}) | \vec{\sigma} \text{ admissible stream in } \Omega\},$

 $\Sigma^{\text{stream}} = {\vec{\sigma} | \vec{\sigma} \text{ admissible stream in } \Omega, \text{flow}^{\text{cont}}(\vec{\sigma}) = \phi^{\text{stream}}}.$

◆ロ→ →何→ → ヨ→ →ヨ→ → ヨ

Continuous stream

 $\mathsf{Stream} :$ vector field $\vec{\sigma} \in L^\infty(\Omega \to \mathbb{R}^d, \mathcal{L}^d)$ satisfying

- boundary conditions : $\vec{\sigma} \cdot \vec{v}_\Omega \leq 0$ \mathcal{H}^{d-1} -a.e. on $\mathsf{\Gamma}^1$ and $\vec{\sigma} \cdot \vec{v}_\Omega = 0$ \mathcal{H}^{d-1} -a.e. on $\partial \Omega \smallsetminus (\mathsf{\Gamma}^1 \cup \mathsf{\Gamma}^2)$,
- conservation law : div $\vec{\sigma} = 0$ \mathcal{L}^{d} -a.e. on Ω ,
- capacity constraint : $\vec{\sigma} \cdot \vec{v} \le \nu(\vec{v})$ for all $\vec{v} \in \mathbb{S}^{d-1}$, \mathcal{L}^d -a.e.

Flow: flow^{cont}(
$$
\vec{\sigma}
$$
) = $\int_{\Gamma^1} -\vec{\sigma} \cdot \vec{v}_{\Omega} d\mathcal{H}^{d-1}$.

Variational problem :

 $\phi^{\text{stream}} = \text{sup}\{\text{flow}^{\text{cont}}(\vec{\sigma}) | \vec{\sigma} \text{ admissible stream in } \Omega\},$

 $\Sigma^{\text{stream}} = {\vec{\sigma} | \vec{\sigma} \text{ admissible stream in } \Omega, \text{flow}^{\text{cont}}(\vec{\sigma}) = \phi^{\text{stream}}}.$

オート オート オート・エ

Continuous stream

 $\mathsf{Stream} :$ vector field $\vec{\sigma} \in L^\infty(\Omega \to \mathbb{R}^d, \mathcal{L}^d)$ satisfying

- boundary conditions : $\vec{\sigma} \cdot \vec{v}_\Omega \leq 0$ \mathcal{H}^{d-1} -a.e. on $\mathsf{\Gamma}^1$ and $\vec{\sigma} \cdot \vec{v}_\Omega = 0$ \mathcal{H}^{d-1} -a.e. on $\partial \Omega \smallsetminus (\mathsf{\Gamma}^1 \cup \mathsf{\Gamma}^2)$,
- conservation law : div $\vec{\sigma} = 0$ \mathcal{L}^{d} -a.e. on Ω ,
- capacity constraint : $\vec{\sigma} \cdot \vec{v} \le \nu(\vec{v})$ for all $\vec{v} \in \mathbb{S}^{d-1}$, \mathcal{L}^d -a.e.

Flow: flow^{cont}(
$$
\vec{\sigma}
$$
) = $\int_{\Gamma^1} -\vec{\sigma} \cdot \vec{v}_{\Omega} d\mathcal{H}^{d-1}$.

Variational problem :

 $\phi^{\text{stream}} = \sup \{\text{flow}^{\text{cont}}(\vec{\sigma}) \mid \vec{\sigma} \text{ admissible stream in } \Omega \},$ $\Sigma^{\text{stream}} = {\vec{\sigma} | \vec{\sigma} \text{ admissible stream in } \Omega, \text{flow}^{\text{cont}}(\vec{\sigma}) = \phi^{\text{stream}}}.$

 \mathcal{A} and \mathcal{A} in the set of \mathbb{R}^{n} is a set of \mathbb{R}^{n}

 \equiv

Laws of large numbers for $\vec{\mu}_n^{\text{max}}$ $\frac{m}{n}$ and \mathcal{E}_n^{\min} n

Hypotheses : $(\Omega, \Gamma^1, \Gamma^2)$ is "nice" and the capacities are bounded. Convergence of the maximal streams : $\int \vec{\mu}_n^{\text{max}}$ \setminus

n d n≥1 converges weakly a.s. towards $\Sigma^{\rm stream}$, i.e.,

$$
a.s., \forall f \in C_b(\mathbb{R}^d, \mathbb{R}), \inf_{\vec{\sigma} \in \Sigma^{\text{stream}}}\left| \int_{\mathbb{R}^d} f \, \frac{d\vec{\mu}_n^{\text{max}}}{n^d} - \int_{\mathbb{R}^d} f \, \vec{\sigma} \, d\mathcal{L}^d \right| \underset{n \to \infty}{\longrightarrow} 0.
$$

Convergence of the minimal cutsets : If $\mathbb{P}[t(e) = 0] < 1 - p_c(d) \quad (\iff \nu \neq 0),$ $(\mathcal{E}_n^{\text{min}})_{n\geq 1}$ converges a.s. towards Σ^{cutset} , i.e.,

a.s.,
$$
\inf_{F \in \Sigma^{\text{cutset}}} \mathcal{L}^d(\mathcal{E}_n^{\min} \Delta F) \longrightarrow_{n \to \infty} 0
$$
.

Continuous max-flow min-cut theorem and LLN for ϕ_n

Continuous max-flow min-cut theorem :

•
$$
\phi^{\text{cutset}} = \phi^{\text{stream}} := \phi
$$

 Σ^{cutset} and Σ^{stream} are not empty.

Convergence of the maximal flows :

$$
a.s., \frac{\phi_n}{n^{d-1}} \underset{n \to \infty}{\longrightarrow} \phi.
$$

つくへ

Hypotheses on $(\Omega,\Gamma^1,\Gamma^2)$

 $(Ω, Γ¹, Γ²)$ "nice" means :

- Ω is open, bounded and connected,
- \bullet Ω is a Lipschitz domain,
- \bullet ∂ Ω is included in a finite number of oriented hypersurfaces of class \mathcal{C}^1 that intersect each other transversally,
- Γ^1 and Γ^2 are open in $\partial\Omega$,
- $d(\Gamma^1,\Gamma^2)>0$,
- $\mathcal{H}^{d-1}(\partial_{\mathsf{T}}\mathsf{\Gamma}^1)=\mathcal{H}^{d-1}(\partial_{\mathsf{T}}\mathsf{\Gamma}^2)=0.$

Steps of the proof of the capacity constraint

Suppose that $\vec{\mu}_{n}^{\textsf{max}}\rightharpoonup\vec{\sigma}\mathcal{L}^{d}.$ Let $x\in\Omega,~\vec{v}\in\mathbb{S}^{d-1},~\mathcal{B}(\vec{v})$ a cylinder of sidelengths $1, ..., 1, h$ oriented towards \vec{v} .

• Lebesgue differentiation Theorem : let $B(x, \varepsilon) = x + \varepsilon B(\vec{v})$. $\frac{1}{\mathcal{L}^d(B(x,\varepsilon))}\int_{B(x,\varepsilon)}\vec{\sigma}\cdot\vec{v}\,d\mathcal{L}^d\underset{\varepsilon\to 0}{\longrightarrow}\vec{\sigma}(x)\cdot\vec{v}\quad\mathcal{L}^d\text{-a.e.}$ $[\vec{\mu}^{\max}_n \rightharpoonup \vec{\sigma} \mathcal{L}^d] \Longrightarrow \left[\int_{B(x,\varepsilon)} d\vec{\mu}^{\max}_n \cdot \vec{v} \underset{n\to\infty}{\longrightarrow} \int_{B(x,\varepsilon)} \vec{\sigma} \cdot \vec{v} d\mathcal{L}^d \right].$ $\int_{B(x,\varepsilon)} d\vec{\mu}_n^{\text{max}} \cdot \vec{v} \approx \varepsilon h n \text{ flow}_n^{\text{disc}}(\vec{\mu}_n \text{ in } B(x,\vec{v}))$ (*) $\leq \varepsilon \ln \tau_n(B(x,\varepsilon))$ by maximality of τ . $\tau_n(B(x,\varepsilon))$ $\frac{\nu_n(B(X,\varepsilon))}{\varepsilon^{d-1}n^{d-1}} \underset{n\to\infty}{\longrightarrow} \nu(\vec{v})$ a.s.