# Maximal stream, minimal cutset and maximal flow in *d*-dimensional first passage percolation

### Marie Théret

LPMA, Université Paris Diderot (Paris VII)

joint work with Raphaël Cerf (IUF - Université Paris Sud)



2 Continuous objects



э

## • $\Omega \subset \mathbb{R}^d$ open bounded connected $(d \geq 2) \iff$ piece of **rock**

- $\Gamma^1, \Gamma^2 \subset \partial \Omega$  open  $\leadsto$  where the water can **enter** / **come out**
- Graph  $(\mathbb{V}_n, \mathbb{E}_n) = (\mathbb{Z}^d/n, \mathbb{E}^d/n) \cap \Omega \iff \mathbf{tubes}$
- Random variables  $(t(e))_{e \in \mathbb{E}_n}$  i.i.d.  $\geq 0 \iff$  capacities :



- $\Omega \subset \mathbb{R}^d$  open bounded connected  $(d \ge 2) \iff$  piece of **rock**
- $\Gamma^1, \Gamma^2 \subset \partial \Omega$  open  $\leadsto$  where the water can enter / come out
- Graph  $(\mathbb{V}_n, \mathbb{E}_n) = (\mathbb{Z}^d/n, \mathbb{E}^d/n) \cap \Omega \iff$  tubes
- Random variables  $(t(e))_{e \in \mathbb{E}_n}$  i.i.d.  $\geq 0 \iff$  capacities :



- $\Omega \subset \mathbb{R}^d$  open bounded connected  $(d \ge 2) \iff$  piece of **rock**
- $\Gamma^1, \Gamma^2 \subset \partial \Omega$  open  $\leftrightsquigarrow$  where the water can enter / come out
- Graph  $(\mathbb{V}_n, \mathbb{E}_n) = (\mathbb{Z}^d/n, \mathbb{E}^d/n) \cap \Omega \iff$  tubes

• Random variables  $(t(e))_{e \in \mathbb{E}_n}$  i.i.d.  $\geq 0 \iff$  capacities :



- $\Omega \subset \mathbb{R}^d$  open bounded connected  $(d \ge 2) \iff$  piece of **rock**
- $\Gamma^1, \Gamma^2 \subset \partial \Omega$  open  $\leftrightsquigarrow$  where the water can enter / come out
- Graph  $(\mathbb{V}_n, \mathbb{E}_n) = (\mathbb{Z}^d/n, \mathbb{E}^d/n) \cap \Omega \iff$  tubes
- Random variables  $(t(e))_{e \in \mathbb{E}_n}$  i.i.d.  $\geq 0 \iff$  capacities :



## Streams

**Circulation of water :**  $e \in \mathbb{E}_n \mapsto \vec{f}_n(e)$  such that

- $\|\vec{f}_n(e)\|$  = amount of water that cross *e* per second,
- $\frac{\vec{f}_n(e)}{\|\vec{f}_n(e)\|}$  = direction in which the water circulates.



伺 ト く ヨ ト く ヨ ト

## Streams

**Circulation of water** :  $e \in \mathbb{E}_n \mapsto \vec{f}_n(e)$  such that

- $\|\vec{f}_n(e)\| =$  amount of water that cross *e* per second,
- $\frac{\vec{f}_n(e)}{\|\vec{f}_n(e)\|}$  = direction in which the water circulates.

**Constraints** :

- node law, at each point in  $\mathbb{V}_n \smallsetminus (\Gamma^1 \cup \Gamma^2)$ ,
- capacity constraint (random) :  $\forall e \in \mathbb{E}_n$ ,  $\|\vec{f}_n(e)\| \le t(e)$ .

Stream : Borel vector measure defined by

$$\vec{\mu}_n = \sum_{e \in \mathbb{E}_n} \vec{f}_n(e) \, \delta_{\operatorname{center}(e)} \, .$$

## Maximal flow

Flow :  $flow_n^{disc}(\vec{\mu}_n)$  is the amount of water that enters in  $\Omega$ through  $\Gamma^1$  per second according to  $\vec{\mu}_n$ . Maximal flow :

$$\phi_n = \sup\{\mathrm{flow}_n^{\mathrm{disc}}(\vec{\mu}_n)\}.$$

**Cutsets** :

• 
$$E_n \subset \mathbb{E}_n$$
 is a **cutset** if  $\Gamma^1 \leftrightarrow \Gamma^2$  in  $\mathbb{E}_n \smallsetminus E_n$ ,  
• capacity<sup>disc</sup><sub>n</sub> $(E_n) = \sum_{e \in E_n} t(e)$ ,

• Max-flow min-cut Theorem (Ford and Fulkerson, '56) :

$$\phi_n = \min \left\{ \operatorname{capacity}_n^{\operatorname{disc}}(E_n) \mid E_n \text{ is a cutset} \right\}.$$

同 ト イ ヨ ト イ ヨ ト

## Maximal flow

Flow :  $flow_n^{disc}(\vec{\mu}_n)$  is the amount of water that enters in  $\Omega$ through  $\Gamma^1$  per second according to  $\vec{\mu}_n$ . Maximal flow :

$$\phi_n = \sup\{\mathsf{flow}_n^{\mathrm{disc}}(\vec{\mu}_n)\}.$$

### Cutsets :

• 
$$E_n \subset \mathbb{E}_n$$
 is a **cutset** if  $\Gamma^1 \nleftrightarrow \Gamma^2$  in  $\mathbb{E}_n \smallsetminus E_n$ ,

• capacity<sup>disc</sup><sub>n</sub>
$$(E_n) = \sum_{e \in E_n} t(e)$$
,

• Max-flow min-cut Theorem (Ford and Fulkerson, '56) :

$$\phi_n = \min \left\{ \operatorname{capacity}_n^{\operatorname{disc}}(E_n) \mid E_n \text{ is a cutset} \right\}.$$

**□ > < = > <** 

## Cutsets

Representation of a cutset :

- "dual" of an edge *e* = small "plaquette" *e*\*,
- "dual" of a cutset  $E_n$ 
  - = "surface"  $E_n^*$
  - $= \text{ boundary of a set } \mathcal{E}_n :$  $\mathcal{E}_n \subset \Omega, \ \Gamma^1 \subset \partial \mathcal{E}_n.$





# Goal

### Main characters :

- maximal flow  $\phi_n$  (random real number),
- maximal stream μ<sub>n</sub><sup>max</sup> (random vector measure),
   i.e., stream of maximal flow, and such that no water comes out of Ω through Γ<sup>1</sup>,
- minimal cutset *E<sub>n</sub><sup>min</sup>* (random subset of Ω),
   i.e., cutset of minimal capacity, and of minimal number of edges.

**Question :** Behaviors of  $\phi_n$ ,  $\vec{\mu}_n^{\max}$  and  $\mathcal{E}_n^{\min}$  when  $n \to \infty$ ?

伺 ト く ヨ ト く ヨ ト

## Continuous capacity $\nu(\vec{v})$

# **Definitions :** $B(\vec{v})$ unit cube oriented towards $\vec{v} \in \mathbb{S}^{d-1}$ , $\tau_n(B(\vec{v})) = \min \left\{ \operatorname{capacity}_n^{\operatorname{disc}}(E_n) \mid \begin{array}{c} E_n^* \text{ surface of plaquettes} \\ \inf B(\vec{v}) \text{ of boundary } R \end{array} \right\}.$ $\tau_n(B(\vec{v})) = \max$ flow from pink to blue.



## Continuous capacity $\nu(\vec{v})$

**Definitions :**   $B(\vec{v})$  unit cube oriented towards  $\vec{v} \in \mathbb{S}^{d-1}$ ,  $\tau_n(B(\vec{v})) = \min \left\{ \operatorname{capacity}_n^{\operatorname{disc}}(E_n) \mid \begin{array}{c} E_n^* \text{ surface of plaquettes} \\ \operatorname{in} B(\vec{v}) \text{ of boundary } R \end{array} \right\}.$ **Subadditivity :** 

$$\frac{\tau_n(B(\vec{v}))}{n^{d-1}} \xrightarrow[n \to \infty]{p.s.} \nu(\vec{v}).$$



## Continuous capacity $\nu(\vec{v})$

**Definitions :**   $B(\vec{v})$  unit cube oriented towards  $\vec{v} \in \mathbb{S}^{d-1}$ ,  $\tau_n(B(\vec{v})) = \min \left\{ \operatorname{capacity}_n^{\operatorname{disc}}(E_n) \mid \begin{array}{c} E_n^* \text{ surface of plaquettes} \\ \operatorname{in} B(\vec{v}) \text{ of boundary } R \end{array} \right\}.$ **Subadditivity :** 

$$\frac{\tau_n(B(\vec{v}))}{n^{d-1}} \xrightarrow[n \to \infty]{p.s.} \nu(\vec{v}).$$

**Interpretation** :  $\nu(\vec{v})$  is the average asymptotic capacity of a continuous unit surface normal to  $\vec{v}$ .

## Continuous cutset

**Cutstet** :  $F \subset \Omega$  of finite perimeter  $(\mathbb{1}_F \in BV(\Omega))$   $\longrightarrow S = (\partial F \cap \Omega) \cup (\partial F \cap \Gamma^2) \cup (\partial (\Omega \smallsetminus F) \cap \Gamma^1).$ **Capacity** : capacity<sup>cont</sup> $(F) = \int_S \nu(\vec{v}_S(x)) d\mathcal{H}^{d-1}(x).$ 



Variational problem :

$$\begin{split} \phi^{\text{cutset}} &= \inf\{\text{capacity}^{\text{cont}}(F) \,|\, F \subset \Omega \,, \, \mathbb{1}_F \in BV(\Omega)\} \,, \\ \mathbf{\Sigma}^{\text{cutset}} &= \{F \subset \Omega \,|\, \mathbb{1}_F \in BV(\Omega) \,, \, \text{capacity}^{\text{cont}}(F) = \phi^{\text{cutset}}\} \,. \end{split}$$

4 B N 4 B N

## Continuous cutset

**Cutstet** :  $F \subset \Omega$  of finite perimeter  $(\mathbb{1}_F \in BV(\Omega))$  $\longrightarrow S = (\partial F \cap \Omega) \cup (\partial F \cap \Gamma^2) \cup (\partial (\Omega \smallsetminus F) \cap \Gamma^1).$ **Capacity** : capacity<sup>cont</sup> $(F) = \int_S \nu(\vec{v}_S(x)) d\mathcal{H}^{d-1}(x).$ 



Variational problem :

$$\begin{split} \phi^{\text{cutset}} &= \inf\{\text{capacity}^{\text{cont}}(F) \,|\, F \subset \Omega \,, \, \mathbb{1}_F \in BV(\Omega)\} \,, \\ \mathbf{\Sigma}^{\text{cutset}} &= \{F \subset \Omega \,|\, \mathbb{1}_F \in BV(\Omega) \,, \, \text{capacity}^{\text{cont}}(F) = \phi^{\text{cutset}}\} \,. \end{split}$$

글 🖌 🖌 글 🕨

## Continuous cutset

**Cutstet** :  $F \subset \Omega$  of finite perimeter  $(\mathbb{1}_F \in BV(\Omega))$  $\longrightarrow S = (\partial F \cap \Omega) \cup (\partial F \cap \Gamma^2) \cup (\partial (\Omega \smallsetminus F) \cap \Gamma^1).$ **Capacity** : capacity<sup>cont</sup> $(F) = \int_S \nu(\vec{v}_S(x)) d\mathcal{H}^{d-1}(x).$ 



#### Variational problem :

$$\begin{split} \phi^{\text{cutset}} &= \inf\{\text{capacity}^{\text{cont}}(F) \,|\, F \subset \Omega \,, \, \mathbb{1}_F \in BV(\Omega)\} \,, \\ \mathbf{\Sigma}^{\text{cutset}} &= \{F \subset \Omega \,|\, \mathbb{1}_F \in BV(\Omega) \,, \, \text{capacity}^{\text{cont}}(F) = \phi^{\text{cutset}}\} \,. \end{split}$$

## Continuous stream

**Stream :** vector field  $\vec{\sigma} \in L^{\infty}(\Omega \to \mathbb{R}^d, \mathcal{L}^d)$  satisfying

- boundary conditions :  $\vec{\sigma} \cdot \vec{v}_{\Omega} \leq 0 \ \mathcal{H}^{d-1}$ -a.e. on  $\Gamma^1$  and  $\vec{\sigma} \cdot \vec{v}_{\Omega} = 0 \ \mathcal{H}^{d-1}$ -a.e. on  $\partial \Omega \smallsetminus (\Gamma^1 \cup \Gamma^2)$ ,
- conservation law : div  $\vec{\sigma} = 0 \mathcal{L}^d$ -a.e. on  $\Omega$ ,
- capacity constraint :  $\vec{\sigma} \cdot \vec{v} \leq \nu(\vec{v})$  for all  $\vec{v} \in \mathbb{S}^{d-1}$ ,  $\mathcal{L}^d$ -a.e.

**Flow :** flow<sup>cont</sup>( $\vec{\sigma}$ ) =  $\int_{\Gamma^1} -\vec{\sigma} \cdot \vec{v}_{\Omega} d\mathcal{H}^{d-1}$ .

Variational problem :

$$\begin{split} \phi^{\text{stream}} &= \sup\{\text{flow}^{\text{cont}}(\vec{\sigma}) \mid \vec{\sigma} \text{ admissible stream in } \Omega\},\\ \Sigma^{\text{stream}} &= \{\vec{\sigma} \mid \vec{\sigma} \text{ admissible stream in } \Omega, \text{ flow}^{\text{cont}}(\vec{\sigma}) = \phi^{\text{stream}}\} \end{split}$$

## Continuous stream

**Stream :** vector field  $\vec{\sigma} \in L^{\infty}(\Omega \to \mathbb{R}^d, \mathcal{L}^d)$  satisfying

- boundary conditions :  $\vec{\sigma} \cdot \vec{v}_{\Omega} \leq 0 \ \mathcal{H}^{d-1}$ -a.e. on  $\Gamma^1$  and  $\vec{\sigma} \cdot \vec{v}_{\Omega} = 0 \ \mathcal{H}^{d-1}$ -a.e. on  $\partial \Omega \smallsetminus (\Gamma^1 \cup \Gamma^2)$ ,
- conservation law : div  $\vec{\sigma} = 0 \mathcal{L}^d$ -a.e. on  $\Omega$ ,
- capacity constraint :  $\vec{\sigma} \cdot \vec{v} \leq \nu(\vec{v})$  for all  $\vec{v} \in \mathbb{S}^{d-1}$ ,  $\mathcal{L}^d$ -a.e.

**Flow :** flow<sup>cont</sup>(
$$\vec{\sigma}$$
) =  $\int_{\Gamma^1} -\vec{\sigma} \cdot \vec{v}_{\Omega} d\mathcal{H}^{d-1}$ .

Variational problem :

$$\begin{split} \phi^{\text{stream}} &= \sup\{\text{flow}^{\text{cont}}(\vec{\sigma}) \,|\, \vec{\sigma} \text{ admissible stream in } \Omega\}\,,\\ \Sigma^{\text{stream}} &= \{\vec{\sigma} \,|\, \vec{\sigma} \text{ admissible stream in } \Omega\,,\, \text{flow}^{\text{cont}}(\vec{\sigma}) = \phi^{\text{stream}}\} \end{split}$$

(4月) (4日) (4日) 日

## Continuous stream

**Stream :** vector field  $\vec{\sigma} \in L^{\infty}(\Omega \to \mathbb{R}^d, \mathcal{L}^d)$  satisfying

- boundary conditions :  $\vec{\sigma} \cdot \vec{v}_{\Omega} \leq 0 \ \mathcal{H}^{d-1}$ -a.e. on  $\Gamma^1$  and  $\vec{\sigma} \cdot \vec{v}_{\Omega} = 0 \ \mathcal{H}^{d-1}$ -a.e. on  $\partial \Omega \smallsetminus (\Gamma^1 \cup \Gamma^2)$ ,
- conservation law : div  $\vec{\sigma} = 0 \mathcal{L}^d$ -a.e. on  $\Omega$ ,
- capacity constraint :  $\vec{\sigma} \cdot \vec{v} \leq \nu(\vec{v})$  for all  $\vec{v} \in \mathbb{S}^{d-1}$ ,  $\mathcal{L}^d$ -a.e.

**Flow :** flow<sup>cont</sup>(
$$\vec{\sigma}$$
) =  $\int_{\Gamma^1} -\vec{\sigma} \cdot \vec{v}_{\Omega} d\mathcal{H}^{d-1}$ .

### Variational problem :

$$\begin{split} \phi^{\text{stream}} &= \sup\{\text{flow}^{\text{cont}}(\vec{\sigma}) \,|\, \vec{\sigma} \text{ admissible stream in } \Omega\}\,,\\ \Sigma^{\text{stream}} &= \,\{\vec{\sigma} \,|\, \vec{\sigma} \text{ admissible stream in } \Omega\,,\, \text{flow}^{\text{cont}}(\vec{\sigma}) = \phi^{\text{stream}}\}\,. \end{split}$$

・吊 ・ ・ ラ ト ・ ラ ト ・ ラ



Laws of large numbers for  $\vec{\mu}_n^{\max}$  and  $\mathcal{E}_n^{\min}$ 

Hypotheses :  $(\Omega, \Gamma^1, \Gamma^2)$  is "nice" and the capacities are bounded. Convergence of the maximal streams :

 $\left(\frac{\vec{\mu}_n^{\max}}{n^d}\right)_{n\geq 1}$  converges weakly a.s. towards  $\Sigma^{\text{stream}}$ , i.e.,

$$a.s., \forall f \in \mathcal{C}_b(\mathbb{R}^d, \mathbb{R}), \inf_{\vec{\sigma} \in \Sigma^{\text{stream}}} \left| \int_{\mathbb{R}^d} f \frac{d\vec{\mu}_n^{\text{max}}}{n^d} - \int_{\mathbb{R}^d} f \vec{\sigma} \, d\mathcal{L}^d \right| \xrightarrow[n \to \infty]{} 0.$$

**Convergence of the minimal cutsets :** If  $\mathbb{P}[t(e) = 0] < 1 - p_c(d) \quad (\iff \nu \neq 0),$  $(\mathcal{E}_n^{\min})_{n \ge 1}$  converges a.s. towards  $\Sigma^{\text{cutset}}$ , i.e.,

a.s., 
$$\inf_{F\in\Sigma^{\mathrm{cutset}}} \mathcal{L}^d(\mathcal{E}_n^{\min} \triangle F) \xrightarrow[n\to\infty]{} 0.$$

Continuous max-flow min-cut theorem and LLN for  $\phi_n$ 

#### Continuous max-flow min-cut theorem :

• 
$$\phi^{\text{cutset}} = \phi^{\text{stream}} := \phi_{\text{stream}}$$

•  $\Sigma^{\rm cutset}$  and  $\Sigma^{\rm stream}$  are not empty.

#### Convergence of the maximal flows :

a.s., 
$$\frac{\phi_n}{n^{d-1}} \xrightarrow[n \to \infty]{} \phi$$
.

Hypotheses on  $(\Omega, \Gamma^1, \Gamma^2)$ 

 $\left(\Omega,\Gamma^{1},\Gamma^{2}\right)$  "nice" means :

- $\Omega$  is open, bounded and connected,
- Ω is a Lipschitz domain,
- $\partial \Omega$  is included in a finite number of oriented hypersurfaces of class  $C^1$  that intersect each other transversally,
- $\Gamma^1$  and  $\Gamma^2$  are open in  $\partial\Omega$ ,
- d(Γ<sup>1</sup>, Γ<sup>2</sup>) > 0,

• 
$$\mathcal{H}^{d-1}(\partial_{\Gamma}\Gamma^{1}) = \mathcal{H}^{d-1}(\partial_{\Gamma}\Gamma^{2}) = 0.$$

## Steps of the proof of the capacity constraint

Suppose that  $\vec{\mu}_n^{\max} \rightarrow \vec{\sigma} \mathcal{L}^d$ . Let  $x \in \Omega$ ,  $\vec{v} \in \mathbb{S}^{d-1}$ ,  $B(\vec{v})$  a cylinder of sidelengths 1, ..., 1, h oriented towards  $\vec{v}$ .

• Lebesgue differentiation Theorem : let  $B(x, \varepsilon) = x + \varepsilon B(\vec{v})$ .  $\frac{1}{\mathcal{L}^d(B(x,\varepsilon))} \int_{B(x,\varepsilon)} \vec{\sigma} \cdot \vec{v} \, d\mathcal{L}^d \xrightarrow[\varepsilon \to 0]{} \vec{\sigma}(x) \cdot \vec{v} \quad \mathcal{L}^d$ -a.e. •  $[\vec{\mu}_n^{\max} \to \vec{\sigma} \mathcal{L}^d] \Longrightarrow \left[ \int_{B(x,\varepsilon)} d\vec{\mu}_n^{\max} \cdot \vec{v} \xrightarrow[n \to \infty]{} \int_{B(x,\varepsilon)} \vec{\sigma} \cdot \vec{v} \, d\mathcal{L}^d \right]$ . •  $\int_{B(x,\varepsilon)} d\vec{\mu}_n^{\max} \cdot \vec{v} \approx \varepsilon hn \operatorname{flow}_n^{\operatorname{disc}}(\vec{\mu}_n \text{ in } B(x,\vec{v})) \qquad (*)$   $\leq \varepsilon hn \tau_n(B(x,\varepsilon)) \qquad \text{by maximality of } \tau$ . •  $\frac{\tau_n(B(x,\varepsilon))}{\varepsilon^{d-1}n^{d-1}} \xrightarrow[n \to \infty]{} \nu(\vec{v}) \text{ a.s.}$