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Bond Percolation in Zd

Each edge is “open” with prob. p and “closed” with prob. 1− p

Let C(conn) = connected component of open edges containing ~0

Hammersley + Broadbent (1957-59) proved

∃ pc ∈ (0, 1) such that Pp(|C(conn)| =∞)

{
= 0 p < pc

> 0 p > pc

For p > pc, there is a (unique) infinite connected open
component a.s.

0
r
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A model for (random) polymer networks

p > pc: gelation (infinite network)

p < pc: may get large (possibly infinite) network of small
polymers, topologically linked (entangled)

entangled: can’t separate by deformed sphere
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C(E) = (maximal) entangled component of open edges
containing ~0

Pp(|C(E)| =∞)

{
= 0 p < pE

> 0 p > pE
pE ≤ pc

Monte Carlo simulations of Kantor & Hassold (1988) suggest
pc − pe ≈ 10−7.

Theorem (Grimmett & Holroyd 2000-2002, Aizenmann &
Grimmett 1991)

1
15616 ≤ pE < pc
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Theorem (Grimmett & Holroyd 2010)

pE ≥ µ−2
3 > 1

23

where µ3 is the connective constant for self-avoiding walks in Z3.
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Let aN = number of connected graphs with N edges in
Z3(modulo translation)

Let eN = number of entangled graphs with N edges in Z3(modulo
translation)

Classical Theorem (e.g. Klarner 1967)

λ := limN→∞ a1/N
N <∞

Theorem (Grimmett and Holroyd 2000)

eN ≤ eo(N log N)

Conjecture (Grimmett and Holroyd 2000)

λe := limN→∞ e1/N
N <∞?
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As the self-avoiding walk models linear polymers, the self-avoiding
polygon models ring polymers, and aN corresponds to branched
polymers, so eN corresponds to networks of entangled polymers.
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Theorem (Atapour + Madras)

λe ≤ 4λ2

Corollary 1

pE ≥ 1
λe
> 1

597

Corollary 2

Pp(|C(E)| ≥ n) ≤ e−cN for p < 1
λe

Proof of Corollaries.

Pp(|C(E)| ≥ n) ≤
∑

finite entangled G: ~0∈G, |G|≥n

Pp(G ⊂ C(E))

≤
∑
N≥n

eNpN ≈ (λep)n

1− λep

which decays exponentially if p < 1
λe
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Holroyd proved pE > 0 via dual percolation of a surface around 0.
Why is this problem harder than usual percolation?

{|C(E)| ≥ n} is not a cylinder event

? ?

(“similar” problem): Let CCN = number of “caged clusters” with N
edges (geometric trap)

N/2 edges in surface of the cube, diam ≈
√

N, vol ≈ N3/2

Scatter (N/2)/12 unit cubes

CCN ≥
(o(N3/2)

o(N)

)
≈ (N3/2)N

n2

2
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Recall aN = number of N-edge connected graphs ≈ λN .

Proposition (Kesten)

λ ≤ 55

44 ≈ 12.2

Proof.

1 ≥ Pp(|C(conn)| = n) =
∑

A30,|A|=n

pn(1− p)∂A

≥ anpn(1− p)4n+6

Note that ∂A ≤ 4n + 6 (worst case: line).

∴ 1 ≥ λp(1− p)4, i.e.
1

p(1− p)4 ≥ λ .

Optimize: p = 1
5 .
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Intuition for proof that λe <∞

Let G be a finite entangled graph with |G| = N.

Assume ∃ A ⊂ Z3 such that G ∪ A is connected and |A| ≤ t(N)
(some function of N only). Then
eN ≤ 2N+t(N)aN+t(N) ≈ (2λ)N+t(N). Goal: Show t = O(N)

g1, · · · gk: connected components of G

∀i, ∃j such that conv(gi) ∩ gj 6= ∅

Can connect gi to gj with ≤ |gi| (diam of conv(gi)) edges

Note that ∃ cycle in gi: hence can do it with ≤ |gi|
2 edges

Not finished!

Next level: diam ≤ |braceled|
4

t(N) ≤ N
2 + N

4 + N
8 + · · · ≤ N (weak on details; right answer.)

∴ eN ≤ (2λ)2N
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Convex hull too crude

Block Cluster: Boxes + Edges + Vertices
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Lemma
g connected⇒ any coordinate plane cutting a box of BC(g) cuts ≥ 2
edges of g

Definition
gi ↘ gj if gj ∩ BC(gi) 6= ∅

⇓
Can connect gi to gj by at most diam(box) edges

Each unit of diameter↔ 2 edges of gi in box
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Algorithm: Let G be a finite entangled graph. To connect G,

Colour all edges of G green

If G is not connected, ∃ g1 ↘ g2 ↘ · · · ↘ gq ↘ g1

Connect gi to gi+1 inside a box

Each new edge is Green

For each new edge, recolour two old Green edges to Red

Theorem
This can be done.

⇓
at most N edges need to be added.


