The Number of Entangled Clusters

Neal Madras York University

and

Mahshid Atapour University of Saskatchewan

Research supported by NSERC

Outline

Percolation and Entanglement Percolation

(日) (日) (日) (日) (日) (日) (日)

- The Conjecture of Grimmett & Holroyd
- Related Problems
- Idea of the Proof

Bond Percolation in \mathbb{Z}^d

- Each edge is "open" with prob. p and "closed" with prob. 1 p
- Let C(conn) = connected component of open edges containing $\vec{0}$
- Hammersley + Broadbent (1957-59) proved

$$\exists p_c \in (0,1) \text{ such that } P_p(|C(conn)| = \infty) \begin{cases} = 0 & p < p_c \\ > 0 & p > p_c \end{cases}$$

 For p > p_c, there is a (unique) infinite connected open component a.s.

- A model for (random) polymer networks
- $p > p_c$: gelation (infinite network)
- *p* < *p_c*: may get large (possibly infinite) network of small polymers, topologically linked (entangled)
- entangled: can't separate by deformed sphere

• $C(\mathcal{E}) = (\text{maximal})$ entangled component of open edges containing $\vec{0}$

•
$$P_p(|C(\mathcal{E})| = \infty) \begin{cases} = 0 \quad p < p_E \\ > 0 \quad p > p_E \end{cases}$$
 $p_E \le p_C$

• Monte Carlo simulations of Kantor & Hassold (1988) suggest $p_c - p_e \approx 10^{-7}$.

Theorem (Grimmett & Holroyd 2000-2002, Aizenmann & Grimmett 1991)

$$\frac{1}{15616} \le p_E < p_c$$

◆□ → < □ → < □ → < □ → < □ → < □ → < □ → < ○ < ○ </p>

Theorem (Grimmett & Holroyd 2010)

$$p_E \ge \mu_3^{-2} > \frac{1}{23}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

where μ_3 is the connective constant for self-avoiding walks in \mathbb{Z}^3 .

- Let a_N = number of connected graphs with N edges in \mathbb{Z}^3 (modulo translation)
- Let *e_N* = number of entangled graphs with *N* edges in Z³(modulo translation)

Classical Theorem (e.g. Klarner 1967)

$$\lambda := \lim_{N \to \infty} a_N^{1/N} < \infty$$

Theorem (Grimmett and Holroyd 2000)

$$e_N \leq e^{o(N \log N)}$$

Conjecture (Grimmett and Holroyd 2000)

$$\lambda_e := \lim_{N \to \infty} e_N^{1/N} < \infty?$$

As the self-avoiding walk models linear polymers, the self-avoiding polygon models ring polymers, and a_N corresponds to branched polymers, so e_N corresponds to networks of entangled polymers.

Theorem (Atapour + Madras)

$$\lambda_e \leq 4\lambda^2$$

Corollary 1

$$p_E \geq \frac{1}{\lambda_e} > \frac{1}{597}$$

Corollary 2

$$P_p(|C(\mathcal{E})| \ge n) \le e^{-cN}$$
 for $p < rac{1}{\lambda_e}$

Proof of Corollaries.

$$\begin{split} P_p(|C(\mathcal{E})| \ge n) &\le \sum_{\substack{\text{finite entangled } G: \ \vec{0} \in G, \ |G| \ge n}} P_p(G \subset C(\mathcal{E})) \\ &\le \sum_{N \ge n} e_N p^N \approx \frac{(\lambda_e p)^n}{1 - \lambda_e p} \end{split}$$

which decays exponentially if $p < \frac{1}{\lambda_e}$

Holroyd proved $p_E > 0$ via dual percolation of a surface around 0. Why is this problem harder than usual percolation?

- ("similar" problem): Let CC_N = number of "caged clusters" with N edges (geometric trap)
- N/2 edges in surface of the cube, diam $\approx \sqrt{N}$, vol $\approx N^{3/2}$
- Scatter (N/2)/12 unit cubes

•
$$CC_N \ge {\binom{o(N^{3/2})}{o(N)}} \approx (N^{3/2})^N$$

(日) (日) (日) (日) (日) (日) (日)

Recall a_N = number of *N*-edge connected graphs $\approx \lambda^N$.

Proposition (Kesten)

$$\lambda \leq rac{5^5}{4^4} pprox 12.2$$

Proof.

$$1 \ge P_p(|C(conn)| = n) = \sum_{\substack{A \ge 0, |A| = n}} p^n (1-p)^{\partial A}$$
$$\ge a_n p^n (1-p)^{4n+6}$$

Note that $\partial A \leq 4n + 6$ (worst case: line).

$$\therefore 1 \ge \lambda p(1-p)^4$$
, i.e. $\frac{1}{p(1-p)^4} \ge \lambda$.
Optimize: $p = \frac{1}{5}$.

<□><□><□><□><□><□><□><□><□><□><00<</td>

Intuition for proof that $\lambda_e < \infty$

- Let *G* be a finite entangled graph with |G| = N.
- Assume ∃ A ⊂ Z³ such that G ∪ A is connected and |A| ≤ t(N) (some function of N only). Then
 e_N ≤ 2^{N+t(N)}a_{N+t(N)} ≈ (2λ)^{N+t(N)}. Goal: Show t = O(N)
- g₁, · · · g_k: connected components of G
- $\forall i, \exists j \text{ such that } conv(g_i) \cap g_j \neq \emptyset$
- Can connect g_i to g_j with $\leq |g_i|$ (diam of $conv(g_i)$) edges
- Note that \exists cycle in g_i : hence can do it with $\leq \frac{|g_i|}{2}$ edges
- Not finished!
- Next level: diam $\leq \frac{|braceled|}{4}$
- $t(N) \leq \frac{N}{2} + \frac{N}{4} + \frac{N}{8} + \cdots \leq N$ (weak on details; right answer.) • $\therefore e_N \leq (2\lambda)^{2N}$

- Convex hull too crude
- Block Cluster: Boxes + Edges + Vertices

Lemma

g connected \Rightarrow any coordinate plane cutting a box of BC(g) cuts \geq 2 edges of g

Definition

$$g_i \searrow g_j$$
 if $g_j \cap BC(g_i) \neq \emptyset$

(日) (日) (日) (日) (日) (日) (日)

- Can connect g_i to g_j by at most diam(box) edges
- Each unit of diameter \leftrightarrow 2 edges of g_i in box

Algorithm: Let G be a finite entangled graph. To connect G,

- Colour all edges of *G* green
- If *G* is not connected, $\exists g_1 \searrow g_2 \searrow \cdots \searrow g_q \searrow g_1$
- Connect g_i to g_{i+1} inside a box
- Each new edge is Green
- For each new edge, recolour two old Green edges to Red

(日) (日) (日) (日) (日) (日) (日)

Theorem

This can be done.

at most N edges need to be added.