The Number of Entangled Clusters

Neal Madras York University

and

Mahshid Atapour University of Saskatchewan

Research supported by NSERC

KORKARA REAKER YOUR

Outline

• Percolation and Entanglement Percolation

KORKARA REAKER YOUR

- The Conjecture of Grimmett & Holroyd
- Related Problems
- Idea of the Proof

Bond Percolation in \mathbb{Z}^d

- \bullet Each edge is "open" with prob. *p* and "closed" with prob. $1 p$
- \bullet Let $C(conn) =$ connected component of open edges containing $\vec{0}$
- Hammersley + Broadbent (1957-59) proved

$$
\exists p_c \in (0,1) \text{ such that } P_p(|C(\text{conn})| = \infty) \begin{cases} = 0 & p < p_c \\ > 0 & p > p_c \end{cases}
$$

 \bullet For $p > p_c$, there is a (unique) infinite connected open component a.s.

KOD KAD KED KED E VOOR

- A model for (random) polymer networks
- \bullet *p* > *p_c*: gelation (infinite network)
- \bullet $p < p_c$: may get large (possibly infinite) network of small polymers, topologically linked (entangled)
- entangled: can't separate by deformed sphere

 $C(E) = (maximal)$ entangled component of open edges containing $\vec{0}$

$$
\begin{array}{lll}\n\bullet & P_p(|C(\mathcal{E})| = \infty) \left\{ \begin{array}{lll} = 0 & p < p_E \\ & > 0 & p > p_E \end{array} \right. & p_E \leq p_c\n\end{array}
$$

Monte Carlo simulations of Kantor & Hassold (1988) suggest $p_c - p_e \approx 10^{-7}$.

Theorem (Grimmett & Holroyd 2000-2002, Aizenmann & Grimmett 1991)

$$
\frac{1}{15616} \le p_E < p_c
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Theorem (Grimmett & Holroyd 2010)

$$
p_E\geq \mu_3^{-2}>\tfrac{1}{23}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © Q Q @

where μ_3 is the connective constant for self-avoiding walks in $\mathbb{Z}^3.$

- Let a_N = number of connected graphs with N edges in \mathbb{Z}^3 (modulo translation)
- Let $e_N =$ number of entangled graphs with N edges in \mathbb{Z}^3 (modulo translation)

Classical Theorem (e.g. Klarner 1967)

$$
\lambda := \lim_{N \to \infty} a_N^{1/N} < \infty
$$

Theorem (Grimmett and Holroyd 2000)

 $e_N \leq e^{o(N \log N)}$

Conjecture (Grimmett and Holroyd 2000)

$$
\lambda_e := \lim_{N \to \infty} e_N^{1/N} < \infty?
$$

KOD KAD KED KED E VOOR

As the self-avoiding walk models linear polymers, the self-avoiding polygon models ring polymers, and *a^N* corresponds to branched polymers, so *e^N* corresponds to networks of entangled polymers.

Theorem (Atapour + Madras)

 $\lambda_e \leq 4\lambda^2$

Corollary 1

$$
p_E \geq \frac{1}{\lambda_e} > \frac{1}{597}
$$

Corollary 2

$$
P_p(|C(\mathcal{E})| \ge n) \le e^{-cN} \text{ for } p < \frac{1}{\lambda_e}
$$

Proof of Corollaries.

$$
P_p(|C(\mathcal{E})| \ge n) \le \sum_{\text{finite entangled } G: \ \vec{0} \in G, \ |G| \ge n} P_p(G \subset C(\mathcal{E}))
$$

$$
\le \sum_{N \ge n} e_N p^N \approx \frac{(\lambda_e p)^n}{1 - \lambda_e p}
$$

 \Box

 2990

which decays exponentially if $p<\frac{1}{\lambda_e}$

Holroyd proved $p_E > 0$ via dual percolation of a surface around 0. Why is this problem harder than usual percolation?

- \bullet ("similar" problem): Let CC_N = number of "caged clusters" with *N* edges (geometric trap)
- $N/2$ edges in surface of the cube, diam \approx √ \overline{N} , vol ≈ $N^{3/2}$
- Scatter $(N/2)/12$ unit cubes

$$
\bullet \ CC_N \ge {\binom{{}^o(N^{3/2})}{{}^o(N)}} \approx {\binom{N^{3/2})^N}{\frac{1}{\prod_{i=1}^{N}{\prod_{i=1}^{N}{\binom{N^{3/2}}{i}}}}}
$$

KORKARA REAKER YOUR

Recall a_N = number of *N*-edge connected graphs $\approx \lambda^N$.

Proposition (Kesten)

$$
\lambda \leq \tfrac{5^5}{4^4} \approx 12.2
$$

Proof.

$$
1 \ge P_p(|C(\text{conn})| = n) = \sum_{A \ni 0, |A| = n} p^n (1 - p)^{\partial A}
$$

$$
\ge a_n p^n (1 - p)^{4n + 6}
$$

Note that $\partial A \leq 4n + 6$ (worst case: line).

$$
\therefore 1 \ge \lambda p (1 - p)^4, \qquad \text{i.e. } \frac{1}{p(1 - p)^4} \ge \lambda.
$$

Optimize: $p = \frac{1}{5}$.

(ロ) (個) (目) (美) $2Q$

Intuition for proof that $\lambda_e < \infty$

- \bullet Let *G* be a finite entangled graph with $|G| = N$.
- Assume $\exists A \subset \mathbb{Z}^3$ such that $G \cup A$ is connected and $|A| \leq t(N)$ (some function of *N* only). Then $e_N \leq 2^{N+t(N)}a_{N+t(N)} \approx (2\lambda)^{N+t(N)}$. Goal: Show $t = O(N)$
- \bullet g_1, \cdots, g_k : connected components of *G*
- $\bullet \forall i, \exists j$ such that $conv(g_i) \cap g_j \neq \emptyset$
- Can connect g_i to g_j with $\leq |g_i|$ (diam of $conv(g_i)$) edges
- Note that \exists cycle in g_i : hence can do it with $\leq \frac{|g_i|}{2}$ edges
- Not finished!
- Next level: diam ≤ |*braceled*| 4
- $t(N) \leq \frac{N}{2} + \frac{N}{4} + \frac{N}{8} + \cdots \leq N$ (weak on details; right answer.)

KORKAR KERKER SAGA

∴ $e_N \leq (2\lambda)^{2N}$

KOXK@XKEXKEX E DAQ

- **Convex hull too crude**
- Block Cluster: Boxes + Edges + Vertices

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © Q Q @

Lemma

g connected \Rightarrow any coordinate plane cutting a box of $BC(g)$ cuts ≥ 2 edges of *g*

Definition

$$
g_i \searrow g_j \text{ if } g_j \cap BC(g_i) \neq \emptyset
$$

⇓

KOD KAD KED KED E VAN

- Can connect g_i to g_j by at most diam(box) edges
- Each unit of diameter \leftrightarrow 2 edges of g_i in box

Algorithm: Let *G* be a finite entangled graph. To connect *G*,

- Colour all edges of *G* green
- **■** If *G* is not connected, $\exists g_1 \searrow g_2 \searrow \cdots \searrow g_q \searrow g_1$
- Connect g_i to g_{i+1} inside a box
- Each new edge is Green
- **•** For each new edge, recolour two old Green edges to Red

⇓

KORKARA REAKER YOUR

Theorem

This can be done.

at most *N* edges need to be added.