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Partitions and Young diagrams

Definition
A partition of an integer n is a sequence of integers

λ = (λ1 ≥ λ2 ≥ · · · ) such that |λ| =
∑
k

λk = n

Example

(5, 5, 4, 3, 1, 1, 0, . . . ) is a partition of 19

• largest part: 5

• number of parts: 6
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Grand canonical ensemble

• Euler: generating function Z (q) =
∑
λ

q|λ| =
∏
k≥1

1

1− qk

• Natural probability measure: µq({λ}) =
q|λ|

Z (q)
What does a typical partition of a large integer look like?

size of order n ' log q−1of order
1√
n

• Hardy–Ramanujan: #{λ : |λ| = n} ∼ 1
4n
√
3
eπ
√

2n/3

• Erdős–Lehner: asymptotics for the largest part

• Vershik: limit shape when 1/
√
n-rescaling e−ax + e−ay = 1
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Vershik’s curve

e−ax + e−ay = 1
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Confinement in a box

Instead of looking at all partitions,
add constraints:

• number of parts at most a

• parts at most b
a

b

Counting path from NW to SE corner, weighted by ther area

Za,b(q): generating function for partitions fitting in an a× b box
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Generating function

Lemma

Za,b(q) =

(
a + b

a

)
q

=
(a + b)!q
a!qb!q

, where a!q =
∏

1≤k≤a

1− qk

1− q

Proof.

Za,b(q)

=

Za,b−1(q)

+

qbZa−1,b(q)
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A key ingredient: the q-Stirling formula

Lemma (Stirling)

`! =
√

2π` exp

(∫ `

0
log udu

)
(1 + o(1))

Lemma (q-Stirling)

`!q =
√

2π`q exp

(∫ `

0
log uqdu

)
(1 + o(1))
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Position of the curve: maximum likelihood

j a− j

k

b − k Zj ,b−k(q)

Za−j ,k(q)qjk

P(Yj = k) =
qkjZj ,b−kZa−j ,k

Za,b

unimodality of the distribution:

P(Yj = k)

P(Yj = k + 1)
≥ 1⇔ k ≥ L](j)

Limit of L](j) should give the limit shape if it exists.
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Convergence to the limit shape
• Rotate by 45 degrees
• (Xt) boundary of the random Young diagram
• an + bn = 2n, an

2n → ρ ∈ (0, 1), q = e−c/n

Theorem
As n goes to ∞, (X2nt/2n)t∈[0,1] converges in probability in
C([0, 1]) to the deterministic curve

Lρ,c =
1

2
− ρ+

1

c
log

sinh(ct) + ec(ρ−
1
2
) sinh c(12 − t)

sinh c
2
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Link with Vershik’s curve

for a square ρ = 1
2 , L1/2,c = 1

c log cosh(c(t−1/2))
cosh c/2

Everything was contained in Vershik’s curve. . .
Already noticed by Petrov (microcanonical ensemble: n fixed)
What about fluctuations around the limit shape?
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Convergence of fluctuations

• an
an+bn

= ρ+ o
(

1√
n

)
• X̃t =

1
2
X2nt−nLρ,c (t)√

n

• f (t) = 2 cosh c(x − 1
2) (for ρ = 1

2)

Theorem
As n goes to ∞, the distribution of f (t)X̃t converges in D([0, 1])
to the Ornstein–Uhlenbeck bridge with parameter c.
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Ornstein-Uhlenbeck bridge

Definition
Let c > 0. The Ornstein-Uhlenbeck process with parameter c is
the centered Gaussian process (Zs , s ∈ [0, 1]) with covariance

E(ZsZt) =
sinh(cs) sinh(c(1− t))

c sinh(c)

• Ornstein-Uhlenbeck process conditionned to come back to 0
at time 1

• Recover the Brownian bridge when c → 0
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Ideas for the proof of the fluctuations

Proof in two steps

• Convergence of finite dimensional distributions

• Tightness

Key ingredients in the proof

1. q-Stirling formula (again!)

2. Markov property

3. Scaling argument
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Markov property

Knowing the beginning of the curve, the probability of going S or E
depends only on the position of the tip.
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Scaling argument

Conditioning on the first point, the position of the second is
reduced to the location of the interface in a smaller box.
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2-point correlation function

P(Yj = k ,Yi = l) =?

j i − j a− i

k

l − k

b − l

Markov property + rescaling: automatically all fi.di. marginals.
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Tightness
Billingsley criterion: there exists C > 0 s.t for all
0 ≤ r ≤ s ≤ t ≤ 1, all α > 0, and all n

P(|X̃s − X̃r | ≥ α; |X̃t − X̃s | ≥ α) ≤ C (t − r)2

α4

control of the “sticking condition”

sr t 1
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a little bit further

• Fluctuations for the free model without constraints:
two-sided O–U stationnary process.

• Microcanonical ensemble (n fixed):

• unbounded case: limiting process obtained by Pittel
• for a box, no result yet
• the limiting process should have area 0. Maybe the previous

one conditionning on 0 area. Not Markov anymore.
• clue: conditionning the unconstrained fluctuation process, get

Pittel’s result
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