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Introduction 1-2 model

1-2 Model

Probability measure on subgraphs ω = (V ,Eω) of hexagonal lattice
H = (V ,E ), such that each vertex has 1 or 2 incident edges in ω
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Figure: 1-2 model configuration
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Introduction 1-2 model

Probability measure

A local configuration at vertex v is a subset of incident edges of v

If a vertex v has degree k (k incident edges), the total number of
local configurations at v is 2k .

A weight (positive number) is assigned to each local configuration

ω|v : the local configuration obtained when looking at a configuration
ω at a vertex v , or, ω|v = Γ(v) ∩ Eω

Γ(v): the set of incident edges of v in H
P(ω) is defined to be proportional to the product of weights of its
local configurations at all vertices.

P(ω) =

∏
v∈V w(ω|v )

Z

Z is a normalizing constant called the partition function.
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Introduction 1-2 model

Examples of local configurations

101 001
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Introduction 1-2 model

Signature

A signature rv of a vertex v is a vector labeled by all the possible
local configurations at v .

rv is a vector of dimension 2deg(v).

The entry of rv at a local configuration is the weight of the local
configuration.

In this talk, we consider 1-2 model whose signature has the following
form

000 001 010 011 100 101 110 111
0 a b c c b a 0

,

Each configuration and its complement have the same weight.

The model is uniform if a = b = c = 1.
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Introduction 1-2 model

History

Computer scientists Schwartz and Bruck (2008) proposed the uniform
1-2 model (not-all-equal relation), as a graphical model whose
partition function (total number of possible configurations) can be
computed by computing determinants via holographic algorithm.

We introduced a generalized algorithm in a previous paper (2011),
which could solve more models including the 1-2 model defined above.

However, the holographic algorithm, although very general and
beautiful, is not an efficient way to solve the 1-2 model.
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Introduction 1-2 model

Correspondence: 1-2 model and dimers

Figure: 1-2 Model and Dimers
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Introduction 1-2 model

Construction of the dimer graph

1-2 model is defined on the hexagonal lattice H = (V ,E ) (the dashed
graph).

Dimer model is defined on a decorated graph H∆ = (V∆,E∆) we
constructed.

V ⊂ V∆.

For v ∈ V , incident edges of v in E∆ are bisectors of the angles of H
at v .

On each face of H, draw a small hexagon with vertices incident to the
bisector edges.

Remove the top most edge of each small hexagon.

Change each degree-3 vertex of each small hexagon by a triangle.
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Introduction 1-2 model

Correspondence: 1-2 model and dimers

A bisector edge is present if and only if the two edges of the angle
have the same configuration.

Once configurations on all bisector edges are known, there is a unique
extension to a perfect matching on H∆.

A 1-2 model configuration and its complement correspond to the
same perfect matching.

Given appropriate edge weights to H∆, such a correspondence is
measure-preserving.
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Introduction 1-2 model

Clusters

Local configurations 001 and 110 have weight a, we call them
a-configurations.

An a-cluster is a connected set of vertices, all of which have
a-configurations.

In fact, for vertices in a single a-cluster, either all of them have the
configuration 001, or all of them have the configuration 110, because
the configuration 001 and 110 cannot appear on a pair of neighboring
vertices.
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Introduction 1-2 model

Existence of Phase Transition

Theorem

Fix b, c > 0, and use a large torus to approximate the infinite periodic
graph. When a is sufficiently small, almost surely there is no infinite
a-clusters; when a is large, the probability of the existence of infinite
a-clusters is strictly positive, and the number of infinite a-clusters is at
most one almost surely.
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Introduction 1-2 model

Sketch of Proof: 1

Pa, the probability that a-configuration appear at a vertex, has an
exact integral formula.

Pa is continuous at 0 and ∞, moreover,

lim
a→0

Pa = 0

lim
a→∞

Pa = 1

Using a large deviation argument and results of determinantal
processes, we prove that if V0 is an arbitrary set of vertices,

P(All the vertices in V0 have a-configurations)≤ (Pa)|V0|
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Introduction 1-2 model

Sketch of Proof: 2

Ak : the number of animals (connected set of vertices) of size k
including the origin.

Ak ≤ tk , where t > 0 is a constant independent of k.

Uk : the set of animals of size k including the origin

P(an infinite a− cluster appears at the origin)

≤ lim
k→∞

∑
{sk :sk∈Uk}

P(all vertices in sk have a− configurations)

≤ lim
k→∞

(tPa)k

= 0if tPa < 1

We deduce that when a is small, almost surely there is no infinite
a-clusters.
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Introduction 1-2 model

Sketch of Proof: 3

The boundary vertices of a connected set of vertices V0 are those
adjacent to vertices in V0, but not in V0 themselves.

Sp: the event that all the vertices in a box T centered at the origin
have a-configurations, the number of boundary vertices of the box is
no less than p.
Bq: the set of boundary vertices of a set T̃ , such that T ⊂ T̃ , and
the number of boundary vertices of T̃ is q .

P(an infinite a− cluster appears at theorigin)

≥ P(an infinite a− cluster appears at the origin|Sp)P(Sp)

= [1− P(no infinite a− clusters at the origin|Sp)]P(Sp)

≥ [1−
∑
q≥p

∑
Bq

P(none of vertices in Bq have a− configurations|Sp)]

·P(Sp)
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≥ P(Sp)−
∑
q≥p

∑
Bq

P(none of vertices in Bq have a− configurations)]

≥ P(Sp)− (βmax{Pb,Pc})p

β > 0 is a constant independent of p

We deduce that when a is large, the probability that an infinite
a-cluster appears at the origin is strictly positive.
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