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Dimers

Finite undirected graph G = (V, E)

A dimer configuration or perfect matching on G is a subset
m C F such that every v € V is covered by exactly one e € m
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Lozenges

Dimer configuration on region in hexagonal lattice
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Lozenges

Dimer configuration on region in hexagonal lattice
+— lozenge tiling
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Dimer models

Assume G has edge weights v : £ — Ry :

weight(m) = v(m) = H v(e)

Normalizing weights gives probability measure P on matchings of
G, the dimer model on G:

where Z = normalizing constant or partition function

[If v(e) =1 (unweighted), Z counts perfect matchings of G]

R. Kenyon, N. Sun, and D. Wilson Asymptotics of dimers on tori and cylinders 4/29



Double dimers

R. Kenyon, N. Sun, and D. Wilson Asymptotics of dimers on tori and cylinders 5/29



Double dimers

Double-dimer model: superposition m; © mo of ordered pair
(my, my) of independent dimer configurations

R. Kenyon, N. Sun, and D. Wilson Asymptotics of dimers on tori and cylinders 5/29



Double dimers

Double-dimer model: superposition m; © mo of ordered pair
(my, my) of independent dimer configurations

partition function Z99 = Z2,  probability P

R. Kenyon, N. Sun, and D. Wilson Asymptotics of dimers on tori and cylinders 5/29



Double dimers

Double-dimer model: superposition m; © mo of ordered pair
(my, my) of independent dimer configurations

partition function Z99 = Z2,  probability P

Even-length loops and doubled edges:

R. Kenyon, N. Sun, and D. Wilson Asymptotics of dimers on tori and cylinders 5/29



Double dimers

Double-dimer model: superposition m; © mo of ordered pair
(my, my) of independent dimer configurations

partition function Z99 = Z2,  probability P

Even-length loops and doubled edges:
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Dimers on bipartite lattices: height function

For planar bipartite graphs GG, correspondence

dimer configuration m of G +—
height function h on faces of G

(easiest to see for lozenge tilings)

Defined on general bipartite graph using representation of m as a
black-to-white flow

[Levitov PRL '90, Zheng and Sachdev PRB '89,
Blote and Hilhorst JPA 82, Thurston AMM ’90]
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Dimers on bipartite lattices: height function

Figure: Kenyon PCMI '07
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m Harnack curves, classification of dimer phases:
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% Discrete Gaussian loop statistics on tori:
Boutillier—de Tiliere AOP '09

m Conformal invariance of double-dimer loops: Kenyon '11
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Dimers on non-bipartite lattices: Fisher lattice

m Much less work concerning dimers on non-bipartite lattices:
no notion of a height function, hence no obvious connection
to GFF

m One particular motivation is the interest in the Fisher lattice:

edges within small triangles: weight 1
remaining edges: weight a (symmetric)

Figure: David Wilson
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Recall Ising model on G = (V, E): probability measure on spin
configurations o € {jzl}V given by

H e?uo/T T = temperature
(wv)eFR
For planar G, well-known measure-preserving correspondence

Ising spin configurations on G +—
dimer configurations on transformed graph §
(also planar)

(dual to correspondence of Fisher JMP '66)

(GG = triangular lattice — G = Fisher lattice
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Ising model and Fisher's correspondence

Fisher lattice
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Ising model and Fisher’s correspondence

Ising spins on triangular lattice
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Ising model and Fisher's correspondence

-

(dual) Fisher's correspondence

Figure: David Wilson
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Ising and XOR-Ising

Ising on triangular lattice at temperature 7’

+— dimers on Fisher lattice with edge weights ¢ = ¢2/”

Double-dimer loops
+— XOR-Ising interfaces

Figure: Wilson '11
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On square, hexagonal lattices:

m Dimer height fluctuations behave like GFF
[Kenyon AOP '00, '01; CMP '08]

m Subtracting dimer height functions gives double-dimer height
function, whose contours are the double-dimer loops
— consequently, loops believed to behave like GFF contours
at a certain height spacing (CLE,)

Fisher lattice has no height function:

m However, simulations [Wilson '11] show Fisher double-dimer
loops are distributed like GFF contours, but at V/2 times the
CLE, height spacing

m It is an open problem to develop a mathematical
understanding of this phenomenon
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Dimer partition function

P(m) = , Z = partition function

m We study asymptotics of the dimer partition function on
cylindrical and toric graphs formed from planar lattices L

m Our calculations yield new information on distribution of
the number of loops winding around the torus or cylinder

in associated double-dimer models

— including phase transitions and critical phenomena
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Asymptotics are largely governed by the behavior of dimer
characteristic polynomial P(z,w) on unit torus
T? = {|z| = |w| = 1}:

m For GG planar, there exists a Kasteleyn orientation of G such
that for the corresponding signed adjacency matrix K,

7 = v det K  [Kasteleyn Physica '61, JMP '63]

m For a planar lattice I, let iK' = signed adjacency matrix
corresponding to periodic Kasteleyn orientation

Definition:
P(z,w) =det K(z,w), where
K (z,w) = Fourier transform of K
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Dimer characteristic polynomial: example

—a — bz — cw 0

K(z,w) = ( 0 a—i—b/z—i—c/w)

P(z,w) = det K(z,w) = |a + bz + cw]|?
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Dimer characteristic polynomial: criticality

Fact: P(z,w) > 0 on unit torus T?
Definition: The dimer model is critical if P has zeroes on T?.
Critical dimer models exhibit long-range correlations

(correlations with polynomial rather than exponential decay)
[see e.g. Kenyon—Okounkov—Sheffield Annals '06]
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Criticality in bipartite lattices

For bipartite lattices, P(z,w) is either non-vanishing on T2, or has
two conjugate nodes (node = double zero)
[Kenyon—Sheffield JCTB '04, Kenyon—Okounkov—Sheffield Annals '06]

Unweighted square lattice is critical:
conjugate nodes on T? at (1,i) and (1, —i)
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R. Kenyon, N. Sun, and D. Wilson Asymptotics of dimers on tori and cylinders 19/29



Criticality in non-bipartite lattices

It is a long-standing open problem to show that for typical
non-bipartite lattices,

R. Kenyon, N. Sun, and D. Wilson Asymptotics of dimers on tori and cylinders 19/29



Criticality in non-bipartite lattices

It is a long-standing open problem to show that for typical
non-bipartite lattices,

(%) P(z,w) is either non-vanishing on T2,

R. Kenyon, N. Sun, and D. Wilson Asymptotics of dimers on tori and cylinders 19/29



Criticality in non-bipartite lattices

It is a long-standing open problem to show that for typical
non-bipartite lattices,

(%) P(z,w) is either non-vanishing on T2, or has a single real
node at (z,wp) € {+1}?

R. Kenyon, N. Sun, and D. Wilson Asymptotics of dimers on tori and cylinders 19/29



Criticality in non-bipartite lattices

It is a long-standing open problem to show that for typical
non-bipartite lattices,

(%) P(z,w) is either non-vanishing on T2, or has a single real
node at (z,wp) € {+1}?

Proved for periodic Fisher graphs by Li '10

R. Kenyon, N. Sun, and D. Wilson Asymptotics of dimers on tori and cylinders 19/29



Criticality in non-bipartite lattices

It is a long-standing open problem to show that for typical
non-bipartite lattices,

(%) P(z,w) is either non-vanishing on T2, or has a single real
node at (z,wp) € {+1}?

Proved for periodic Fisher graphs by Li '10

symmetric Fisher lattice is critical iff a = v/3:

R. Kenyon, N. Sun, and D. Wilson Asymptotics of dimers on tori and cylinders 19/29
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It is a long-standing open problem to show that for typical
non-bipartite lattices,

(%) P(z,w) is either non-vanishing on T2, or has a single real
node at (z,wp) € {+1}?

Proved for periodic Fisher graphs by Li '10

symmetric Fisher lattice is critical iff a = v/3:
single real node on T? at (—1,—1)
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Summary of results: the dimer partition function

For cylindrical and toric graphs formed from planar lattices L,
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Summary of results: the dimer partition function

For cylindrical and toric graphs formed from planar lattices IL, the
dimer partition function has asymptotic expansion

Z ~ exp {area x f + perimeter x s} x =

where

1 . .
m f = free energy = — // log P(e2™, &2 ) ds dt,
2 Jop2
area = number of copies of fundamental domain

m perimeter X s = boundary effect
— some additional (computable) corrections possible

m = = conformal factor:
constant-order correction for critical lattices
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Summary of results: the conformal factor

The conformal factor = is very different for
bipartite vs. non-bipartite lattices,
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Summary of results: the conformal factor

The conformal factor = is very different for
bipartite vs. non-bipartite lattices,
but exhibits universality within these classes:

Within each class, form of = depends only on

single parameter 7 € C
— the conformal shape of the domain
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Torus conformal factor: bipartite vs. non-bipartite

Main theorem in case of torus:
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Z ~ exp{area x f} x =;, 7 = conformal shape

Define g.(j. k) = 51 (|7[%5% + 27jk + k):

m Critical bipartite:

ET g CT Z e_ﬂ-gT(jvk)
(j,k)EZ2+(s' 1)

with offset (s',#') € R? depending on location of nodes and
torus dimensions
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m Critical bipartite:
ET = CT Z e_ﬂ'g'r(j,k)
(J,k)EZ2+(s 1)

with offset (s',#') € R? depending on location of nodes and
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Torus conformal factor: bipartite vs. non-bipartite

Main theorem in case of torus:
Z ~ exp{area x f} x =;, 7 = conformal shape
Define g.(j. k) = 51 (|7[%5% + 27jk + k):

m Critical bipartite:

ET g CT Z e_ﬂ-gT(jvk)
(J,k)EZ2+(s 1)

with offset (s',#') € R? depending on location of nodes and
torus dimensions

m Critical non-bipartite (assuming condition (3%)):

ET = C;_ Z efﬂgf(j:k) + \/5 Z e*ﬂ'gf(jyk)/2

(J:k)ez? (J:k)eZ?\(22)?
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Torus loop statistics

Double-dimer configuration m; © ms:
Let wind m; © my = homology class (in Z?) of m; © my

= (horizontal, vertical) winding numbers for double-dimer
configuration
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Torus loop statistics

Double-dimer configuration m; © ms:

Let wind m; © my = homology class (in Z?) of m; © my
= (horizontal, vertical) winding numbers for double-dimer
configuration
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Figure: Kasteleyn Physica '61
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Torus loop statistics

Boutillier—de Tiliere AOP '09:
For rectilinear tori on the unweighted hexagonal lattice,
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Torus loop statistics

Boutillier—de Tiliere AOP '09:
For rectilinear tori on the unweighted hexagonal lattice,
wind my © my = independent discrete Gaussians:

[pdd (windm; ©mg = (j,k)) = —Q]
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Torus loop statistics

Boutillier—de Tiliere AOP '09:
For rectilinear tori on the unweighted hexagonal lattice,
wind my © my = independent discrete Gaussians:

1 .2
P (windmy & mg = (k) ~ Q] Q4"

for Q1,Q2 € (0,1) determined by aspect ratio
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Torus loop statistics

Boutillier—de Tiliere AOP '09:
For rectilinear tori on the unweighted hexagonal lattice,
wind my © my = independent discrete Gaussians:
dd . T 52 g2
P(windm; ©mg = (j,k)) = EQl 5

for Q1,Q2 € (0,1) determined by aspect ratio

Perturbative analysis of our expansion of Z yields:

For a large class of bipartite lattices,
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Torus loop statistics

Boutillier—de Tiliere AOP '09:
For rectilinear tori on the unweighted hexagonal lattice,
wind my © my = independent discrete Gaussians:

P (windm; ©my = (5, k)) ~ —Q]
for Q1,Q2 € (0,1) determined by aspect ratio

Perturbative analysis of our expansion of Z yields:

For a large class of bipartite lattices,

wind m; © my = bivariate discrete Gaussian
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Torus loop statistics

Boutillier—de Tiliere AOP '09:
For rectilinear tori on the unweighted hexagonal lattice,
wind my © my = independent discrete Gaussians:

P (windm; ©my = (5, k)) ~ —Q]
for Q1,Q2 € (0,1) determined by aspect ratio

Perturbative analysis of our expansion of Z yields:

For a large class of bipartite lattices,

wind m; © my = bivariate discrete Gaussian

with covariance structure depending on conformal shape of torus
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Cylinder partition function

Main theorem in case of cylinder
(circumference m, height n):
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Cylinder partition function

Main theorem in case of cylinder
(circumference m, height n):
Z ~exp{mnxf+[mxs+0]}xE,

Boundary effect m x s + ©:

2mis) ds for explicit function

1
s = / log (e

0
(computed from boundary conditions)

© = O(logm) + O(n)
computable correction due to singularities of ¢
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Cylinder partition function

Main theorem in case of cylinder
(circumference m, height n):
Z ~exp{mnxf+[mxs+0]}xE,

Boundary effect m x s + ©:

1
s = / log (e*™) ds for explicit function

0
(computed from boundary conditions)
© = O(logm) + O(n)

computable correction due to singularities of ¢
— may depend sensitively on m
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Cylinder loop statistics

Let L = number of double-dimer loops winding around cylinder

R. Kenyon, N. Sun, and D. Wilson Asymptotics of dimers on tori and cylinders 26/29



Cylinder loop statistics

Let L = number of double-dimer loops winding around cylinder

For a large class of non-bipartite lattices
(assuming condition (%)),

R. Kenyon, N. Sun, and D. Wilson Asymptotics of dimers on tori and cylinders 26/29



Cylinder loop statistics

Let L = number of double-dimer loops winding around cylinder

For a large class of non-bipartite lattices

(assuming condition (%)), the distribution of L on m x n cylinders
falls into one of the following classifications:

R. Kenyon, N. Sun, and D. Wilson Asymptotics of dimers on tori and cylinders 26/29



Cylinder loop statistics

Let L = number of double-dimer loops winding around cylinder

For a large class of non-bipartite lattices

(assuming condition (%)), the distribution of L on m x n cylinders
falls into one of the following classifications:

m Off-critical, and P4 (L even) = 1 — o(1)
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Cylinder loop statistics

Let L = number of double-dimer loops winding around cylinder

For a large class of non-bipartite lattices

(assuming condition (%)), the distribution of L on m x n cylinders
falls into one of the following classifications:

m Off-critical, and P4 (L even) = 1 — o(1)
m Off-critical or critical, and PY(L even) — 1/2 ~ e=¢"+0(logm)
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Cylinder loop statistics

Let L = number of double-dimer loops winding around cylinder

For a large class of non-bipartite lattices
(assuming condition (%)), the distribution of L on m x n cylinders
falls into one of the following classifications:

m Off-critical, and P4 (L even) = 1 — o(1)
m Off-critical or critical, and PY(L even) — 1/2 ~ e—c+0(ogm)
m Critical, and P4 (L even) — P44(L odd) converges to

2 o2
ZjeQZ Q" - Zje2z+1 Q’
5 -
EjeZ Q]

Q=q""
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Cylinder loop statistics

Let L = number of double-dimer loops winding around cylinder

For a large class of non-bipartite lattices
(assuming condition (%)), the distribution of L on m x n cylinders
falls into one of the following classifications:

m Off-critical, and P4 (L even) = 1 — o(1)
m Off-critical or critical, and PY(L even) — 1/2 ~ e—c+0(ogm)
m Critical, and P4 (L even) — P44(L odd) converges to

) )
ZjeQZ Q] - ZjeZZ-H Q]

e Q7 . Q=g"" (%)
JE

(%) highly suggestive of discrete Gaussian distribution,
(even in absence of height function)
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Cylinder loop statistics: triangular lattice

Application 1:
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Cylinder loop statistics: triangular lattice

Application 1:
Triangular lattice with weights a, b, ¢ (off-critical)

On m x n cylinder with a-edges in circumferential direction,

n

b—rc
b+c

PYU(L even) — 1/2 ~ Cyp. - m?
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Cylinder loop statistics: Fisher lattice

Application 2:
Symmetric Fisher lattice on cylinder:
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If a < /3 (high temperature),
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If a < /3 (high temperature),
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2
a2 —1|"

2

PY(L even) — 1/2 ~ Cym?

If a = /3 (critical), PY(L even) — P44(L odd) converges to
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Some open questions

m What is the distribution of the number of loops winding
horizontally, vertically around the torus in the non-bipartite
case?
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loops have a scaling limit?
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Some open questions

m What is the distribution of the number of loops winding
horizontally, vertically around the torus in the non-bipartite
case?

m On the cylinder when P44(L even) — 1/2, do the non-trivial
loops have a scaling limit?

m On the cylinder when P44(L even) — 1, does L — 0 in
probability?
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Thank you!
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