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Dimers

Finite undirected graph G = (V,E)

A dimer configuration or perfect matching on G is a subset
m ⊆ E such that every v ∈ V is covered by exactly one e ∈ m
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Dominoes

Dimer configuration on region in Z2

←→ domino tiling

of exactly one edge. See Figure 1.
In these lectures we will deal only with bipartite planar graphs. A

graph is bipartite when the vertices can be colored black and white in such
a way that each edge connects vertices of different colors. Alternatively,
this is equivalent to each cycle having even length. Kasteleyn showed how
to enumerate the dimer covers of any planar graph, but the random sur-
face interpretation we will discuss is valid only for bipartite graphs. There
are many open problems involving dimer coverings of non-bipartite planar
graphs, which at present we do not have tools to attack. However at present
we have some nice tools to deal with periodic bipartite planar graphs.

Our prototypical examples are the dimer models on Z2 and the honey-
comb graph. These are equivalent to, respectively, the domino tiling model
(tilings with 2 × 1 rectangles) and the “lozenge tiling” model (tilings with
60◦ rhombi) see Figures 1 and 2.

Figure 1:

Dimers on the honeycomb have been studied in chemistry [17, 7] where
they are called Kekulé structures. The honeycomb is after all the structure
of graphite, each carbon atom sharing one double bond with a neighbor.

1.2 Uniform random tilings

Look at a larger domino picture and the lozenge picture, Figures 3 and
4. These are both uniform random tilings of the corresponding regions,
that is, they are chosen from the distribution in which all tilings are equally
weighted. In the first case there are about e455 possible domino tilings and
in the second, about e1255 lozenge tilings 1 These two pictures clearly display
some very different behavior. The first picture appears homogeneous (and

1How do you pick a random sample from such a large space?
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Lozenges

Dimer configuration on region in hexagonal lattice

←→ lozenge tiling

Figure 2:

we’ll prove that it is, in a well-defined sense), while in the second, the densities
of the tiles of a given orientation vary throughout the region. A goal of these
lectures is to understand this phenomenon, and indeed compute the limiting
densities as well as other statistics of these and other tilings, in a setting of
reasonably general boundary conditions.

In figures 5 and 6, we see a uniform random lozenge tiling of a triangular
shape, and the same tiling rotated so that we see (with a little imagination)
the fluctuations. These fluctuations are quite small, in fact of order

√
log n

for a similar triangle of side n. This picture should be compared with
Figure 7 which shows the one-dimensional analog of the lozenge tiling of a
triangle. It is just the graph of a simple random walk on Z of length n = 100
conditioned to start and end at the origin. In this case the fluctuations
are of order

√
n. Indeed, if we rescale the vertical coordinate by

√
n and

the horizontal coordinate by n, the resulting curve converges as n → ∞ to a
Brownian bridge (a Brownian motion started at the origin and conditioned
to return to the origin after time 1).

The “scaling limit” of the fluctuations of the lozenge tiling of a triangle
is a more complicated object, called the Gaussian free field. We can think of
it as a Gaussian random function but in fact it is only a random distribution
(weak function). We’ll talk more about it later.
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Dimer models

Assume G has edge weights ν : E → R>0:

weight(m) ≡ ν(m) ≡
∏
e∈m

ν(e)

Normalizing weights gives probability measure P on matchings of
G, the dimer model on G:

P(m) =
ν(m)

Z
,

where Z = normalizing constant or partition function

[If ν(e) ≡ 1 (unweighted), Z counts perfect matchings of G]
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Double dimers

Double-dimer model: superposition m1 	m2 of ordered pair
(m1,m2) of independent dimer configurations

partition function Zdd = Z2, probability Pdd

Even-length loops and doubled edges:1750 C. BOUTILLIER AND B. DE TILIÈRE

FIG. 2. The superimposition of M and M0 consists of doubled edges and alternating loops.

loops. Let us denote by M ! M0 the set of oriented loops obtained from this su-
perimposition; see Figure 3 for an example.

A loop C of M !M0 can then be seen as a closed path on the torus T. The equiv-
alence class [C] of C in the first homology group H1(T) " Z2 can be decomposed
in the basis ([γ h], [γ v]). Its coordinates (Ch,Cv) in this basis are called the wind-
ing number of C: Ch (resp., Cv) is the algebraic number of times the loop C winds
horizontally (resp., vertically) around the torus. The winding number of the dimer
configuration M , denoted by windM0(M), is the sum of the winding numbers of
all of the loops contained in M ! M0:

windM0(M) =
∑

C loop
in M!M0

[C] ∈ Z2.

An example of a computation of windM0(M) is given in Figure 3. Note that the
dependence on M0 of the winding number of M is quite simple: if M1 is another

FIG. 3. The superimposition M ! M0 consists of oriented loops. In this example, the winding
number is windM0(M) = (1,0).

Figure: Boutillier–de Tilière AOP ’09
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Dimers on bipartite lattices: height function

For planar bipartite graphs G, correspondence

dimer configuration m of G ←→
height function h on faces of G

(easiest to see for lozenge tilings)

Figure 2:

we’ll prove that it is, in a well-defined sense), while in the second, the densities
of the tiles of a given orientation vary throughout the region. A goal of these
lectures is to understand this phenomenon, and indeed compute the limiting
densities as well as other statistics of these and other tilings, in a setting of
reasonably general boundary conditions.

In figures 5 and 6, we see a uniform random lozenge tiling of a triangular
shape, and the same tiling rotated so that we see (with a little imagination)
the fluctuations. These fluctuations are quite small, in fact of order

√
log n

for a similar triangle of side n. This picture should be compared with
Figure 7 which shows the one-dimensional analog of the lozenge tiling of a
triangle. It is just the graph of a simple random walk on Z of length n = 100
conditioned to start and end at the origin. In this case the fluctuations
are of order

√
n. Indeed, if we rescale the vertical coordinate by

√
n and

the horizontal coordinate by n, the resulting curve converges as n → ∞ to a
Brownian bridge (a Brownian motion started at the origin and conditioned
to return to the origin after time 1).

The “scaling limit” of the fluctuations of the lozenge tiling of a triangle
is a more complicated object, called the Gaussian free field. We can think of
it as a Gaussian random function but in fact it is only a random distribution
(weak function). We’ll talk more about it later.

5

Defined on general bipartite graph using representation of m as a
black-to-white flow

[Levitov PRL ’90, Zheng and Sachdev PRB ’89,

Blöte and Hilhorst JPA ’82, Thurston AMM ’90]
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of the tiles of a given orientation vary throughout the region. A goal of these
lectures is to understand this phenomenon, and indeed compute the limiting
densities as well as other statistics of these and other tilings, in a setting of
reasonably general boundary conditions.

In figures 5 and 6, we see a uniform random lozenge tiling of a triangular
shape, and the same tiling rotated so that we see (with a little imagination)
the fluctuations. These fluctuations are quite small, in fact of order

√
log n

for a similar triangle of side n. This picture should be compared with
Figure 7 which shows the one-dimensional analog of the lozenge tiling of a
triangle. It is just the graph of a simple random walk on Z of length n = 100
conditioned to start and end at the origin. In this case the fluctuations
are of order

√
n. Indeed, if we rescale the vertical coordinate by

√
n and

the horizontal coordinate by n, the resulting curve converges as n → ∞ to a
Brownian bridge (a Brownian motion started at the origin and conditioned
to return to the origin after time 1).

The “scaling limit” of the fluctuations of the lozenge tiling of a triangle
is a more complicated object, called the Gaussian free field. We can think of
it as a Gaussian random function but in fact it is only a random distribution
(weak function). We’ll talk more about it later.

5

Defined on general bipartite graph using representation of m as a
black-to-white flow

[Levitov PRL ’90, Zheng and Sachdev PRB ’89,

Blöte and Hilhorst JPA ’82, Thurston AMM ’90]
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Dimers on bipartite lattices: height function

Figure 4:

7

Figure: Kenyon PCMI ’07
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Dimers on bipartite lattices

Extensive literature concerning dimers on bipartite lattices,
including:

F = most relevant to this talk

Arctic circle phenomenon: Jockusch–Propp–Shor ’95,

Cohn–Elkies–Propp Duke ’96, Johansson AOP ’05,

Johansson–Nordenstam EJP ’08, Nordenstam EJP ’10

Limit shape, large deviations: Cohn–Kenyon–Propp JAMS ’00

F Height fluctuations renormalize to Gaussian free field:
Kenyon AOP ’00, ’01; CMP ’08

Harnack curves, classification of dimer phases:
Kenyon–Sheffield JCTB ’04, Kenyon–Okounkov–Sheffield Annals ’06,

Kenyon–Okounkov Duke ’06

F Discrete Gaussian loop statistics on tori:
Boutillier–de Tilière AOP ’09

Conformal invariance of double-dimer loops: Kenyon ’11

R. Kenyon, N. Sun, and D. Wilson Asymptotics of dimers on tori and cylinders 8 / 29



Dimers on bipartite lattices

Extensive literature concerning dimers on bipartite lattices,
including:

F = most relevant to this talk

Arctic circle phenomenon: Jockusch–Propp–Shor ’95,

Cohn–Elkies–Propp Duke ’96, Johansson AOP ’05,

Johansson–Nordenstam EJP ’08, Nordenstam EJP ’10

Limit shape, large deviations: Cohn–Kenyon–Propp JAMS ’00

F Height fluctuations renormalize to Gaussian free field:
Kenyon AOP ’00, ’01; CMP ’08

Harnack curves, classification of dimer phases:
Kenyon–Sheffield JCTB ’04, Kenyon–Okounkov–Sheffield Annals ’06,

Kenyon–Okounkov Duke ’06

F Discrete Gaussian loop statistics on tori:
Boutillier–de Tilière AOP ’09

Conformal invariance of double-dimer loops: Kenyon ’11

R. Kenyon, N. Sun, and D. Wilson Asymptotics of dimers on tori and cylinders 8 / 29



Dimers on bipartite lattices

Extensive literature concerning dimers on bipartite lattices,
including:

F = most relevant to this talk

Arctic circle phenomenon: Jockusch–Propp–Shor ’95,

Cohn–Elkies–Propp Duke ’96, Johansson AOP ’05,

Johansson–Nordenstam EJP ’08, Nordenstam EJP ’10

Limit shape, large deviations: Cohn–Kenyon–Propp JAMS ’00

F Height fluctuations renormalize to Gaussian free field:
Kenyon AOP ’00, ’01; CMP ’08

Harnack curves, classification of dimer phases:
Kenyon–Sheffield JCTB ’04, Kenyon–Okounkov–Sheffield Annals ’06,

Kenyon–Okounkov Duke ’06

F Discrete Gaussian loop statistics on tori:
Boutillier–de Tilière AOP ’09

Conformal invariance of double-dimer loops: Kenyon ’11

R. Kenyon, N. Sun, and D. Wilson Asymptotics of dimers on tori and cylinders 8 / 29



Dimers on bipartite lattices

Extensive literature concerning dimers on bipartite lattices,
including:

F = most relevant to this talk

Arctic circle phenomenon: Jockusch–Propp–Shor ’95,

Cohn–Elkies–Propp Duke ’96, Johansson AOP ’05,

Johansson–Nordenstam EJP ’08, Nordenstam EJP ’10

Limit shape, large deviations: Cohn–Kenyon–Propp JAMS ’00

F Height fluctuations renormalize to Gaussian free field:
Kenyon AOP ’00, ’01; CMP ’08

Harnack curves, classification of dimer phases:
Kenyon–Sheffield JCTB ’04, Kenyon–Okounkov–Sheffield Annals ’06,

Kenyon–Okounkov Duke ’06

F Discrete Gaussian loop statistics on tori:
Boutillier–de Tilière AOP ’09

Conformal invariance of double-dimer loops: Kenyon ’11

R. Kenyon, N. Sun, and D. Wilson Asymptotics of dimers on tori and cylinders 8 / 29



Dimers on bipartite lattices

Extensive literature concerning dimers on bipartite lattices,
including: F = most relevant to this talk

Arctic circle phenomenon: Jockusch–Propp–Shor ’95,

Cohn–Elkies–Propp Duke ’96, Johansson AOP ’05,

Johansson–Nordenstam EJP ’08, Nordenstam EJP ’10

Limit shape, large deviations: Cohn–Kenyon–Propp JAMS ’00

F Height fluctuations renormalize to Gaussian free field:
Kenyon AOP ’00, ’01; CMP ’08

Harnack curves, classification of dimer phases:
Kenyon–Sheffield JCTB ’04, Kenyon–Okounkov–Sheffield Annals ’06,

Kenyon–Okounkov Duke ’06

F Discrete Gaussian loop statistics on tori:
Boutillier–de Tilière AOP ’09

Conformal invariance of double-dimer loops: Kenyon ’11

R. Kenyon, N. Sun, and D. Wilson Asymptotics of dimers on tori and cylinders 8 / 29



Dimers on bipartite lattices

Extensive literature concerning dimers on bipartite lattices,
including: F = most relevant to this talk

Arctic circle phenomenon: Jockusch–Propp–Shor ’95,

Cohn–Elkies–Propp Duke ’96, Johansson AOP ’05,

Johansson–Nordenstam EJP ’08, Nordenstam EJP ’10

Limit shape, large deviations: Cohn–Kenyon–Propp JAMS ’00

F Height fluctuations renormalize to Gaussian free field:
Kenyon AOP ’00, ’01; CMP ’08

Harnack curves, classification of dimer phases:
Kenyon–Sheffield JCTB ’04, Kenyon–Okounkov–Sheffield Annals ’06,

Kenyon–Okounkov Duke ’06

F Discrete Gaussian loop statistics on tori:
Boutillier–de Tilière AOP ’09

Conformal invariance of double-dimer loops: Kenyon ’11

R. Kenyon, N. Sun, and D. Wilson Asymptotics of dimers on tori and cylinders 8 / 29



Dimers on bipartite lattices

Extensive literature concerning dimers on bipartite lattices,
including: F = most relevant to this talk

Arctic circle phenomenon: Jockusch–Propp–Shor ’95,

Cohn–Elkies–Propp Duke ’96, Johansson AOP ’05,

Johansson–Nordenstam EJP ’08, Nordenstam EJP ’10

Limit shape, large deviations: Cohn–Kenyon–Propp JAMS ’00

F Height fluctuations renormalize to Gaussian free field:
Kenyon AOP ’00, ’01; CMP ’08

Harnack curves, classification of dimer phases:
Kenyon–Sheffield JCTB ’04, Kenyon–Okounkov–Sheffield Annals ’06,

Kenyon–Okounkov Duke ’06

F Discrete Gaussian loop statistics on tori:
Boutillier–de Tilière AOP ’09

Conformal invariance of double-dimer loops: Kenyon ’11

R. Kenyon, N. Sun, and D. Wilson Asymptotics of dimers on tori and cylinders 8 / 29



Dimers on bipartite lattices

Extensive literature concerning dimers on bipartite lattices,
including: F = most relevant to this talk

Arctic circle phenomenon: Jockusch–Propp–Shor ’95,

Cohn–Elkies–Propp Duke ’96, Johansson AOP ’05,

Johansson–Nordenstam EJP ’08, Nordenstam EJP ’10

Limit shape, large deviations: Cohn–Kenyon–Propp JAMS ’00

F Height fluctuations renormalize to Gaussian free field:
Kenyon AOP ’00, ’01; CMP ’08

Harnack curves, classification of dimer phases:
Kenyon–Sheffield JCTB ’04, Kenyon–Okounkov–Sheffield Annals ’06,

Kenyon–Okounkov Duke ’06

F Discrete Gaussian loop statistics on tori:
Boutillier–de Tilière AOP ’09

Conformal invariance of double-dimer loops: Kenyon ’11

R. Kenyon, N. Sun, and D. Wilson Asymptotics of dimers on tori and cylinders 8 / 29



Dimers on non-bipartite lattices: Fisher lattice

Much less work concerning dimers on non-bipartite lattices:
no notion of a height function, hence no obvious connection
to GFF

One particular motivation is the interest in the Fisher lattice:

edges within small triangles: weight 1
remaining edges: weight a (symmetric)

Figure: David Wilson

R. Kenyon, N. Sun, and D. Wilson Asymptotics of dimers on tori and cylinders 9 / 29



Dimers on non-bipartite lattices: Fisher lattice

Much less work concerning dimers on non-bipartite lattices:

no notion of a height function, hence no obvious connection
to GFF

One particular motivation is the interest in the Fisher lattice:

edges within small triangles: weight 1
remaining edges: weight a (symmetric)

Figure: David Wilson

R. Kenyon, N. Sun, and D. Wilson Asymptotics of dimers on tori and cylinders 9 / 29



Dimers on non-bipartite lattices: Fisher lattice

Much less work concerning dimers on non-bipartite lattices:
no notion of a height function, hence no obvious connection
to GFF

One particular motivation is the interest in the Fisher lattice:

edges within small triangles: weight 1
remaining edges: weight a (symmetric)

Figure: David Wilson

R. Kenyon, N. Sun, and D. Wilson Asymptotics of dimers on tori and cylinders 9 / 29



Dimers on non-bipartite lattices: Fisher lattice

Much less work concerning dimers on non-bipartite lattices:
no notion of a height function, hence no obvious connection
to GFF

One particular motivation is the interest in the Fisher lattice:

edges within small triangles: weight 1
remaining edges: weight a (symmetric)

Figure: David Wilson

R. Kenyon, N. Sun, and D. Wilson Asymptotics of dimers on tori and cylinders 9 / 29



Dimers on non-bipartite lattices: Fisher lattice

Much less work concerning dimers on non-bipartite lattices:
no notion of a height function, hence no obvious connection
to GFF

One particular motivation is the interest in the Fisher lattice:

edges within small triangles: weight 1

remaining edges: weight a (symmetric)

Figure: David Wilson

R. Kenyon, N. Sun, and D. Wilson Asymptotics of dimers on tori and cylinders 9 / 29



Dimers on non-bipartite lattices: Fisher lattice

Much less work concerning dimers on non-bipartite lattices:
no notion of a height function, hence no obvious connection
to GFF

One particular motivation is the interest in the Fisher lattice:

edges within small triangles: weight 1
remaining edges: weight a (symmetric)

Figure: David Wilson

R. Kenyon, N. Sun, and D. Wilson Asymptotics of dimers on tori and cylinders 9 / 29



Ising model and Fisher’s correspondence

Recall Ising model on G = (V,E): probability measure on spin
configurations σ ∈ {±1}V given by

P(σ) =
1

Z

∏
(uv)∈E

eσuσv/T , T = temperature

For planar G, well-known measure-preserving correspondence

Ising spin configurations on G ←→
dimer configurations on transformed graph G

(also planar)
(dual to correspondence of Fisher JMP ’66)

G = triangular lattice → G = Fisher lattice
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Ising model and Fisher’s correspondence

Fisher lattice

Figure: David Wilson
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Ising model and Fisher’s correspondence

Ising spins on triangular lattice

Figure: David Wilson
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Ising model and Fisher’s correspondence

(dual) Fisher’s correspondence

Figure: David Wilson
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Ising and XOR-Ising

Ising on triangular lattice at temperature T

←→ dimers on Fisher lattice with edge weights a = e2/T

Double-dimer loops
←→ XOR-Ising interfaces
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XOR-Ising Loops and the Gaussian Free Field

David B. Wilson
Microsoft Research, Redmond, WA 98052, USA

(Dated: February 18, 2011)

We find by simulation that the interfaces in the exclusive-or (XOR) of two independent 2D
Ising spin configurations at the critical temperature form an ensemble of loops that have the same
distribution as the contour lines of the Gaussian free field, but with the heights of the contours
spaced

√
2 times as far apart as they are for the conformal loop ensemble CLE4 or the double dimer

model on the square lattice. For domains with boundary, various natural boundary conditions for
the two Ising models correspond to certain boundary heights for the Gaussian free field.

XOR-ISING LOOPS AND RELATED MODELS

The double-Ising model consists of two independent
Ising spin configurations σ and τ on the same graph.
The double-Ising model on planar graphs is closely re-
lated to a variety of statistical physics models, including
the Ashkin-Teller model [1, 2], the 8-vertex model [1, 2],
the Gaussian model [3–8], the double-dimer model, and
spanning trees [9, 10], some of which we discuss below.
The XOR-Ising configuration ξ (illustrated in Figure 1)
is defined by ξv = σv × τv for each vertex v of the graph
(if the spin values are ±1), or equivalently, ξv = σv ⊕ τv

(if the spin values are false and true), where ⊕ denotes
exclusive-or (XOR). The XOR-Ising spins ξ also called
the polarization of the double-Ising model [3]. The in-
terfaces between +1 spins and −1 spins in an XOR-Ising
configuration form loops or paths connecting boundary
points. We find empirically that when the two Ising mod-
els are at the critical temperature, the XOR-Ising loops
are closely related to contour lines of a Gaussian free
field, but that, in a sense that we will make more precise,
there are fewer XOR-Ising loops than loops in other loop
models that are related to the Gaussian free field.

⊕ =

FIG. 1. (Color online) On the left is the critical Ising model
on a lozenge-shaped domain of order L = 32 with black-white
boundary conditions. The interface from bottom to top is in
the scaling limit SLE3 [11, 12]. In the middle is the critical
Ising model with black boundary conditions. The ensemble of
loops is in the limit CLE3 [11, 12]. On the right is the XOR
of the left and middle spin configurations. The interface from
bottom to top appears to be SLE4,

√
2−1,

√
2−1 in the scaling

limit.

XOR-Ising interfaces are (essentially) the same as the
double-dimer model on the Fisher lattice, as we now ex-
plain. A dimer configuration on a graph is a pairing of the
vertices such that every vertex is paired with exactly one
of its neighbors. Fisher showed that the Ising model on
any graph has the same partition function as dimer con-
figurations on a related graph [13]. This relation is not
combinatorial, but for planar graphs there is a combi-
natorial correspondence between dimers and Ising spins,
based on the Ising model’s low temperature expansion
[1]. When the Ising spins are on the triangular lattice,
the dimer configurations are on a graph consisting of do-
decagons and triangles, called the Fisher lattice.

The double-dimer model is formed by superimposing
two independent random dimer configurations; the result
is a collection of loops and doubled edges. If one of the
dimer configurations has two defects (monomers) on the
boundary, then the double-dimer configuration also has a
path connecting the defects. If we ignore the route that a
double-dimer loop (on the Fisher lattice) takes within the
triangles, the double-dimer loop traces out a path where
one Ising configuration has aligned spins while the other
one does not. Then double-dimer loops on the Fisher
lattice (ignoring doubled edges and the intratriangle por-
tions of loops) are just the XOR-Ising interfaces.

It is instructive to compare XOR-Ising loops with the
double-dimer model on other lattices. On the square lat-
tice or hexagonal lattice with suitable boundary condi-
tions, the scaling limit of a double-dimer path connect-
ing two boundary points is conformally invariant [14] and
is thought to be described by Schramm-Loewner evolu-
tion with parameter 4 (SLE4) (see e.g., [15–17]). The
scaling limit of the whole ensemble of loops is conjec-
tured to be the conformal loop ensemble with parame-
ter 4 (CLE4) [18]. (The conformal loop ensemble CLEκ

is thought to be the scaling limit of the O(n) model when
n = −2 cos(4π/κ) [18].) Dimer configurations on the
square and hexagonal lattices have height functions that
are known to behave like the Gaussian free field in the
scaling limit [19, 20], and CLE4 is known to be the scaling
limit of contour lines of the Gaussian free field where the
heights of the contours are separated by a certain spacing
[21]. But the techniques for analyzing the double-dimer
model [14] depend in an essential way upon the lattice

Figure: Wilson ’11
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is defined by ξv = σv × τv for each vertex v of the graph
(if the spin values are ±1), or equivalently, ξv = σv ⊕ τv

(if the spin values are false and true), where ⊕ denotes
exclusive-or (XOR). The XOR-Ising spins ξ also called
the polarization of the double-Ising model [3]. The in-
terfaces between +1 spins and −1 spins in an XOR-Ising
configuration form loops or paths connecting boundary
points. We find empirically that when the two Ising mod-
els are at the critical temperature, the XOR-Ising loops
are closely related to contour lines of a Gaussian free
field, but that, in a sense that we will make more precise,
there are fewer XOR-Ising loops than loops in other loop
models that are related to the Gaussian free field.
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FIG. 1. (Color online) On the left is the critical Ising model
on a lozenge-shaped domain of order L = 32 with black-white
boundary conditions. The interface from bottom to top is in
the scaling limit SLE3 [11, 12]. In the middle is the critical
Ising model with black boundary conditions. The ensemble of
loops is in the limit CLE3 [11, 12]. On the right is the XOR
of the left and middle spin configurations. The interface from
bottom to top appears to be SLE4,
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XOR-Ising interfaces are (essentially) the same as the
double-dimer model on the Fisher lattice, as we now ex-
plain. A dimer configuration on a graph is a pairing of the
vertices such that every vertex is paired with exactly one
of its neighbors. Fisher showed that the Ising model on
any graph has the same partition function as dimer con-
figurations on a related graph [13]. This relation is not
combinatorial, but for planar graphs there is a combi-
natorial correspondence between dimers and Ising spins,
based on the Ising model’s low temperature expansion
[1]. When the Ising spins are on the triangular lattice,
the dimer configurations are on a graph consisting of do-
decagons and triangles, called the Fisher lattice.

The double-dimer model is formed by superimposing
two independent random dimer configurations; the result
is a collection of loops and doubled edges. If one of the
dimer configurations has two defects (monomers) on the
boundary, then the double-dimer configuration also has a
path connecting the defects. If we ignore the route that a
double-dimer loop (on the Fisher lattice) takes within the
triangles, the double-dimer loop traces out a path where
one Ising configuration has aligned spins while the other
one does not. Then double-dimer loops on the Fisher
lattice (ignoring doubled edges and the intratriangle por-
tions of loops) are just the XOR-Ising interfaces.

It is instructive to compare XOR-Ising loops with the
double-dimer model on other lattices. On the square lat-
tice or hexagonal lattice with suitable boundary condi-
tions, the scaling limit of a double-dimer path connect-
ing two boundary points is conformally invariant [14] and
is thought to be described by Schramm-Loewner evolu-
tion with parameter 4 (SLE4) (see e.g., [15–17]). The
scaling limit of the whole ensemble of loops is conjec-
tured to be the conformal loop ensemble with parame-
ter 4 (CLE4) [18]. (The conformal loop ensemble CLEκ

is thought to be the scaling limit of the O(n) model when
n = −2 cos(4π/κ) [18].) Dimer configurations on the
square and hexagonal lattices have height functions that
are known to behave like the Gaussian free field in the
scaling limit [19, 20], and CLE4 is known to be the scaling
limit of contour lines of the Gaussian free field where the
heights of the contours are separated by a certain spacing
[21]. But the techniques for analyzing the double-dimer
model [14] depend in an essential way upon the lattice
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XOR-Ising interfaces

On square, hexagonal lattices:

Dimer height fluctuations behave like GFF
[Kenyon AOP ’00, ’01; CMP ’08]

Subtracting dimer height functions gives double-dimer height
function, whose contours are the double-dimer loops
— consequently, loops believed to behave like GFF contours
at a certain height spacing (CLE4)

Fisher lattice has no height function:

However, simulations [Wilson ’11] show Fisher double-dimer
loops are distributed like GFF contours, but at

√
2 times the

CLE4 height spacing

It is an open problem to develop a mathematical
understanding of this phenomenon
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Dimer partition function

P(m) =
ν(m)

Z
, Z = partition function

We study asymptotics of the dimer partition function on
cylindrical and toric graphs formed from planar lattices L

Our calculations yield new information on distribution of
the number of loops winding around the torus or cylinder
in associated double-dimer models

— including phase transitions and critical phenomena
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Dimer characteristic polynomial

Asymptotics are largely governed by the behavior of dimer
characteristic polynomial P (z, w) on unit torus
T2 ≡ {|z| = |w| = 1}:

For G planar, there exists a Kasteleyn orientation of G such
that for the corresponding signed adjacency matrix K,

Z =
√

detK [Kasteleyn Physica ’61, JMP ’63]

For a planar lattice L, let K = signed adjacency matrix
corresponding to periodic Kasteleyn orientation

Definition:
P (z, w) ≡ detK(z, w), where
K(z, w) ≡ Fourier transform of K

R. Kenyon, N. Sun, and D. Wilson Asymptotics of dimers on tori and cylinders 15 / 29
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Dimer characteristic polynomial: example

a

b z-1

c w-1

c w

b z

K(z, w) =

(
0 a+ b/z + c/w

−a− bz − cw 0

)
P (z, w) = detK(z, w) = |a+ bz + cw|2
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Dimer characteristic polynomial: criticality

Fact: P (z, w) ≥ 0 on unit torus T2

Definition: The dimer model is critical if P has zeroes on T2.

Critical dimer models exhibit long-range correlations
(correlations with polynomial rather than exponential decay)

[see e.g. Kenyon–Okounkov–Sheffield Annals ’06]
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Criticality in bipartite lattices

For bipartite lattices, P (z, w) is either non-vanishing on T2, or has
two conjugate nodes (node = double zero)

[Kenyon–Sheffield JCTB ’04, Kenyon–Okounkov–Sheffield Annals ’06]

Unweighted square lattice is critical:
conjugate nodes on T2 at (1, i) and (1,−i)
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Criticality in non-bipartite lattices

It is a long-standing open problem to show that for typical
non-bipartite lattices,

(F) P (z, w) is either non-vanishing on T2, or has a single real
node at (z0, w0) ∈ {±1}2

Proved for periodic Fisher graphs by Li ’10

symmetric Fisher lattice is critical iff a =
√

3:
single real node on T2 at (−1,−1)
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Summary of results: the dimer partition function

Main theorem

For cylindrical and toric graphs formed from planar lattices L,

the

dimer partition function has asymptotic expansion

Z ∼ exp {area× f + perimeter× s} × Ξ

where

f = free energy =
1

2

¨
[0,1]2

logP (e2πis, e2πit) ds dt,

area = number of copies of fundamental domain

perimeter× s = boundary effect
— some additional (computable) corrections possible

Ξ = conformal factor:
constant-order correction for critical lattices

R. Kenyon, N. Sun, and D. Wilson Asymptotics of dimers on tori and cylinders 20 / 29



Summary of results: the dimer partition function

Main theorem

For cylindrical and toric graphs formed from planar lattices L, the

dimer partition function has asymptotic expansion

Z ∼ exp {area× f + perimeter× s} × Ξ

where

f = free energy =
1

2

¨
[0,1]2

logP (e2πis, e2πit) ds dt,

area = number of copies of fundamental domain

perimeter× s = boundary effect
— some additional (computable) corrections possible

Ξ = conformal factor:
constant-order correction for critical lattices

R. Kenyon, N. Sun, and D. Wilson Asymptotics of dimers on tori and cylinders 20 / 29



Summary of results: the dimer partition function

Main theorem

For cylindrical and toric graphs formed from planar lattices L, the

dimer partition function has asymptotic expansion

Z ∼ exp {area× f + perimeter× s} × Ξ

where

f = free energy =
1

2

¨
[0,1]2

logP (e2πis, e2πit) ds dt,

area = number of copies of fundamental domain

perimeter× s = boundary effect
— some additional (computable) corrections possible

Ξ = conformal factor:
constant-order correction for critical lattices

R. Kenyon, N. Sun, and D. Wilson Asymptotics of dimers on tori and cylinders 20 / 29



Summary of results: the dimer partition function

Main theorem

For cylindrical and toric graphs formed from planar lattices L, the

dimer partition function has asymptotic expansion

Z ∼ exp {area× f + perimeter× s} × Ξ

where

f = free energy =
1

2

¨
[0,1]2

logP (e2πis, e2πit) ds dt,

area = number of copies of fundamental domain

perimeter× s = boundary effect
— some additional (computable) corrections possible

Ξ = conformal factor:
constant-order correction for critical lattices

R. Kenyon, N. Sun, and D. Wilson Asymptotics of dimers on tori and cylinders 20 / 29



Summary of results: the dimer partition function

Main theorem

For cylindrical and toric graphs formed from planar lattices L, the

dimer partition function has asymptotic expansion

Z ∼ exp {area× f + perimeter× s} × Ξ

where

f = free energy =
1

2

¨
[0,1]2

logP (e2πis, e2πit) ds dt,

area = number of copies of fundamental domain

perimeter× s = boundary effect
— some additional (computable) corrections possible

Ξ = conformal factor:
constant-order correction for critical lattices

R. Kenyon, N. Sun, and D. Wilson Asymptotics of dimers on tori and cylinders 20 / 29



Summary of results: the dimer partition function

Main theorem

For cylindrical and toric graphs formed from planar lattices L, the

dimer partition function has asymptotic expansion

Z ∼ exp {area× f + perimeter× s} × Ξ

where

f = free energy =
1

2

¨
[0,1]2

logP (e2πis, e2πit) ds dt,

area = number of copies of fundamental domain

perimeter× s = boundary effect

— some additional (computable) corrections possible

Ξ = conformal factor:
constant-order correction for critical lattices

R. Kenyon, N. Sun, and D. Wilson Asymptotics of dimers on tori and cylinders 20 / 29



Summary of results: the dimer partition function

Main theorem

For cylindrical and toric graphs formed from planar lattices L, the

dimer partition function has asymptotic expansion

Z ∼ exp {area× f + perimeter× s} × Ξ

where

f = free energy =
1

2

¨
[0,1]2

logP (e2πis, e2πit) ds dt,

area = number of copies of fundamental domain

perimeter× s = boundary effect
— some additional (computable) corrections possible

Ξ = conformal factor:
constant-order correction for critical lattices

R. Kenyon, N. Sun, and D. Wilson Asymptotics of dimers on tori and cylinders 20 / 29



Summary of results: the dimer partition function

Main theorem

For cylindrical and toric graphs formed from planar lattices L, the

dimer partition function has asymptotic expansion

Z ∼ exp {area× f + perimeter× s} × Ξ

where

f = free energy =
1

2

¨
[0,1]2

logP (e2πis, e2πit) ds dt,

area = number of copies of fundamental domain

perimeter× s = boundary effect
— some additional (computable) corrections possible

Ξ = conformal factor:

constant-order correction for critical lattices

R. Kenyon, N. Sun, and D. Wilson Asymptotics of dimers on tori and cylinders 20 / 29



Summary of results: the dimer partition function

Main theorem

For cylindrical and toric graphs formed from planar lattices L, the

dimer partition function has asymptotic expansion

Z ∼ exp {area× f + perimeter× s} × Ξ

where

f = free energy =
1

2

¨
[0,1]2

logP (e2πis, e2πit) ds dt,

area = number of copies of fundamental domain

perimeter× s = boundary effect
— some additional (computable) corrections possible

Ξ = conformal factor:
constant-order correction for critical lattices

R. Kenyon, N. Sun, and D. Wilson Asymptotics of dimers on tori and cylinders 20 / 29



Summary of results: the conformal factor

The conformal factor Ξ is very different for
bipartite vs. non-bipartite lattices,

but exhibits universality within these classes:

Within each class, form of Ξ depends only on
single parameter τ ∈ C
— the conformal shape of the domain
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Torus conformal factor: bipartite vs. non-bipartite

Main theorem in case of torus:

Z ∼ exp {area× f} × Ξτ , τ = conformal shape

Define gτ (j, k) ≡ 1
2τy

(|τ |2j2 + 2τxjk + k2):

Critical bipartite:

Ξτ = Cτ
∑

(j,k)∈Z2+(s′,t′)

e−πgτ (j,k)

with offset (s′, t′) ∈ R2 depending on location of nodes and
torus dimensions

Critical non-bipartite (assuming condition (F)):

Ξτ = C ′τ

√ ∑
(j,k)∈Z2

e−πgτ (j,k) +
√

2
∑

(j,k)∈Z2\(2Z)2
e−πgτ (j,k)/2
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Torus loop statistics

Double-dimer configuration m1 	m2:

Let windm1 	m2 ≡ homology class (in Z2) of m1 	m2

= (horizontal, vertical) winding numbers for double-dimer
configuration

windm1 	m2 = (1, 1):

1218 I ' .  W .  KASTELEYN 

magnitude, to z and z’, respectively; we can still choose the signs of these 
elements. Further we have now to distinguish four classes of configurations. 
The first class comprises those configurations that can be derived from the 
standard configuration (which we take identical to that of 9 2) by cyclic 
shifts along polygons not looping the torus either in horizontal or in vertical 
direction, or, more generally, looping the torus an even number of times 
in both directions; let us call them (e, e) configurations. In an analogous 

r---- I r- 1 I_ VIIM w L-d I I'i F ) ( I /_ Ii, I I / e-4 t/ 1 I / 1-. _-._ .- I 4 ic_ - -1 I / 1 r"."- .-.. d i /b-d w M, L___-_________-_____-___ L___________________--__-A 
(e,e)CONFIGURATlON (o,e) CONFIGURATION 

- ’ I__-z- 
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Torus loop statistics

Boutillier–de Tilière AOP ’09:
For rectilinear tori on the unweighted hexagonal lattice,

windm1 	m2 ≈ independent discrete Gaussians:

Pdd(windm1 	m2 = (j, k)) ≈ 1

Z
Qj

2

1 Q
k2

2

for Q1, Q2 ∈ (0, 1) determined by aspect ratio

Perturbative analysis of our expansion of Z yields:

Theorem

For a large class of bipartite lattices,

windm1 	m2 ≈ bivariate discrete Gaussian

with covariance structure depending on conformal shape of torus
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Cylinder partition function

Main theorem in case of cylinder
(circumference m, height n):

Z ∼ exp {mn× f + [m× s + Θ]} × Ξτ

Boundary effect m× s + Θ:

s =

ˆ 1

0
logϕ(e2πis) ds for explicit function ϕ

(computed from boundary conditions)

Θ = O(logm) +O(n)
computable correction due to singularities of ϕ
— may depend sensitively on m
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Cylinder loop statistics

Let L = number of double-dimer loops winding around cylinder

Theorem

For a large class of non-bipartite lattices
(assuming condition (F)), the distribution of L on m× n cylinders
falls into one of the following classifications:

Off-critical, and Pdd(L even) = 1− o(1)

Off-critical or critical, and Pdd(L even)− 1/2 ∼ e−cn+O(logm)

Critical, and Pdd(L even)− Pdd(L odd) converges to∑
j∈2ZQ

j2 −∑j∈2Z+1Q
j2∑

j∈ZQ
j2

, Q ≡ qm/n (F)

(F) highly suggestive of discrete Gaussian distribution,
(even in absence of height function)
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Cylinder loop statistics: triangular lattice

Application 1:

Triangular lattice with weights a, b, c (off-critical)

a

cb

On m× n cylinder with a-edges in circumferential direction,

Pdd(L even)− 1/2 ∼ Ca,b,c ·m2

∣∣∣∣b− cb+ c

∣∣∣∣n
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Cylinder loop statistics: Fisher lattice

Application 2:
Symmetric Fisher lattice on cylinder:

If a >
√

3 (low temperature), Pdd(L even)→ 1

If a <
√

3 (high temperature),

Pdd(L even)− 1/2 ∼ Cam2

∣∣∣∣a2 − 1

2

∣∣∣∣2n

If a =
√

3 (critical), Pdd(L even)− Pdd(L odd) converges to∑
j∈2Z

Qj
2 −

∑
j∈2Z+1

Qj
2

∑
j∈Z

Qj
2 , Q ≡ (e−π/

√
3)m/n
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Some open questions

What is the distribution of the number of loops winding
horizontally, vertically around the torus in the non-bipartite
case?

On the cylinder when Pdd(L even)→ 1/2, do the non-trivial
loops have a scaling limit?

On the cylinder when Pdd(L even)→ 1, does L→ 0 in
probability?
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Thank you!
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