Asymptotics of dimers on tori and cylinders

Richard Kenyon Nike Sun David Wilson

Brown University Stanford University Microsoft Research

MSRI 13 January 2012

1 Introduction: the dimer model

2 The dimer partition function

3 Some open questions

1 Introduction: the dimer model

2 The dimer partition function

3 Some open questions

R. Kenyon, N. Sun, and D. Wilson Asymptotics of dimers on tori and cylinders

Dimers

Finite undirected graph G = (V, E)

Finite undirected graph G = (V, E)

A dimer configuration or perfect matching on G is a subset $\mathfrak{m} \subseteq E$ such that every $v \in V$ is covered by exactly one $e \in \mathfrak{m}$

Dimer configuration on region in \mathbb{Z}^2

Dimer configuration on region in $\mathbb{Z}^2 \longleftrightarrow$ domino tiling

Figure: Kenyon PCMI '07

Dimer configuration on region in hexagonal lattice

Dimer configuration on region in hexagonal lattice \longleftrightarrow lozenge tiling

Figure: Kenyon PCMI '07

Dimer models

Dimer models

Assume G has edge weights $\nu : E \to \mathbb{R}_{>0}$:

$$\mathsf{weight}(\mathfrak{m}) \equiv \nu(\mathfrak{m}) \equiv \prod_{e \in \mathfrak{m}} \nu(e)$$

weight(
$$\mathfrak{m}$$
) $\equiv \nu(\mathfrak{m}) \equiv \prod_{e \in \mathfrak{m}} \nu(e)$

Normalizing weights gives probability measure \mathbb{P} on matchings of G, the **dimer model** on G:

weight(
$$\mathfrak{m}$$
) $\equiv \nu(\mathfrak{m}) \equiv \prod_{e \in \mathfrak{m}} \nu(e)$

Normalizing weights gives probability measure \mathbb{P} on matchings of G, the **dimer model** on G:

$$\mathbb{P}(\mathfrak{m}) = \frac{\nu(\mathfrak{m})}{Z},$$

weight
$$(\mathfrak{m}) \equiv \nu(\mathfrak{m}) \equiv \prod_{e \in \mathfrak{m}} \nu(e)$$

Normalizing weights gives probability measure \mathbb{P} on matchings of G, the **dimer model** on G:

$$\mathbb{P}(\mathfrak{m}) = \frac{\nu(\mathfrak{m})}{Z},$$

where Z = normalizing constant or partition function

weight
$$(\mathfrak{m}) \equiv \nu(\mathfrak{m}) \equiv \prod_{e \in \mathfrak{m}} \nu(e)$$

Normalizing weights gives probability measure \mathbb{P} on matchings of G, the **dimer model** on G:

$$\mathbb{P}(\mathfrak{m}) = rac{
u(\mathfrak{m})}{Z},$$

where Z = normalizing constant or partition function

[If $\nu(e) \equiv 1$ (unweighted), Z counts perfect matchings of G]

Double-dimer model: superposition $\mathfrak{m}_1 \ominus \mathfrak{m}_2$ of ordered pair $(\mathfrak{m}_1, \mathfrak{m}_2)$ of independent dimer configurations

Double-dimer model: superposition $\mathfrak{m}_1 \ominus \mathfrak{m}_2$ of ordered pair $(\mathfrak{m}_1, \mathfrak{m}_2)$ of independent dimer configurations

partition function $Z^{dd} = Z^2$, probability \mathbb{P}^{dd}

Double-dimer model: superposition $\mathfrak{m}_1 \ominus \mathfrak{m}_2$ of ordered pair $(\mathfrak{m}_1, \mathfrak{m}_2)$ of independent dimer configurations

partition function $Z^{dd} = Z^2$, probability \mathbb{P}^{dd}

Even-length loops and doubled edges:

Double-dimer model: superposition $\mathfrak{m}_1 \ominus \mathfrak{m}_2$ of ordered pair $(\mathfrak{m}_1, \mathfrak{m}_2)$ of independent dimer configurations

partition function $Z^{dd} = Z^2$, probability \mathbb{P}^{dd}

Even-length loops and doubled edges:

Figure: Boutillier-de Tilière AOP '09

For planar bipartite graphs G, correspondence

For planar bipartite graphs G, correspondence

dimer configuration \mathfrak{m} of $G \longleftrightarrow$ height function h on faces of G

For planar bipartite graphs G, correspondence

dimer configuration \mathfrak{m} of $G \longleftrightarrow$ height function h on faces of G

(easiest to see for lozenge tilings)

6/29

For planar bipartite graphs G, correspondence

dimer configuration \mathfrak{m} of $G \longleftrightarrow$ height function h on faces of G

(easiest to see for lozenge tilings)

Defined on general bipartite graph using representation of \mathfrak{m} as a black-to-white flow

[Levitov PRL '90, Zheng and Sachdev PRB '89, Blöte and Hilhorst JPA '82, Thurston AMM '90]

Figure: Kenyon PCMI '07

7/29

Dimers on bipartite lattices

Extensive literature concerning dimers on bipartite lattices, including:

Extensive literature concerning dimers on bipartite lattices, including:

 Arctic circle phenomenon: Jockusch–Propp–Shor '95, Cohn–Elkies–Propp Duke '96, Johansson AOP '05, Johansson–Nordenstam EJP '08, Nordenstam EJP '10 Extensive literature concerning dimers on bipartite lattices, including:

- Arctic circle phenomenon: Jockusch–Propp–Shor '95, Cohn–Elkies–Propp Duke '96, Johansson AOP '05, Johansson–Nordenstam EJP '08, Nordenstam EJP '10
- Limit shape, large deviations: Cohn–Kenyon–Propp JAMS '00

Extensive literature concerning dimers on bipartite lattices, including: $\star = most$ relevant to this talk

- Arctic circle phenomenon: Jockusch–Propp–Shor '95, Cohn–Elkies–Propp Duke '96, Johansson AOP '05, Johansson–Nordenstam EJP '08, Nordenstam EJP '10
- Limit shape, large deviations: Cohn-Kenyon-Propp JAMS '00
- ★ Height fluctuations renormalize to Gaussian free field: Kenyon AOP '00, '01; CMP '08

Extensive literature concerning dimers on bipartite lattices, including: $\star = \text{most}$ relevant to this talk

- Arctic circle phenomenon: Jockusch–Propp–Shor '95, Cohn–Elkies–Propp Duke '96, Johansson AOP '05, Johansson–Nordenstam EJP '08, Nordenstam EJP '10
- Limit shape, large deviations: Cohn–Kenyon–Propp JAMS '00
- ★ Height fluctuations renormalize to Gaussian free field: Kenyon AOP '00, '01; CMP '08
 - Harnack curves, classification of dimer phases: Kenyon–Sheffield JCTB '04, Kenyon–Okounkov–Sheffield Annals '06, Kenyon–Okounkov Duke '06

Extensive literature concerning dimers on bipartite lattices, including: $\star = \text{most}$ relevant to this talk

- Arctic circle phenomenon: Jockusch–Propp–Shor '95, Cohn–Elkies–Propp Duke '96, Johansson AOP '05, Johansson–Nordenstam EJP '08, Nordenstam EJP '10
- Limit shape, large deviations: Cohn-Kenyon-Propp JAMS '00
- ★ Height fluctuations renormalize to Gaussian free field: Kenyon AOP '00, '01; CMP '08
 - Harnack curves, classification of dimer phases: Kenyon–Sheffield JCTB '04, Kenyon–Okounkov–Sheffield Annals '06, Kenyon–Okounkov Duke '06
- ★ Discrete Gaussian loop statistics on tori: Boutillier-de Tilière AOP '09

Extensive literature concerning dimers on bipartite lattices, including: $\star = \text{most}$ relevant to this talk

- Arctic circle phenomenon: Jockusch–Propp–Shor '95, Cohn–Elkies–Propp Duke '96, Johansson AOP '05, Johansson–Nordenstam EJP '08, Nordenstam EJP '10
- Limit shape, large deviations: Cohn-Kenyon-Propp JAMS '00
- ★ Height fluctuations renormalize to Gaussian free field: Kenyon AOP '00, '01; CMP '08
 - Harnack curves, classification of dimer phases: Kenyon–Sheffield JCTB '04, Kenyon–Okounkov–Sheffield Annals '06, Kenyon–Okounkov Duke '06
- ★ Discrete Gaussian loop statistics on tori: Boutillier-de Tilière AOP '09
 - Conformal invariance of double-dimer loops: Kenyon '11
Much less work concerning dimers on non-bipartite lattices:

 Much less work concerning dimers on non-bipartite lattices: no notion of a height function, hence no obvious connection to GFF

- Much less work concerning dimers on non-bipartite lattices: no notion of a height function, hence no obvious connection to GFF
- One particular motivation is the interest in the Fisher lattice:

- Much less work concerning dimers on non-bipartite lattices: no notion of a height function, hence no obvious connection to GFF
- One particular motivation is the interest in the Fisher lattice: edges within small triangles: weight 1

- Much less work concerning dimers on non-bipartite lattices: no notion of a height function, hence no obvious connection to GFF
- One particular motivation is the interest in the Fisher lattice:

edges within small triangles: weight 1 remaining edges: weight a (symmetric)

Recall Ising model on G = (V, E):

Recall Ising model on G = (V, E): probability measure on spin configurations $\underline{\sigma} \in \{\pm 1\}^V$

Recall Ising model on G = (V, E): probability measure on spin configurations $\underline{\sigma} \in \{\pm 1\}^V$ given by

$$\mathbb{P}(\underline{\sigma}) = rac{1}{Z} \prod_{(uv) \in E} e^{\sigma_u \sigma_v / T}, \quad T = ext{temperature}$$

Recall Ising model on G = (V, E): probability measure on spin configurations $\underline{\sigma} \in \{\pm 1\}^V$ given by

$$\mathbb{P}(\underline{\sigma}) = \frac{1}{Z} \prod_{(uv) \in E} e^{\sigma_u \sigma_v / T}, \quad T = \text{temperature}$$

For planar G, well-known measure-preserving correspondence

Recall Ising model on G = (V, E): probability measure on spin configurations $\underline{\sigma} \in \{\pm 1\}^V$ given by

$$\mathbb{P}(\underline{\sigma}) = \frac{1}{Z} \prod_{(uv) \in E} e^{\sigma_u \sigma_v / T}, \quad T = \text{temperature}$$

For planar G, well-known measure-preserving correspondence lsing spin configurations on $G \longleftrightarrow$

Recall Ising model on G = (V, E): probability measure on spin configurations $\underline{\sigma} \in \{\pm 1\}^V$ given by

$$\mathbb{P}(\underline{\sigma}) = \frac{1}{Z} \prod_{(uv) \in E} e^{\sigma_u \sigma_v / T}, \quad T = \text{temperature}$$

For planar G, well-known measure-preserving correspondence

Ising spin configurations on $G \leftrightarrow$ dimer configurations on transformed graph \mathcal{G} (also planar)

Recall Ising model on G = (V, E): probability measure on spin configurations $\underline{\sigma} \in \{\pm 1\}^V$ given by

$$\mathbb{P}(\underline{\sigma}) = rac{1}{Z} \prod_{(uv) \in E} e^{\sigma_u \sigma_v / T}, \quad T = ext{temperature}$$

For planar G, well-known measure-preserving correspondence

Ising spin configurations on $G \leftrightarrow$ dimer configurations on transformed graph \mathcal{G} (also planar) (dual to correspondence of Fisher JMP '66)

Recall Ising model on G = (V, E): probability measure on spin configurations $\underline{\sigma} \in \{\pm 1\}^V$ given by

$$\mathbb{P}(\underline{\sigma}) = rac{1}{Z} \prod_{(uv) \in E} e^{\sigma_u \sigma_v / T}, \quad T = ext{temperature}$$

For planar G, well-known measure-preserving correspondence

Ising spin configurations on $G \leftrightarrow$ dimer configurations on transformed graph \mathcal{G} (also planar) (dual to correspondence of Fisher JMP '66)

G = triangular lattice

Recall Ising model on G = (V, E): probability measure on spin configurations $\underline{\sigma} \in \{\pm 1\}^V$ given by

$$\mathbb{P}(\underline{\sigma}) = rac{1}{Z} \prod_{(uv) \in E} e^{\sigma_u \sigma_v / T}, \quad T = ext{temperature}$$

For planar G, well-known measure-preserving correspondence

Ising spin configurations on $G \leftrightarrow$ dimer configurations on transformed graph \mathcal{G} (also planar) (dual to correspondence of Fisher JMP '66)

G =triangular lattice $\rightarrow \mathcal{G} =$ Fisher lattice

Fisher lattice

Ising spins on triangular lattice

(dual) Fisher's correspondence

Figure: David Wilson

R. Kenyon, N. Sun, and D. Wilson

Asymptotics of dimers on tori and cylinders

Ising on triangular lattice at temperature T

Ising on triangular lattice at temperature $T \\ \longleftrightarrow$ dimers on Fisher lattice with edge weights $a=e^{2/T}$

Ising on triangular lattice at temperature T \longleftrightarrow dimers on Fisher lattice with edge weights $a=e^{2/T}$

Double-dimer loops

Ising on triangular lattice at temperature T \longleftrightarrow dimers on Fisher lattice with edge weights $a = e^{2/T}$

> Double-dimer loops ↔ XOR-Ising interfaces

Ising on triangular lattice at temperature T \longleftrightarrow dimers on Fisher lattice with edge weights $a = e^{2/T}$

> Double-dimer loops ↔ XOR-Ising interfaces

Figure: Wilson '11

XOR-Ising interfaces

XOR-Ising interfaces

On square, hexagonal lattices:

 Dimer height fluctuations behave like GFF [Kenyon AOP '00, '01; CMP '08]

XOR-Ising interfaces

- Dimer height fluctuations behave like GFF [Kenyon AOP '00, '01; CMP '08]
- Subtracting dimer height functions gives double-dimer height function, whose contours are the double-dimer loops

- Dimer height fluctuations behave like GFF [Kenyon AOP '00, '01; CMP '08]
- Subtracting dimer height functions gives double-dimer height function, whose contours are the double-dimer loops
 - consequently, loops believed to behave like GFF contours at a certain height spacing

- Dimer height fluctuations behave like GFF [Kenyon AOP '00, '01; CMP '08]
- Subtracting dimer height functions gives double-dimer height function, whose contours are the double-dimer loops
 - consequently, loops believed to behave like GFF contours at a certain height spacing (CLE_4)

- Dimer height fluctuations behave like GFF [Kenyon AOP '00, '01; CMP '08]
- Subtracting dimer height functions gives double-dimer height function, whose contours are the double-dimer loops
 - consequently, loops believed to behave like GFF contours at a certain height spacing (CLE_4)

Fisher lattice has no height function:

- Dimer height fluctuations behave like GFF [Kenyon AOP '00, '01; CMP '08]
- Subtracting dimer height functions gives double-dimer height function, whose contours are the double-dimer loops
 - consequently, loops believed to behave like GFF contours at a certain height spacing (CLE_4)

Fisher lattice has no height function:

 However, simulations [Wilson '11] show Fisher double-dimer loops are distributed like GFF contours,

- Dimer height fluctuations behave like GFF [Kenyon AOP '00, '01; CMP '08]
- Subtracting dimer height functions gives double-dimer height function, whose contours are the double-dimer loops
 - consequently, loops believed to behave like GFF contours at a certain height spacing (CLE_4)

Fisher lattice has no height function:

• However, simulations [Wilson '11] show Fisher double-dimer loops are distributed like GFF contours, but at $\sqrt{2}$ times the CLE₄ height spacing

- Dimer height fluctuations behave like GFF [Kenyon AOP '00, '01; CMP '08]
- Subtracting dimer height functions gives double-dimer height function, whose contours are the double-dimer loops

 — consequently, loops believed to behave like GFF contours

at a certain height spacing (CLE_4)

Fisher lattice has no height function:

- However, simulations [Wilson '11] show Fisher double-dimer loops are distributed like GFF contours, but at $\sqrt{2}$ times the CLE₄ height spacing
- It is an open problem to develop a mathematical understanding of this phenomenon

1 Introduction: the dimer model

2 The dimer partition function

3 Some open questions

1 Introduction: the dimer model

2 The dimer partition function

3 Some open questions

R. Kenyon, N. Sun, and D. Wilson Asymptotics of dimers on tori and cylinders

Dimer partition function

$$\mathbb{P}(\mathfrak{m}) = rac{
u(\mathfrak{m})}{Z}, \quad Z = ext{partition function}$$
Dimer partition function

$$\mathbb{P}(\mathfrak{m}) = rac{
u(\mathfrak{m})}{Z}, \quad Z = ext{partition function}$$

We study asymptotics of the dimer partition function on cylindrical and toric graphs formed from planar lattices L

Dimer partition function

$$\mathbb{P}(\mathfrak{m}) = rac{
u(\mathfrak{m})}{Z}, \quad Z = ext{partition function}$$

- We study asymptotics of the dimer partition function on cylindrical and toric graphs formed from planar lattices L
- Our calculations yield new information on distribution of the number of loops winding around the torus or cylinder in associated double-dimer models

Dimer partition function

$$\mathbb{P}(\mathfrak{m}) = rac{
u(\mathfrak{m})}{Z}, \quad Z = ext{partition function}$$

- We study asymptotics of the dimer partition function on cylindrical and toric graphs formed from planar lattices L
- Our calculations yield new information on distribution of the number of loops winding around the torus or cylinder in associated double-dimer models

- including phase transitions and critical phenomena

Asymptotics are largely governed by the behavior of **dimer** characteristic polynomial P(z, w) on unit torus $\mathbb{T}^2 \equiv \{|z| = |w| = 1\}$:

Asymptotics are largely governed by the behavior of dimer characteristic polynomial P(z, w) on unit torus $\mathbb{T}^2 \equiv \{|z| = |w| = 1\}$:

■ For *G* planar, there exists a **Kasteleyn orientation** of *G* such that for the corresponding signed adjacency matrix *K*,

Asymptotics are largely governed by the behavior of **dimer** characteristic polynomial P(z, w) on unit torus $\mathbb{T}^2 \equiv \{|z| = |w| = 1\}$:

■ For *G* planar, there exists a Kasteleyn orientation of *G* such that for the corresponding signed adjacency matrix *K*,

 $Z = \sqrt{\det K}$ [Kasteleyn Physica '61, JMP '63]

Asymptotics are largely governed by the behavior of **dimer** characteristic polynomial P(z, w) on unit torus $\mathbb{T}^2 \equiv \{|z| = |w| = 1\}$:

■ For *G* planar, there exists a **Kasteleyn orientation** of *G* such that for the corresponding signed adjacency matrix *K*,

 $Z = \sqrt{\det K}$ [Kasteleyn Physica '61, JMP '63]

■ For a planar lattice L, let *K* = signed adjacency matrix corresponding to **periodic Kasteleyn orientation**

Asymptotics are largely governed by the behavior of **dimer** characteristic polynomial P(z, w) on unit torus $\mathbb{T}^2 \equiv \{|z| = |w| = 1\}$:

■ For *G* planar, there exists a **Kasteleyn orientation** of *G* such that for the corresponding signed adjacency matrix *K*,

 $Z = \sqrt{\det K}$ [Kasteleyn Physica '61, JMP '63]

■ For a planar lattice L, let *K* = signed adjacency matrix corresponding to **periodic Kasteleyn orientation**

Definition: $P(z,w) \equiv \det K(z,w)$, where $K(z,w) \equiv$ Fourier transform of K

Dimer characteristic polynomial: example

Dimer characteristic polynomial: example

$$K(z,w) = \begin{pmatrix} 0 & a+b/z+c/w \\ -a-bz-cw & 0 \end{pmatrix}$$

R. Kenyon, N. Sun, and D. Wilson Asymptotics of dimers on tori and cylinders 16 / 29

Dimer characteristic polynomial: example

$$K(z,w) = \begin{pmatrix} 0 & a+b/z+c/w \\ -a-bz-cw & 0 \end{pmatrix}$$
$$P(z,w) = \det K(z,w) = |a+bz+cw|^2$$

R. Kenyon, N. Sun, and D. Wilson

Asymptotics of dimers on tori and cylinders

16 / 29

Dimer characteristic polynomial: criticality

Fact: $P(z, w) \ge 0$ on unit torus \mathbb{T}^2

Fact: $P(z,w) \ge 0$ on unit torus \mathbb{T}^2

Definition: The dimer model is **critical** if P has zeroes on \mathbb{T}^2 .

Fact: $P(z,w) \ge 0$ on unit torus \mathbb{T}^2

Definition: The dimer model is **critical** if P has zeroes on \mathbb{T}^2 .

Critical dimer models exhibit long-range correlations

Fact: $P(z, w) \ge 0$ on unit torus \mathbb{T}^2

Definition: The dimer model is **critical** if P has zeroes on \mathbb{T}^2 .

Critical dimer models exhibit long-range correlations (correlations with polynomial rather than exponential decay) [see e.g. Kenyon–Okounkov–Sheffield Annals '06]

For bipartite lattices,

For bipartite lattices, P(z, w) is either non-vanishing on \mathbb{T}^2 ,

For bipartite lattices, P(z, w) is either non-vanishing on \mathbb{T}^2 , or has **two** conjugate **nodes** (node = double zero)

[Kenyon-Sheffield JCTB '04, Kenyon-Okounkov-Sheffield Annals '06]

For bipartite lattices, P(z, w) is either non-vanishing on \mathbb{T}^2 , or has **two** conjugate **nodes** (node = double zero)

[Kenyon-Sheffield JCTB '04, Kenyon-Okounkov-Sheffield Annals '06]

Unweighted square lattice is critical:

For bipartite lattices, P(z, w) is either non-vanishing on \mathbb{T}^2 , or has two conjugate nodes (node = double zero)

[Kenyon-Sheffield JCTB '04, Kenyon-Okounkov-Sheffield Annals '06]

Unweighted square lattice is critical: conjugate nodes on \mathbb{T}^2 at (1,i) and (1,-i)

It is a long-standing open problem to show that for typical non-bipartite lattices,

It is a long-standing open problem to show that for typical non-bipartite lattices,

(\bigstar) P(z,w) is either non-vanishing on \mathbb{T}^2 ,

It is a long-standing open problem to show that for typical non-bipartite lattices,

(\bigstar) P(z, w) is either non-vanishing on \mathbb{T}^2 , or has a single real node at $(z_0, w_0) \in \{\pm 1\}^2$

It is a long-standing open problem to show that for typical non-bipartite lattices,

(\bigstar) P(z, w) is either non-vanishing on \mathbb{T}^2 , or has a single real node at $(z_0, w_0) \in \{\pm 1\}^2$

Proved for periodic Fisher graphs by Li '10

It is a long-standing open problem to show that for typical non-bipartite lattices,

(\bigstar) P(z, w) is either non-vanishing on \mathbb{T}^2 , or has a single real node at $(z_0, w_0) \in \{\pm 1\}^2$

Proved for periodic Fisher graphs by Li '10

symmetric Fisher lattice is critical iff $a = \sqrt{3}$:

It is a long-standing open problem to show that for typical non-bipartite lattices,

(\bigstar) P(z, w) is either non-vanishing on \mathbb{T}^2 , or has a single real node at $(z_0, w_0) \in \{\pm 1\}^2$

Proved for periodic Fisher graphs by Li '10

symmetric Fisher lattice is critical iff $a = \sqrt{3}$: single real node on \mathbb{T}^2 at (-1, -1)

19/29

Summary of results: the dimer partition function

Main theorem

For cylindrical and toric graphs formed from planar lattices $\mathbb{L},$

For cylindrical and toric graphs formed from planar lattices $\mathbb L,$ the dimer partition function has asymptotic expansion

For cylindrical and toric graphs formed from planar lattices $\mathbb L,$ the dimer partition function has asymptotic expansion

 $Z \sim \exp \{ \operatorname{area} \times \mathbf{f} + \operatorname{perimeter} \times \mathbf{s} \} \times \Xi$

For cylindrical and toric graphs formed from planar lattices $\mathbb L,$ the dimer partition function has asymptotic expansion

$$Z \sim \exp \{ \operatorname{area} \times \mathbf{f} + \operatorname{perimeter} \times \mathbf{s} \} \times \Xi$$

• **f** = free energy =
$$\frac{1}{2} \iint_{[0,1]^2} \log P(e^{2\pi i s}, e^{2\pi i t}) \, ds \, dt$$

For cylindrical and toric graphs formed from planar lattices $\mathbb L,$ the dimer partition function has asymptotic expansion

$$Z \sim \exp \{ \operatorname{area} \times \mathbf{f} + \operatorname{perimeter} \times \mathbf{s} \} \times \Xi$$

• **f** = free energy =
$$\frac{1}{2} \iint_{[0,1]^2} \log P(e^{2\pi i s}, e^{2\pi i t}) ds dt$$

area = number of copies of fundamental domain

For cylindrical and toric graphs formed from planar lattices $\mathbb L,$ the dimer partition function has asymptotic expansion

$$Z \sim \exp \{ \operatorname{area} \times \mathbf{f} + \operatorname{perimeter} \times \mathbf{s} \} \times \Xi$$

For cylindrical and toric graphs formed from planar lattices $\mathbb L,$ the dimer partition function has asymptotic expansion

$$Z \sim \exp \{ \operatorname{area} \times \mathbf{f} + \operatorname{perimeter} \times \mathbf{s} \} \times \Xi$$
Main theorem

For cylindrical and toric graphs formed from planar lattices $\mathbb L,$ the dimer partition function has asymptotic expansion

$$Z \sim \exp \{ \operatorname{area} \times \mathbf{f} + \operatorname{perimeter} \times \mathbf{s} \} \times \Xi$$

where

 $\blacksquare \Xi = conformal factor:$

Main theorem

For cylindrical and toric graphs formed from planar lattices $\mathbb L,$ the dimer partition function has asymptotic expansion

$$Z \sim \exp \{ \operatorname{area} \times \mathbf{f} + \operatorname{perimeter} \times \mathbf{s} \} \times \Xi$$

where

• **f** = free energy =
$$\frac{1}{2} \iint_{[0,1]^2} \log P(e^{2\pi i s}, e^{2\pi i t}) ds dt$$

area = number of copies of fundamental domain

- perimeter × s = boundary effect
 - some additional (computable) corrections possible
- $\blacksquare \Xi = conformal factor:$

constant-order correction for critical lattices

The conformal factor Ξ is very different for bipartite vs. non-bipartite lattices,

The conformal factor Ξ is very different for bipartite vs. non-bipartite lattices, but exhibits **universality** within these classes: The conformal factor Ξ is very different for bipartite vs. non-bipartite lattices, but exhibits **universality** within these classes:

Within each class, form of Ξ depends only on single parameter $\tau \in \mathbb{C}$

The conformal factor Ξ is very different for bipartite vs. non-bipartite lattices, but exhibits **universality** within these classes:

Within each class, form of Ξ depends only on single parameter $\tau \in \mathbb{C}$ — the conformal shape of the domain

Main theorem in case of torus:

Main theorem in case of torus:

 $Z \sim \exp \{ \operatorname{area} imes \mathbf{f} \} imes \Xi_{ au}, \ au = \operatorname{conformal shape}$

Main theorem in case of torus:

 $Z \sim \exp \{ \operatorname{area} imes \mathbf{f} \} imes \mathbf{\Xi}_{ au}$, $au = \operatorname{conformal}$ shape

Define
$$g_{\tau}(j,k) \equiv \frac{1}{2\tau_y}(|\tau|^2 j^2 + 2\tau_x jk + k^2)$$
:

Main theorem in case of torus:

 $Z \sim \exp \left\{ {
m area} imes {f f}
ight\} imes {f \Xi}_{ au}$, $au = {
m conformal shape}$

Define
$$g_{\tau}(j,k) \equiv \frac{1}{2\tau_y}(|\tau|^2 j^2 + 2\tau_x jk + k^2)$$
:

Critical bipartite:

Main theorem in case of torus: $Z \sim \exp \{ \operatorname{area} \times \mathbf{f} \} \times \Xi_{\tau}, \tau = \operatorname{conformal shape}$

Define
$$g_{\tau}(j,k) \equiv \frac{1}{2\tau_y}(|\tau|^2 j^2 + 2\tau_x jk + k^2)$$
:

Critical bipartite:

$$\Xi_{\tau} = C_{\tau} \sum_{(j,k) \in \mathbb{Z}^2 + (s',t')} e^{-\pi g_{\tau}(j,k)}$$

Main theorem in case of torus: $Z \sim \exp \{ \operatorname{area} \times \mathbf{f} \} \times \Xi_{\tau}, \ \tau = \operatorname{conformal shape}$

Define
$$g_{\tau}(j, k) \equiv \frac{1}{2\tau_y}(|\tau|^2 j^2 + 2\tau_x jk + k^2)$$
:

Critical bipartite:

$$\Xi_{\tau} = C_{\tau} \sum_{(j,k) \in \mathbb{Z}^2 + (s',t')} e^{-\pi g_{\tau}(j,k)}$$

with offset $(s',t') \in \mathbb{R}^2$ depending on location of nodes and torus dimensions

Main theorem in case of torus: $Z \sim \exp \{ \operatorname{area} \times \mathbf{f} \} \times \Xi_{\tau}, \tau = \operatorname{conformal shape}$

Define
$$g_{\tau}(j,k) \equiv \frac{1}{2\tau_y}(|\tau|^2 j^2 + 2\tau_x jk + k^2)$$
:

Critical bipartite:

$$\Xi_{\tau} = C_{\tau} \sum_{(j,k) \in \mathbb{Z}^2 + (s',t')} e^{-\pi g_{\tau}(j,k)}$$

with offset $(s',t') \in \mathbb{R}^2$ depending on location of nodes and torus dimensions

■ Critical non-bipartite (assuming condition (★)):

Main theorem in case of torus: $Z \sim \exp \{ \operatorname{area} \times \mathbf{f} \} \times \Xi_{\tau}, \tau = \operatorname{conformal shape}$

Define
$$g_{\tau}(j,k) \equiv \frac{1}{2\tau_{y}}(|\tau|^{2}j^{2} + 2\tau_{x}jk + k^{2})$$
:

Critical bipartite:

$$\Xi_{\tau} = C_{\tau} \sum_{(j,k) \in \mathbb{Z}^2 + (s',t')} e^{-\pi g_{\tau}(j,k)}$$

with offset $(s',t') \in \mathbb{R}^2$ depending on location of nodes and torus dimensions

■ Critical non-bipartite (assuming condition (★)):

$$\Xi_{\tau} = C_{\tau}' \sqrt{\sum_{(j,k)\in\mathbb{Z}^2} e^{-\pi g_{\tau}(j,k)} + \sqrt{2} \sum_{(j,k)\in\mathbb{Z}^2\backslash(2\mathbb{Z})^2} e^{-\pi g_{\tau}(j,k)/2}}$$

R. Kenyon, N. Sun, and D. Wilson Asymptotics of dimers on tori and cylinders 23 / 29

Double-dimer configuration $\mathfrak{m}_1 \ominus \mathfrak{m}_2$:

Double-dimer configuration $\mathfrak{m}_1 \ominus \mathfrak{m}_2$:

Let wind $\mathfrak{m}_1 \ominus \mathfrak{m}_2 \equiv$ homology class (in \mathbb{Z}^2) of $\mathfrak{m}_1 \ominus \mathfrak{m}_2$

Double-dimer configuration $\mathfrak{m}_1 \ominus \mathfrak{m}_2$:

Let wind $\mathfrak{m}_1 \ominus \mathfrak{m}_2 \equiv$ homology class (in \mathbb{Z}^2) of $\mathfrak{m}_1 \ominus \mathfrak{m}_2 =$ (horizontal, vertical) winding numbers for double-dimer configuration

Double-dimer configuration $\mathfrak{m}_1 \ominus \mathfrak{m}_2$:

Let wind $\mathfrak{m}_1 \ominus \mathfrak{m}_2 \equiv$ homology class (in \mathbb{Z}^2) of $\mathfrak{m}_1 \ominus \mathfrak{m}_2 =$ (horizontal, vertical) winding numbers for double-dimer configuration

Figure: Kasteleyn Physica '61

Boutillier-de Tilière AOP '09:

For rectilinear tori on the unweighted hexagonal lattice,

Boutillier-de Tilière AOP '09:

For rectilinear tori on the unweighted hexagonal lattice, wind $\mathfrak{m}_1 \ominus \mathfrak{m}_2 \approx$ independent discrete Gaussians:

Boutillier-de Tilière AOP '09:

For rectilinear tori on the unweighted hexagonal lattice, wind $\mathfrak{m}_1 \ominus \mathfrak{m}_2 \approx$ independent discrete Gaussians:

$$\mathbb{P}^{\mathsf{dd}}(\operatorname{wind}\mathfrak{m}_1\ominus\mathfrak{m}_2=(j,k)) \approx rac{1}{Z}Q_1^{j^2}Q_2^{k^2}$$

Boutillier-de Tilière AOP '09:

For rectilinear tori on the unweighted hexagonal lattice, wind $\mathfrak{m}_1 \ominus \mathfrak{m}_2 \approx$ independent discrete Gaussians:

$$\mathbb{P}^{\mathsf{dd}}(\operatorname{wind} \mathfrak{m}_1 \ominus \mathfrak{m}_2 = (j,k)) \approx \frac{1}{Z} Q_1^{j^2} Q_2^{k^2}$$

for $Q_1,Q_2\in(0,1)$ determined by aspect ratio

Boutillier-de Tilière AOP '09:

For rectilinear tori on the unweighted hexagonal lattice, wind $\mathfrak{m}_1 \ominus \mathfrak{m}_2 \approx$ independent discrete Gaussians:

$$\mathbb{P}^{\mathsf{dd}}(\operatorname{wind}\mathfrak{m}_1\ominus\mathfrak{m}_2=(j,k))pproxrac{1}{Z}Q_1^{j^2}Q_2^{k^2}$$

for $Q_1,Q_2\in(0,1)$ determined by aspect ratio

Perturbative analysis of our expansion of Z yields:

Theorem

For a large class of bipartite lattices,

Boutillier-de Tilière AOP '09:

For rectilinear tori on the unweighted hexagonal lattice, wind $\mathfrak{m}_1 \ominus \mathfrak{m}_2 \approx$ independent discrete Gaussians:

$$\mathbb{P}^{\mathsf{dd}}(\operatorname{wind}\mathfrak{m}_1\ominus\mathfrak{m}_2=(j,k))pproxrac{1}{Z}Q_1^{j^2}Q_2^{k^2}$$

for $Q_1,Q_2\in(0,1)$ determined by aspect ratio

Perturbative analysis of our expansion of Z yields:

Theorem

For a large class of bipartite lattices,

wind $\mathfrak{m}_1 \ominus \mathfrak{m}_2 \approx bivariate \ discrete \ Gaussian$

Boutillier-de Tilière AOP '09:

For rectilinear tori on the unweighted hexagonal lattice, wind $\mathfrak{m}_1 \ominus \mathfrak{m}_2 \approx$ independent discrete Gaussians:

$$\mathbb{P}^{\mathsf{dd}}(\operatorname{wind} \mathfrak{m}_1 \ominus \mathfrak{m}_2 = (j,k)) \approx \frac{1}{Z} Q_1^{j^2} Q_2^{k^2}$$

for $Q_1,Q_2\in(0,1)$ determined by aspect ratio

Perturbative analysis of our expansion of Z yields:

Theorem

For a large class of bipartite lattices,

wind $\mathfrak{m}_1 \ominus \mathfrak{m}_2 \approx$ bivariate discrete Gaussian

with covariance structure depending on conformal shape of torus

Main theorem in case of cylinder (circumference m, height n):

Main theorem in case of cylinder (circumference *m*, height *n*): $Z \sim \exp \{mn \times \mathbf{f} + [m \times \mathbf{s} + \Theta]\} \times \Xi_{\tau}$

Main theorem in case of cylinder (circumference *m*, height *n*): $Z \sim \exp \{mn \times \mathbf{f} + [m \times \mathbf{s} + \Theta]\} \times \Xi_{\tau}$

Boundary effect $m \times \mathbf{s} + \Theta$:

Main theorem in case of cylinder (circumference *m*, height *n*): $Z \sim \exp \{mn \times \mathbf{f} + [m \times \mathbf{s} + \Theta]\} \times \Xi_{\tau}$

Boundary effect $m \times \mathbf{s} + \Theta$:

$$\mathbf{s} = \int_0^1 \log \varphi(e^{2\pi i s}) \ ds$$
 for explicit function φ

Main theorem in case of cylinder (circumference *m*, height *n*): $Z \sim \exp \{mn \times \mathbf{f} + [m \times \mathbf{s} + \Theta]\} \times \Xi_{\tau}$

Boundary effect $m \times \mathbf{s} + \Theta$:

$$\mathbf{s} = \int_0^1 \log \varphi(e^{2\pi i s}) \ ds \text{ for explicit function } \boldsymbol{\varphi}$$
(computed from boundary conditions)

Main theorem in case of cylinder (circumference *m*, height *n*): $Z \sim \exp \{mn \times \mathbf{f} + [m \times \mathbf{s} + \Theta]\} \times \Xi_{\tau}$

Boundary effect $m \times \mathbf{s} + \Theta$:

$$\mathbf{s} = \int_0^1 \log \varphi(e^{2\pi i s}) \ ds \text{ for explicit function } \varphi$$
(computed from boundary conditions)

 $\Theta = O(\log m) + O(n)$

computable correction due to singularities of arphi

Main theorem in case of cylinder (circumference *m*, height *n*): $Z \sim \exp \{mn \times \mathbf{f} + [m \times \mathbf{s} + \Theta]\} \times \Xi_{\tau}$

Boundary effect $m \times \mathbf{s} + \Theta$:

$$\mathbf{s} = \int_0^1 \log \varphi(e^{2\pi i s}) \ ds \text{ for explicit function } \varphi$$
(computed from boundary conditions)

 $\Theta = O(\log m) + O(n)$

computable correction due to singularities of arphi

— may depend sensitively on m

Cylinder loop statistics

Let $\mathbf{L} =$ number of double-dimer loops winding around cylinder

Cylinder loop statistics

Let $\mathbf{L} =$ number of double-dimer loops winding around cylinder

Theorem

For a large class of non-bipartite lattices (assuming condition (\bigstar)),

Cylinder loop statistics

Let $\mathbf{L} =$ number of double-dimer loops winding around cylinder

Theorem

For a large class of non-bipartite lattices (assuming condition (\bigstar)), the distribution of **L** on $m \times n$ cylinders falls into one of the following classifications:
Let $\mathbf{L} =$ number of double-dimer loops winding around cylinder

Theorem

For a large class of non-bipartite lattices (assuming condition (\bigstar)), the distribution of **L** on $m \times n$ cylinders falls into one of the following classifications:

• Off-critical, and $\mathbb{P}^{\mathsf{dd}}(\mathbf{L} \text{ even}) = 1 - o(1)$

Let $\mathbf{L} =$ number of double-dimer loops winding around cylinder

Theorem

For a large class of non-bipartite lattices

(assuming condition (\bigstar)), the distribution of **L** on $m \times n$ cylinders falls into one of the following classifications:

- Off-critical, and $\mathbb{P}^{dd}(\mathbf{L} even) = 1 o(1)$
- Off-critical or critical, and $\mathbb{P}^{\mathsf{dd}}(\mathbf{L} \text{ even}) 1/2 \sim e^{-cn + O(\log m)}$

Let $\mathbf{L} =$ number of double-dimer loops winding around cylinder

Theorem

For a large class of non-bipartite lattices

(assuming condition (\bigstar)), the distribution of **L** on $m \times n$ cylinders falls into one of the following classifications:

- Off-critical, and $\mathbb{P}^{dd}(\mathbf{L} even) = 1 o(1)$
- Off-critical or critical, and $\mathbb{P}^{\mathsf{dd}}(\mathbf{L} \text{ even}) 1/2 \sim e^{-cn + O(\log m)}$
- \blacksquare Critical, and $\mathbb{P}^{dd}(\mathbf{L} \text{ even}) \mathbb{P}^{dd}(\mathbf{L} \text{ odd})$ converges to

$$\frac{\sum_{j \in \mathbf{2\mathbb{Z}}} Q^{j^2} - \sum_{j \in \mathbf{2\mathbb{Z}+1}} Q^{j^2}}{\sum_{j \in \mathbb{Z}} Q^{j^2}}, \quad Q \equiv q^{m/n}$$

Let $\mathbf{L} =$ number of double-dimer loops winding around cylinder

Theorem

For a large class of non-bipartite lattices

(assuming condition (\bigstar)), the distribution of **L** on $m \times n$ cylinders falls into one of the following classifications:

- Off-critical, and $\mathbb{P}^{dd}(\mathbf{L} even) = 1 o(1)$
- Off-critical or critical, and $\mathbb{P}^{dd}(\mathbf{L} \text{ even}) 1/2 \sim e^{-cn + O(\log m)}$
- \blacksquare Critical, and $\mathbb{P}^{dd}(\mathbf{L} \text{ even}) \mathbb{P}^{dd}(\mathbf{L} \text{ odd})$ converges to

$$\frac{\sum_{j \in \mathbf{2\mathbb{Z}}} Q^{j^2} - \sum_{j \in \mathbf{2\mathbb{Z}}+1} Q^{j^2}}{\sum_{j \in \mathbb{Z}} Q^{j^2}}, \quad Q \equiv q^{m/n} \quad (\bigstar)$$

 (\bigstar) highly suggestive of discrete Gaussian distribution,

Let $\mathbf{L} =$ number of double-dimer loops winding around cylinder

Theorem

For a large class of non-bipartite lattices

(assuming condition (\bigstar)), the distribution of **L** on $m \times n$ cylinders falls into one of the following classifications:

- Off-critical, and $\mathbb{P}^{dd}(\mathbf{L} even) = 1 o(1)$
- Off-critical or critical, and $\mathbb{P}^{dd}(\mathbf{L} \text{ even}) 1/2 \sim e^{-cn + O(\log m)}$
- \blacksquare Critical, and $\mathbb{P}^{dd}(\mathbf{L} \text{ even}) \mathbb{P}^{dd}(\mathbf{L} \text{ odd})$ converges to

$$\frac{\sum_{j \in 2\mathbb{Z}} Q^{j^2} - \sum_{j \in 2\mathbb{Z}+1} Q^{j^2}}{\sum_{j \in \mathbb{Z}} Q^{j^2}}, \quad Q \equiv q^{m/n} \quad (\bigstar)$$

 (★) highly suggestive of discrete Gaussian distribution, (even in absence of height function)

Application 1:

Application 1:

Triangular lattice with weights a, b, c (off-critical)

Application 1:

Triangular lattice with weights a, b, c (off-critical)

On $m \times n$ cylinder with *a*-edges in circumferential direction,

Application 1:

Triangular lattice with weights a, b, c (off-critical)

On $m \times n$ cylinder with *a*-edges in circumferential direction,

$$\mathbb{P}^{\mathsf{dd}}(\mathbf{L} \text{ even}) - 1/2 \sim C_{a,b,c} \cdot m^2 \left| \frac{b-c}{b+c} \right|^n$$

Application 2:

Symmetric Fisher lattice on cylinder:

Application 2:

Symmetric Fisher lattice on cylinder:

If $a > \sqrt{3}$ (low temperature),

Application 2:

Symmetric Fisher lattice on cylinder:

If $a > \sqrt{3}$ (low temperature), $\mathbb{P}^{\mathsf{dd}}(\mathbf{L} \text{ even}) \to 1$

Application 2:

Symmetric Fisher lattice on cylinder:

If $a>\sqrt{3}$ (low temperature), $\mathbb{P}^{\mathsf{dd}}(\mathbf{L} \ \mathsf{even}) o 1$

If $a < \sqrt{3}$ (high temperature),

Application 2:

Symmetric Fisher lattice on cylinder:

If $a>\sqrt{3}$ (low temperature), $\mathbb{P}^{\mathsf{dd}}(\mathbf{L} \ \mathsf{even}) o 1$

If $a < \sqrt{3}$ (high temperature),

$$\mathbb{P}^{\mathsf{dd}}(\mathbf{L} \text{ even}) - 1/2 \sim C_a m^2 \left| \frac{a^2 - 1}{2} \right|^{2n}$$

Application 2:

Symmetric Fisher lattice on cylinder:

If $a>\sqrt{3}$ (low temperature), $\mathbb{P}^{\mathsf{dd}}(\mathbf{L} \ \mathsf{even}) o 1$

If $a < \sqrt{3}$ (high temperature),

$$\mathbb{P}^{\mathsf{dd}}(\mathbf{L} \text{ even}) - 1/2 \sim C_a m^2 \left| rac{a^2 - 1}{2}
ight|^{2n}$$

If $a = \sqrt{3}$ (critical),

Application 2:

Symmetric Fisher lattice on cylinder:

If $a>\sqrt{3}$ (low temperature), $\mathbb{P}^{\mathsf{dd}}(\mathbf{L} \ \mathsf{even}) o 1$

If $a < \sqrt{3}$ (high temperature),

$$\mathbb{P}^{\mathsf{dd}}(\mathbf{L} \text{ even}) - 1/2 \sim C_a m^2 \left| \frac{a^2 - 1}{2} \right|^{2n}$$

If $a = \sqrt{3}$ (critical), $\mathbb{P}^{dd}(\mathbf{L} \text{ even}) - \mathbb{P}^{dd}(\mathbf{L} \text{ odd})$ converges to

Application 2:

Symmetric Fisher lattice on cylinder:

If $a>\sqrt{3}$ (low temperature), $\mathbb{P}^{\mathsf{dd}}(\mathbf{L} \ \mathsf{even}) o 1$

If $a < \sqrt{3}$ (high temperature),

$$\mathbb{P}^{\mathsf{dd}}(\mathbf{L} \text{ even}) - 1/2 \sim C_a m^2 \left| rac{a^2 - 1}{2}
ight|^{2n}$$

If $a = \sqrt{3}$ (critical), $\mathbb{P}^{\mathsf{dd}}(\mathbf{L} \text{ even}) - \mathbb{P}^{\mathsf{dd}}(\mathbf{L} \text{ odd})$ converges to

$$\frac{\sum_{j \in 2\mathbb{Z}} Q^{j^2} - \sum_{j \in 2\mathbb{Z}+1} Q^{j^2}}{\sum_{j \in \mathbb{Z}} Q^{j^2}}, \quad Q \equiv (e^{-\pi/\sqrt{3}})^{m/n}$$

1 Introduction: the dimer model

2 The dimer partition function

3 Some open questions

1 Introduction: the dimer model

2 The dimer partition function

3 Some open questions

Some open questions

What is the distribution of the number of loops winding horizontally, vertically around the torus in the non-bipartite case?

- What is the distribution of the number of loops winding horizontally, vertically around the torus in the non-bipartite case?
- On the cylinder when $\mathbb{P}^{dd}(\mathbf{L} \text{ even}) \rightarrow 1/2$, do the non-trivial loops have a scaling limit?

- What is the distribution of the number of loops winding horizontally, vertically around the torus in the non-bipartite case?
- On the cylinder when $\mathbb{P}^{dd}(\mathbf{L} \text{ even}) \rightarrow 1/2$, do the non-trivial loops have a scaling limit?
- On the cylinder when $\mathbb{P}^{dd}(\mathbf{L} \text{ even}) \to \mathbf{1}$, does $\mathbf{L} \to 0$ in probability?

Thank you!